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In situ concept-based computing is based on the notion that conceptual representations 
in the human brain are “in situ.” In this way, they are grounded in perception and action. 
Examples are neuronal assemblies, whose connection structures develop over time and 
are distributed over different brain areas. In situ concepts representations cannot be 
copied or duplicated because that will disrupt their connection structure, and thus the 
meaning of these concepts. Higher-level cognitive processes, as found in language and 
reasoning, can be performed with in situ concepts by embedding them in specialized 
neurally inspired “blackboards.” The interactions between the in situ concepts and the 
blackboards form the basis for in situ concept computing architectures. In these archi-
tectures, memory (concepts) and processing are interwoven, in contrast with the sepa-
ration between memory and processing found in Von Neumann architectures. Because 
the further development of Von Neumann computing (more, faster, yet power limited) 
is questionable, in situ concept computing might be an alternative for concept-based 
computing. In situ concept computing will be illustrated with a recently developed BABI 
reasoning task. Neurorobotics can play an important role in the development of in situ 
concept computing because of the development of in  situ concept representations 
derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit 
from power limited and in situ concept computing.
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INTRODUCTION

Important progress has been made in neurorobotics on topics such as processing sensory informa-
tion [e.g., Yan et al. (2013) and Chou et al. (2015)], motor control [e.g., Burms et al. (2015) and 
Grinke et al. (2015)], and implementation with neuromorphic hardware (Stewart et al., 2016). In this 
way, neurorobotics can use brain research to develop models that process information in a neurally 
inspired way. Furthermore, the possibility of parallel implementation and neuromorphic hardware 
may be crucial for further development of robotics, because these forms of hardware can reduce 
the power of computing while maintaining the ability to process complex information. This allows 
robots to move around freely without the need for continuous energy take up.

Parallel and neuromorphic forms of hardware [e.g., Benjamin et  al. (2014) and Chicca et  al. 
(2014)] are also important given the problems with the further development of standard computer 
hardware. The past development of Von Neumann computing (more and faster processing, yet power 
limited) will likely not continue over the next decades (SIA and SRC, 2015). Therefore, new forms of 
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hardware and new computing architectures are needed [e.g., see 
Nano.gov (2015)]. Williams and DeBenedictis (2015) argue for 
the development of dedicated “accelerators,” consisting of specific 
forms of computing that can interact with standard computing 
to enhance performance on certain tasks. Examples are GPUs for 
graphical processing. Other examples could be neuromorphic 
hardware for sensory processing and motor control.

However, robots would also need to develop a form of under-
standing of the environment they operate in [e.g., Law et  al. 
(2014)]. At some level, they need to acquire concepts of the world 
around them and use these concepts in basic common sense 
like reasoning capabilities. However, Davies and Marcus (2015) 
argued recently that conceptual knowledge and basic forms of 
common sense reasoning is still lacking in artificial intelligence 
(AI), and hence also in robotics. In their view, this is even true 
for a system like IBMs Watson, even though that defeated humans 
in the game of Jeopardy, which does seem to be concept based.

BABI REASONING TASKS

Interestingly, (implicit) support for the view of Davies and Marcus 
recently arose in the field of machine learning (ML) itself. For 
example, deep learning has been very successful in topics such 
as object detection (Krizhevsky et al., 2012), speech recognition 
(Dahl et  al., 2012), and machine translation (Sutskever et  al., 
2014). But, performance with reasoning is still limited (Bordes 
et  al., 2015; Bottou, 2015). To address this issue, Weston et  al. 
(2015) designed a set of artificial basic reasoning tasks, aptly 
called “BABI” tasks. There are 20 different BABI tasks (with 
more to come), which each address a specific form of reasoning. 
Weston et al. (2015) argue that performing well on all of them is 
a prerequisite for any system aiming at understanding language 
and being able to reason.

Figure  1A illustrates one of the tasks. The sentences repre-
sent a simple scenario. The ability of a model to understand the 
scenario is tested by question answering. To answer the question 
Where is milk?, a model needs to retrieve two supporting facts. 
First, John drop milk, which reveals drop as a “localizer” of milk, 
and then John go office, to retrieve the location. In the BABI tasks, 
the features and their relations are derived from a simple gaming 
environment. Concepts are related to features that reveal parts 
of their meaning. For example, the concept room entails that it 
is a “location,” and drop entails that an object is “localized” by 
the action.

The BABI tasks serve as a benchmark for ML. But even if ML 
is successful on these tasks, there is still the question of whether 
Von Neumann computing would be suitable as the underlying 
computing architecture. For example, the concepts in the BABI 
tasks are derived in gaming scenarios. But, more realistic con-
cepts for language and reasoning will depend on embodied forms 
of cognition (Parisi, 2010), which, in turn, would require power 
limited forms of computing (to move around freely). This could 
be hard to achieve with Von Neumann computing (Williams and 
DeBenedictis, 2015).

Therefore, it might be that the quest for new forms of computer 
hardware could coincide with a development of new comput-
ing architectures that can also deal with higher-level forms of 

cognition such as reasoning. Given their relation with higher-
level human cognition and the need for new forms of power 
limited computing (e.g., parallel or neuromorphic computing), 
these architectures would likely be brain inspired. The BABI tasks 
could then also be used as a benchmark for these architectures.

Furthermore, instead of using artificial gaming situations, 
robots interacting with their environment would be ideally 
suited to develop the scenarios on which the tasks are based and 
the embodied concepts underlying the reasoning processes in 
them. Hence, neurorobotics could play an important role in the 
development and testing of these new computing architectures.

IN SITU CONCEPT COMPUTING

Here, I would like to propose and illustrate such an architecture 
that I refer to as “in  situ concept(-based)” computing. In situ 
concept computing is brain inspired, because it is based on the 
notion that in the human brain conceptual representations are 
“in  situ.” This means that the information carrying representa-
tions (concepts) are not copied or transported but remain where 
they are, even when they are used in processing and producing 
complex forms of computing as found in language or reasoning. 
Examples of such representations are the neuronal assemblies as 
proposed by Hebb (1949).

Computer architectures based on in situ representations pro-
vide an alternative for the Von Neumann computer architecture in 
which a substantial part of the computing time and power derives 
from moving data over the data bus between memory and pro-
cessor. Furthermore, in  situ representations (concepts) provide 
a direct control on computing (as they do in the brain), which 
could provide huge benefits for cognitive forms of computing.

BABI tasks and their scenarios derived from neurorobotics 
could be used as a benchmark for in  situ concept computing. 
The best (but not optimally) performing ML models on the tasks 
(to date) are the memory networks (MemNNs) of Weston et al. 
(2015). Their performance illustrates the difference between 
in  situ concept computing and computing on von Neumann 
architectures.

A MemNN handles the task in Figure 1A by comparing the 
question with each of the sentences in the memory. A comparison 
between two sentences (or between a sentence and a question) is 
based on the words in the sentences, using additional information. 
This includes the features that words possess (e.g., <location> is 
a feature of room) and the fact that there is a timing or sequential 
order of the sentences (e.g., John go office occurs after John get 
milk in the scenario). The model compares the feature representa-
tions of the two sentences using a comparison function trained on 
a training set. After training, the model will succeed in the task 
of Figure 1A if it first selects John drop milk with the question 
Were is milk?. Then, the model uses the selected sentence and the 
question to select a second relevant fact. It will succeed it if selects 
John go office. This produces office as the answer to the question. 
It will select John go office instead of John go kitchen (and John go 
room) due to the timing difference between these sentences.

The manner in which a MemNN selects the answer to the 
question illustrates the amount of computing time and power in 
moving data between memory and processor in a Von Neumann 
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FIGURE 1 | (A) An example of a BABI reasoning task [after Bordes et al. (2015)]. (B) Architecture for in situ concept computing, consisting of a set of identified and 
not yet identified (“other”) blackboards (ovals represent in situ concepts). (C) Representation of John go kitchen in the in situ concept architecture of (B) (circles 
represent nodes in the reasoning blackboard; A, actor; V, verb; O, object). (D) Activation (gray nodes and ovals) in the in situ concept architecture of (B) initiated by 
the question Where is milk?.
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computer architecture. The model needs to compare the question 
Were is milk? with each of the sentences in its memory. This would 
include irrelevant facts (e.g., Ann find keys) if they are also stored 
in the memory. After selection of the first fact John drop milk, 
search for the second supporting fact can be limited to sentences 
occurring before the first retrieved fact. But again, all sentences 
(including irrelevant facts) occurring before this fact need to be 
investigated.

A key notion of in situ concept computing is to use the in situ 
concepts in the question Where is milk?, in particular the concept 
milk, to direct the search process. An outline of in situ concept 
computing is given in Figure 1B. The ovals illustrate the in situ 
concept representations. This is a blunt representation, because 
it suggests that the conceptual representations have nothing in 
common. However, as neural assemblies they can be (and will 
be) distributed over the brain, and different concepts could have 
partially overlapping assembly structures. An illustration of that 
is given by the feature space, which represent the features that 
concepts can have and the relations between these features. Here, 
one can see overlap between concepts. For example, go and drop 
are both connected to the feature <localizer>. In fact, this feature 
is part of the in  situ (assembly) representation of each of these 
concepts.

In situ representations (just as neuronal assemblies in the 
brain) cannot be copied by a processor in a computing process. 
For example, neuronal assemblies, as originally proposed by Hebb 

(1949), derive their meaning from the connection structure that 
they possess. This connection structure will develop over time 
and could be distributed over wide and different brain areas, 
depending on the meaning involved in the concepts. It will in part 
consist of the connections that give rise to the activation of the 
concepts (e.g., based on perception). But, they would also consist 
of “outgoing” connections resulting in actions derived from the 
concept involved (van der Velde, 2015). It is difficult to see how 
this overall connection pattern could be copied and stored else-
where in the brain. Furthermore, copying just a part of it would 
disturb or even destroy the content of the concept involved. So, 
when concepts are a part of more complex processing, such as a 
reasoning task as illustrated in Figure 1A, they are not copied 
and transported. Instead, the in situ concept representations are 
dynamically embedded in several “blackboards” in which specific 
forms of processing occur.

NEURAL BLACKBOARDS

In situ concept computing in general will consist of embedding 
in situ concepts in several specialized blackboards. As illustrated 
in Figure 1B, these would include a phonology blackboard, to 
process and represent words in terms of phonemes. This black-
board will interact with the sentence blackboard presented by 
van der Velde and de Kamps (2006). This blackboard can process 
and represent sentence structures based on in  situ concept 
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representations. It can also solve forms of sentence ambiguity 
in sentence processing by dynamical competitions within this 
blackboard. An example is given by the difference between the 
following sentences:

	A:	 The bird found in room died.
	B:	 The bird found in room debris.

The interpretation distinction between A and B depends on 
the last word. This makes “The bird found in room” ambiguous. 
In A, “bird” is the subject of “died.” In B, “bird” is the subject of 
“found.” Humans can handle this ambiguity without problems, 
switching easily from interpretation A to B (Lakoff, 2015). That 
is, the interpretation from one sentence to another is achieved 
during the processing of the sentences. The neural blackboard for 
sentence structure resolves this ambiguity during the processing 
of the sentences by a dynamical competition between the neural 
representations of the sentences involved (van der Velde and de 
Kamps, 2015).

Another blackboard would be a “relation blackboard,” 
which can be used for the reasoning processes, as illustrated in 
Figure 1A. Figure 1C illustrates how this blackboard represents 
a sentence in Figure 1A. As in the sentence blackboard, sentences 
are represented with structure nodes in the blackboard that tem-
porarily bind to the concepts. So, in Figure 1C, John go kitchen is 
represented by binding John to A1, go to V1, and kitchen to O1. All 
connections in the blackboard are conditional, using gating and 
memory circuits [for details and simulations, see van der Velde 
and de Kamps (2006)]. A conditional connection is a connection 
that can be used only when a condition is met. This constitutes 
a control of activation, which ensures that the connections are 
not just associative. Conditions depend on the information that 
is processed (e.g., on word sequence, when sentences or relations 
are processed) or on memory of binding (e.g., when sentences or 
relations have been stored in the blackboard). Memory of binding 
achieves a (temporal) binding between a concept (e.g., John) and 
a structure node (e.g., A1) and between structure nodes (e.g., A1 
and V1). Figure 1D illustrates the representation of all sentences 
of Figure 1A.

The nature of in  situ concept computing is illustrated by 
looking at the effect of posing the question Where is milk?. This 
question activates the in situ concept milk, as illustrated with the 
gray node in Figure 1D. This concept then directly controls the 
processing in the blackboards. For example, it will activate O2 and 
O4 in the relation blackboard to which it is bound. By controlling 
the conditional connections, these nodes can then reactivate the 
rest of the sentence representations. In this way, two sentences are 
selected: John drop milk and John get milk. This process illustrates 
the computational efficiency of in  situ concept computing. All 
other sentences stored in the blackboard, including irrelevant 
ones like Anne find keys, are not retrieved from the memory for 
comparison with the question, because they do not possess an 
in situ concept activated by the question (here, milk).

In Figure 1D, two sentences in the scenario with the concept 
milk have been selected and one of them has to be eliminated. 
This can be achieved by the interaction between the relation 
blackboard and a sequential blackboard, illustrated in Figure 1B. 

As further illustrated in Figure  2A, the sequential blackboard 
represents the (temporal) order of the sentences stored in the 
relation blackboard by binding sequence (S) nodes to the nodes 
in the relation blackboard. Internal processing in the sequence 
blackboard can then be used to select an S node based on tem-
poral order. So, O2 and O4 activate S2 and S4, respectively, with 
the latter representing a more recent position in the sequence. As 
illustrated in Figure 2B, this can be used to deactivate S2 (e.g., by 
inhibition from S4, based on the information that the question 
asks for the most recent position of the milk).

Figure 2C illustrates that the selection of S4 can initiate the 
selection of John drop milk. Figure 2D illustrates that the second 
fact in the scenario can be selected by using the information 
that the question Where is milk? asks for a location, and the first 
selected sentence (John drop milk) activates the in situ concepts 
John and drop. The latter activates the feature <localizer> which 
is connected to the feature <location>. The combined activation 
of John and <location> initially activates the sentences John go 
kitchen and John go office (as occurring before sequential position 
S4). The sentence John go office can then be selected as the more 
recent of the two in the sequence blackboard.

IN SITU CONCEPT COMPUTING AND 
NEUROROBOTICS

The introduction of BABI tasks is an important tool to study 
machine cognition. The difficulties of deep learning with such 
tasks [e.g., Bordes et al. (2015) and Bottou (2015)] indicate that 
they require more than discovering statistical regularities. Just 
finding the relation between a question and a sentence is not 
enough, because the process needs to be replicated for every step 
required in the reasoning process. It might be that the informa-
tion needed to link these steps cannot always be detected in a 
statistical manner in the source material available.

The problem is aggravated when certain reasoning steps are 
not given explicitly, but can be assumed on the basis of back-
ground or common knowledge (Davies and Marcus, 2015). For 
example, in the scenario John get soap, John go bathroom, John go 
office, Where is soap?, the step John drop soap is omitted after John 
go bathroom. But common sense reasoning would indicate that 
the soap is in the bathroom.

In situ concept computing can be an architecture for an 
accelerator of conceptual processing and reasoning, as illustrated 
with the BABI task example discussed above. The architecture as 
illustrated in Figure 1B is a parallel architecture based on neural 
principles, which would allow it to be implemented in new forms 
of (parallel or neuromorphic) hardware.

However, this requires progress on a number of interrelated 
research lines. Chief among them is the development of con-
cepts, conceptual features, and their relations. The reasoning 
process in the BABI tasks is influenced by the features that 
concepts have and the relations between these features. In the 
case of common sense reasoning, not all information would 
be directly presented in a given scenario, but instead would 
be related to background information in the in situ conceptual 
space of the architecture.
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FIGURE 2 | (A) Representation of two facts (gray nodes) in the sequence blackboard of Figure 1B bound to the concept milk (S, sequence node). (B) Selection of 
the most recent sequence node in the sequence blackboard. (C) Selection (gray nodes and ovals) of John drop milk in the reasoning blackboard. (D) Selection of 
John go office (gray nodes and ovals) in the reasoning blackboard.
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As noted, the concept features and their relations in the origi-
nal BABI tasks (Weston et al., 2015) are set in and derived from 
a simple gaming environment. For in  situ concept computing, 
however, they would have to be grounded in perceptions and 
actions in realistic environments. This could be achieved by 
grounding them in the perceptions and actions of a robot 
behaving in controlled environments. Based on the actions and 
perceptions of the robot, the connection structures underlying its 
concepts could develop and integrate in the blackboards, using 
forms of plasticity (Soltoggio and van der Velde, 2015) that could 
perhaps be implemented in new forms of hardware (Williams and 
DeBenedictis, 2015). In this way, conceptual representation and 
common sense forms of reasoning could be integrated with the 
perceptual and motor abilities of neurorobotics.

DEVELOPMENT OF IN SITU CONCEPT 
COMPUTING

In situ computing architectures depends on interactions between 
conceptual domains (e.g., “conceptual spaces”), blackboards, and 
control circuits, which control the processing dynamics in the 
architectures. The development of these architectures thus depends 
on the development of these components and their interactions.

The conceptual spaces in the architectures could be based on 
existing ontologies, e.g., as derived in robotics [e.g., Prestes et al. 
(2013)], but they could also be developed by using robots in spe-
cific scenarios. The robots could ground concepts and relations 
between concepts in their perceptions and actions. For example, 
grounding in robot action sequences could be a basis for in situ 
common sense reasoning that is different from the more linguistic 
based forms of reasoning. The possibility to do this with robots 

is an important reason for the integration of in situ concept com-
puting with neurorobotics. The “neuro” aspect here derives from 
the fact that neural representations, as in neuronal assemblies, 
typically combine grounding with in situ forms of representation, 
which forms the key to in situ concept computing.

Next to in  situ concepts, structured “neural” blackboards 
are crucial for in situ concept computing. Blackboards are also 
used in computer domains, e.g., to store arbitrary forms of 
(symbolic) information. The structured blackboards in in  situ 
concept computing, however, are fundamentally different. They 
possess structural information (e.g., related to the structure 
of relations, as in Figure  1), and they are implemented with 
dedicated (specialized) structures (e.g., neural circuits, as in the 
brain). In this way, they cannot store arbitrary information, but 
they can process information, e.g., by the interactions between 
the structured representations in the blackboards. As discussed 
above, pilot simulations (van der Velde and de Kamps, 2015) 
have shown that this can be used, e.g., for ambiguity resolution 
in language. Different in  situ concept computing architectures 
will be characterized by specialized structured (“neural”) 
blackboards.

Structured and specialized blackboards also offer new forms 
of learning. Pilot studies have shown that the distinction between 
structured blackboards, control circuits, and content addressable 
activation by in situ concepts strongly reduces the number of con-
tingencies that have to be learned (van der Velde and de Kamps, 
2010). In this way, learning in in situ concept computing architec-
tures is fundamentally different from learning in, e.g., deep learn-
ing, which for conceptual processes, as discussed above, depends 
on Von Neumann forms of computing and repeated searches in 
large memories for information related to the learning problem 
at hand [e.g., Weston et al. (2015)].
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CONCLUSION

Brain inspired forms of computing could play an important 
role in combining the need for new forms of computing with 
more sophisticated reasoning capabilities for AI. In situ con-
cept computing is an example of brain inspired computing, 
because it is based on the notion that concept representations 
are in situ, as found with concept representations in the brain. 
Conceptual forms of processing can be achieved by embedding 
in  situ concepts in specialized neurally inspired blackboards. 
As illustrated with the BABI tasks, in  situ concepts directly 
influence processing (without the need to search for them in 
memory), which reduces the amount of processing and power 
requirements needed. Neurorobotics could play an important 
role in developing in situ concepts and the scenarios underlying 
basic and common sense forms of reasoning. Neurorobotics 

could also benefit from power limited and concept base in situ 
concept computing.
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