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Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in

a variety of cellular functions, such as cell proliferation, metabolism, autophagy,

survival and cytoskeletal organization. Furthermore, mTOR is made up of three

multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative

mTOR complex 3. In recent years, increasing evidence has suggested that

mTOR plays important roles in the differentiation and immune responses of

mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal

cellular and physiological functions, such as cell metabolism, survival and

ageing, where it has emerged as a novel therapeutic target for ageing-

related diseases. Therefore, the mTOR signaling may develop a large impact

on the treatment of ageing-related diseases with MSCs. In this review, we

discuss prospects for future research in this field.

KEYWORDS

mTOR, mesenchymal stem cells, differentiation, immune response, ageing-related
diseases, therapeutic target

1 Introduction

The mTOR protein plays an essential role in cell metabolism, promoting cell

proliferation and survival through changes in energy and substance metabolism (Zhao

et al., 2016; Karagianni et al., 2022). The mTOR protein is associated with the

phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, which

is involved in hormone, growth factor and nutrient signal transduction (Holz et al.,

2005; Murugan, 2019; Huang, 2020; Holz et al., 2021). Environmental signaling

activates the mTOR pathway to regulate kinds of fundamental processes required

for cell growth, metabolism, regeneration and ageing, among others (Murugan, 2019).

mTOR is often dysregulated in human cancers, and somatic mutations that induce

mTOR activation have recently been identified in several types of human cancers,

suggesting that mTOR is a therapeutic target (Murugan, 2019; Huang, 2020; Zou et al.,

2020). Over time, research on the mTOR signaling pathway has become a hot topic in

various fields, such as metabolism, genomics, pharmacology and inhibitors. Studies
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have focused on not only animal models but also human-related

diseases, such as cancers and neurodegenerative diseases. In

recent years, the mTOR signaling pathway has been

increasingly studied in stem cells, especially mesenchymal

stem cells (MSCs).

The term “mesenchymal stem cell” was coined in the end of

the 20th century, and the criteria for defining MSCs were issued

by the International Society for Cellular Therapy in 2006

(Andrzejewska et al., 2019). This development was followed

by numerous preclinical studies on the potential therapeutic

properties of MSCs, such as immune regulation, nutritional

support, the ability to spontaneously differentiate into

connective tissue cells, and the ability to differentiate into

most cell types under specific induction conditions

(Andrzejewska et al., 2019). MSCs are widely used in

regenerative medicine and oncology, in part because of the

lack of conventional therapies for these demanding and

expensive diseases. It has been speculated that MSCs are

intermediate forms of subpopulations or pericytes, but there is

still no convincing molecular evidence to confirm this hypothesis

(Caplan, 2008; Blocki et al., 2013).

At present, human MSCs have been used in the clinical

treatment of various diseases (Luzzani and Miriuka, 2017). In

earlier studies, the efficacy of MSC therapy was primarily

attributed to the ability of these cells to locally transplant

and differentiate into multiple tissue types (Vizoso et al.,

2017). However, with age, human brain function can also

decline to cause certain senile neurodegenerative diseases,

such as Alzheimer’s disease (AD) and Parkinson’s disease

(PD) (Mezzaroba et al., 2019). The treatment, prevention

and control of senile diseases are also major problems facing

society. In this context, MSCs have been gradually used to

prevent and treat senile diseases, and related studies have been

performed. In this review, we summarize the latest advances in

the rapidly evolving field of mTOR, discuss the composition of

the mTOR signaling pathway and its related effects on MSCs,

and provide a summary of the roles of the mTOR signaling

pathway in MSC-mediated treatments of ageing-related

diseases.

2 Composition and domain of
mammalian target of rapamycin

The mTOR protein belongs to the PI3K-related kinase

family and is encoded by the mTOR gene, which is an

evolutionarily conserved serine/threonine kinase (Xiang

et al., 2011). The mTOR protein has a carboxy terminal

sequence with strong homology to the catalytic domain of

PI3K, and acts as a protein kinase (Brunn et al., 1997). As a

central signal aggregator, mTOR can transmit and integrate

various signals, such as those from growth factors, nutrients,

and cellular energy metabolism, and can balance anabolic and

catabolic states in a negatively regulated manner (Feng et al.,

2005; Shams et al., 2021). Mammals express one mTOR protein

that serves as a core and essential component of three

multisubunit complexes, namely, mTOR complex 1

(mTORC1), mTOR complex 2 (mTORC2) and a putative

mTOR complex 3 (mTORC3) (Zou et al., 2020; Butt et al.,

2019; el Hage and Dormond, 2021; Harwood et al., 2018; Liu

and Sabatini, 2020). The mTORC1 complex is composed

mainly of mTOR, Raptor, mLST8, DEPTOR and PRAS40,

and mTORC2 is composed mainly of mTOR, Rictor, mLST8,

DEPTOR and mSIN1 (Ding et al., 2013) (Figure 1). Moreover,

previous studies have shown that the PNT domain of

ETV7 binds with the mTOR domain to form putative

mTORC3, which does not possess key components of

mTORC1/2 (Raptor, Rictor, mSIN1 and mSLT8); but its size

is similar to that of mTORC2 (Thoreen et al., 2009; Luo et al.,

2015; Harwood et al., 2018; Chiarini et al., 2019; Takahara et al.,

2020) (Figure 1). mTORC1, as a signal integrator, balances

protein synthesis and degradation to regulate cell growth by

sensing nutrients and growth factors, while mTORC2 is

involved in the regulation of cell survival and cytoskeletal

organization by acting through protein kinase B (Akt)

(Loewith et al., 2002; Kim et al., 2017a; Rion et al., 2019;

Ciolczyk-Wierzbicka et al., 2020; Liu and Sabatini, 2020;

FIGURE 1
Domain structure of three mTOR complexes. PRAS40: A
known Akt substrate is a 40 kDa proline-enriched protein; Raptor:
Regulation related proteins of mTOR; FKBP-12: a prototype
member of the immune affinity protein FKBP (FK506-binding
protein) family capable of binding to the immunosuppressive drug
FK506 (tacrolimus); mLST8: mammalian lethal with SEC13 protein
eight; DEPTOR: it can interact with rictor; Protor: protein observed
with rictor; Rictor: rapamycin-insensitive companion of mTOR;
mSIN1: mammalian stress-activated protein kinase interacting
protein; ETV7: ETS variant transcription factor 7.
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Popova and Jucker, 2021). Whereas rapamycin is a potent

inhibitor of mTORC1, mTORC2 is resistant to rapamycin

(Ding et al., 2013) [(Julien and Roux, 2010), (Lund-Ricard

et al., 2020)]. Putative mTORC3 is also resistant to

rapamycin, which can assemble on the basis of

ETV7 expression in various cancers and increase tumor

incidence and penetrance (Harwood et al., 2018).

3 Effects of mammalian target of
rapamycin onmesenchymal stem cell
differentiation

3.1 Mammalian target of rapamycin and
adipogenesis

Lipid synthesis is a key nutrient metabolic pathway that

allows organisms to remain active even when energy is limited

(Caron et al., 2015; Wang et al., 2021). Adipogenic differentiation

of MSCs is a key developmental process associated with

metabolic homeostasis and nutritional signal transduction

(Fernandez-Veledo et al., 2013; Lee et al., 2016). In adipose

cells, mTOR plays a central role in protein synthesis and

adipose tissue morphogenesis (Xiang et al., 2011). Activated

by anabolic signals, the kinase mTOR plays a primary role in

controlling lipid biosynthesis and metabolism in response to

nutrition, and a key role in the formation of complexes that both

promote fat formation and inhibit fat decomposition and

oxidation, ultimately leading to the accumulation of

triglycerides (Caron et al., 2015). Early reports have revealed

that mTOR has a lipogenic effect, and can promote adipogenesis

in white adipocytes, brown adipocytes and muscle satellite cells

(Vila-Bedmar et al., 2010). mTOR activity is critical in the first

stage of the differentiation of brown adipocytes, and adenosine

monophosphate-activated protein kinase (AMPK)-mTOR

crossover is a mediator of this process (Vila-Bedmar et al.,

2010). Insulin activates mTORC1 through the PI3K/AKT

pathway to regulate adipogenesis, and mTOR inhibition has a

negative regulation of adipocyte differentiation and insulin

signaling (Kim and Chen, 2004; Yu et al., 2008; Zhang et al.,

2009; Xiang et al., 2011).

In recent years, studies have shown that mTOR complexes

play important roles in increasing de novo adipogenesis in liver

and adipose tissue. mTORC1 has a positively regulation of sterol

regulatory element binding protein (SREBP).

mTORC1 promotes SREBP expression, maturation, and

nuclear localization through an S6K1-dependent pathway or

phosphorylates the phospholipid acid phosphatase lipin-1 and

controls its nuclear translocation (Porstmann et al., 2008; Duvel

et al., 2010; Chakrabarti and Kandror, 2015). In addition,

adipogenesis independent of mTORC1 has also been shown to

be controlled by mTORC2, which phosphorylates AKT, which

targets ATP-citrate lyase as a distinct substrate, thereby driving

brown adipogenesis and de novo lipogenesis (Calejman et al.,

2020).

AMPK, containing a catalytic subunit (α) and two regulatory
subunits (β and γ), is an upstream kinase of mTOR, and the

tumor-suppressor protein liver kinase B1 (LKB1) can inhibit the

mTORC1 signaling pathway by activating AMPK and TSC2

(Zhao et al., 2019; Sun, 2021) (Figure 2). AMPK activation

stimulates pathways that lead to ATP production and that

block the synthesis of ATP-consuming factors, such as lipids

and cholesterol (Chen et al., 2019; Sun, 2021). In human

adipocytes, TNF-α promotes basal glucose uptake and

GLUT4 expression through AMPK activation dependent

mechanisms (Fernandez-Veledo et al., 2013). Nevertheless,

insulin-induced glucose uptake is blocked by AMPK

activators, because AMPK stimulation may inhibit glucose

transport in insulin-stimulated adipocytes and may inhibit

triacylglycerol synthesis to conserve ATP (Fernandez-Veledo

et al., 2013). Past studies have shown that once adipocytes

differentiate, AMPK activation induces a reduction in the

volume of adipocytes by decreasing the activity of enzymes

related to triglyceride synthesis, glycerol phosphoryl

transferase and acyl CoA (diacylglyceryl transferase)

(Habinowski and Witters, 2001). In addition, other studies

have suggested that AMPK may have a crucial effect on cell

fate determination in human adipose-derived stem cells as a

mediator of bone formation and adipogenesis (Fernandez-

Veledo et al., 2013). Finally, the Notch signaling pathway has

been reported to participate in the regulation of adipogenesis via

the mTOR signaling pathway (Song et al., 2015).

3.2 Mammalian target of rapamycin and
osteogenesis

MSCs differentiate into osteoblasts, which are involved in

bone formation through the synthesis and sedimentation of

mineralized extracellular matrix (Su et al., 2010). Mature

osteoblasts eventually become osteoblasts and endoosteocytes

or disappear due to apoptosis. Bones are important for

mammalian survival, calcium and phosphorus metabolism,

and energy homeostasis (Scharla, 2020). Osteoporosis and

osteoarthritis are two chronic diseases that are associated with

imbalances in bone resorption and formation, and mTOR

modulation has been reported to be involved in symptom

improvements in certain bone diseases [(Lund-Ricard et al.,

2020)]. Researches revealed that mTOR regulates various

cellular processes such as growth, proliferation, and

differentiation [(Lund-Ricard et al., 2020), (Zhao et al.,

2020a)]. In many species ranging from Drosophila to humans,

the effect of mTOR signaling on regulatory processes has spurred

extensive research (Sun and Liu, 2019). Early studies have

suggested that mTOR regulates the function of osteoblasts,

and that the mTOR/Raptor/S6K1 signaling pathway is
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essential for the proliferation and differentiation of osteoblasts

[(Chen and Long, 2015), (Dai et al., 2017)]. Although the mTOR

signaling pathway may influence osteoblast proliferation and

differentiation, earlier studies disputed whether blocking the

mTOR signaling pathway with rapamycin affects osteogenesis

(Singha et al., 2008).

Bone and dentin are derived from stem cells from apical

papilla (SCAPs) that are postnatal MSCs with self-renewing

abilities and differentiate into osteoblasts/odontoblasts,

adipocytes and nerve cells. According to a recent study,

inhibition of the PI3K-Akt-mTOR pathway promotes

osteogenic/dentine differentiation in SCAPs in vitro and in

vivo (Tanaka et al., 2018). Recent studies have shown that

osteoblasts derived from vascular smooth muscle cells

(VSMCs) and MSCs are modulated by autophagy to promote

the transformation of calcification signals in vascular structures

(Shanahan, 2013; Lee et al., 2014; Caffarelli et al., 2017; Zhou

et al., 2021). With the involvement of autophagic proteins,

AMPK activation powerfully links Akt/mTOR-associated

autophagy to the osteogenic differentiation of MSCs (Zhou

et al., 2021). MiR-100-5p and miR-143-3p are involved in

regulating the mTOR signaling pathway and promoting

osteogenesis (Cen et al., 2021). Moreover, research has shown

that decreasing miR-141 in bone tissue alleviates the negative

regulation of its target gene Dlx5, indirectly promoting DLX5-

Msx2 dimer formation and Runx2 expression (Liu et al., 2016;

Cen et al., 2021).

However, there is mounting evidence that the effect of

mTOR-mediated autophagy is destructive in bone formation.

Rapamycin can block osteoblast proliferation and differentiation

in mic and rats (Isomoto et al., 2007; Singha et al., 2008). In

contrast, baicalein can stimulate osteoblast differentiation by

activating the mTORC1 signaling pathway (Li et al., 2015).

PPARγ strongly inhibited Akt/mTOR/p70S6K activity,

resulting in osteoblast differentiation and a reduction in the

trabecular number (Shen et al., 2016). And epiregulin can

promote osteoblast proliferation, and inhibit cell death

induced by dexamethasone by activating the Akt/mTOR and

Erk/MAPK (mitogen-activated protein kinase) signaling

pathways (Fan et al., 2015; Shen et al., 2016).

3.3 Mammalian target of rapamycin and
chondrogenesis

Limb skeletal elements develop from cartilage templates in a

process called chondrogenesis; during chondrogenesis, the

aggregated mesenchymal cells undergo a highly ordered process

of proliferation and maturation (Shimizu et al., 2007).

Chondrogenesis is a key process in bone formation because

endochondral ossification requires the formation of cartilage

templates (Montero and Hurle, 2007). Osteoblasts and

chondrocytes are the most useful cells in osteogenesis and

chondrogenesis, respectively (Umezawa and Akutsu, 2008).

Chondrogenesis is a rigorously regulated multistep process that

includes recruitment/migration of mesenchymal cells,

prechondrogenic coagulation of mesenchymal cells, transition to

chondrogenic lineage and chondrogenic differentiation (Kang,

FIGURE 2
Diagram of the regulatory mechanism of mTOR signaling pathway in mesenchymal stem cells.
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2008). There have been many reports on the regulation of the

mTOR signaling pathway in chondrogenesis. For example,

blebbisatin induces chondrogenesis by activating the PI3K/PDK1/

mTOR/p70S6K pathway (Kim et al., 2017b); Akt activity is critical

for chondrogenesis but is regulated by mTORC2. Mechanical

stimulation combined with low-intensity pulsed ultrasound

(LIPUS) promoted TGFβ1-induced chondrogenesis of bone

marrow mesenchymal stem cells through the integrin-mTOR

signaling pathway (Xia et al., 2017). The PI3K/Akt/mTOR

pathway also plays an important role in the regulation of

endometrial mesenchymal stromal cells (eMSCs) chondrogenesis,

and fluoride can inhibit proliferation and promote autophagy

through the PI3K/Akt/mTOR signaling pathway (Ma et al., 2021).

3.4 Mammalian target of rapamycin and
osteoclastogenesis

Osteoclasts are terminal multinucleated cells that are

regulated by nuclear factor-activated T cell C1 (NFATc1) and

are responsible for bone absorption (Tong et al., 2020). Enhanced

osteoclast formation is an important pathological feature of

several age-related bone diseases (Zhang et al., 2005).

Osteoclasts participate in bone resorption; bone destruction in

rheumatoid arthritis (RA) is caused by osteoclasts and

multinucleated cells in the mononuclear/macrophage lineage

(Kim and Chen, 2004). Furthermore, bone remodeling is

usually a dynamic process regulated by both bone resorbing

osteoclasts and bone forming osteoblasts (Wu et al., 2022).

Calmodulin-dependent kinase II (CaMKII) regulates osteoclast

formation, and the increase in intracellular calcium

concentration is the basic process that mediates osteoclast

formation (Kim and Chen, 2004; Kang et al., 2020). An

imbalance between osteoblasts and bone resorbing osteoclasts

is at the heart of many bone diseases (Smink et al., 2009).

Exogenous hydrogen sulphide (H2S) can promote osteoclast

formation by activating the PI3K/AKT/mTOR pathway to

down-regulate autophagy (Ma et al., 2020). Similarly,

activation of the mTOR signaling is a pivotal player in

osteoclast formation induced by Pasteurella multocida toxin

(PMT) (Kloos et al., 2015). The activation of mTOR in

reponse to overloaded orthopedic force can facilitate the

osteoblastic differentiation of MSCs (Tian et al., 2021a). In

contrast, inhibition of AMPK/mTOR/ULK1 signaling can

suppress the formation of osteoclasts by reducing autophagy

in glucose-mediated osteoclasts (Cai et al., 2018).

3.5 Mammalian target of rapamycin and
myogenesis

Myogenesis is a highly regulated multi-step process that

refers to the transformation of progenitor cells into multi-

nucleated and functional myofibers (Knight and Kothary,

2011). Myogenesis generally occurs in embryonic development

or in response to adult muscle damage (Das et al., 2020). In

response to adult muscle damage, MSCs differentiate into

myoblasts and contribute to muscle tissue homeostasis and

regeneration (Shan et al., 2021). Injectable MSCs that at the

injured site can differentiate into myogenic cells and further form

muscle fibers, are used for the treatment of skeletal muscle injury

(Pumberger et al., 2016; Shan et al., 2021). A recent study

demonstrated that a ROS-scavenging hydrogel with MSCs

facilitates myogenesis to repair injured skeletal muscle, and

the gel can enhance MSC proliferation and myogenesis

through the PI3K/Akt/mTOR signaling pathway (Shan et al.,

2021). Furthermore, mTOR can regulate myogenesis by

integrating nutrient availability (Zhang et al., 2016). Abundant

evidence has demonstrated that mTOR, as a nutrient sensor,

plays a key role in skeletal muscle development (Laplante and

Sabatini, 2012). In mice model, deficiency of mTOR alters a series

of metabolic statuses of muscles, such as increased basal glucose

uptake, impaired redox homeostasis and changed mitochondrial

regulation, and then reduces muscle dystrophin content, thereby

causing premature death (Risson et al., 2009). Moreover, mTOR

can regulate muscle-specific micro-RNAs. For example, mTOR

controls miR-1 by affecting the stability of MyoD protein in

differentiating myoblasts or regenerating skeletal muscle (Sun

et al., 2010). miR-133 and miR-206 are also targets of MyoD and

are sensitive to or inhibited by rapamycin during myoblast

differentiation (Liu et al., 2007; Williams et al., 2009; Sun

et al., 2010). In a rat injury model, the coaction of miR-1,

miR-133 and miR-206 mimics can facilitate myogenic

differentiation by activating myogenic markers (myoD1,

Pax7 and myogenin) (Nakasa et al., 2010). Additionally,

mTOR directly affects the expression of miR-17–92 and miR-

125b to control skeletal myogenesis (Zhang et al., 2016).

4 Effect of mammalian target of
rapamycin on the immune response
of mesenchymal stem cells

MSCs possess numerous regenerative and

immunomodulatory properties (Bottcher et al., 2016). The

immunomodulatory properties of MSCs were recognized to

play important roles in vitro and in vivo [(Bartholomew et al.,

2002), (Refaie et al., 2021)]. MSCs exert immunoregulatory

effects on various immune cells in a cell-cell contact or

paracrine manner, which in turn affects the migration,

proliferation and differentiation of MSCs [(Chen et al., 2022),

(Zhao et al., 2020b)]. MSCs produce many different

immunomodulators that regulate the immune function of

autologous and allogeneic immune cells, including both innate

and acquired immune cells (including T and B cells) (Li et al.,

2022). In fact, studies have shown that MSCs affect the metabolic
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phenotype of activated T cells [(Bottcher et al., 2016), (Pollizzi

and Powell, 2014)]. mTOR signaling is a key regulator of

glycolysis that increases rapidly to activate normal T cells, and

MSC-mediated interference of mTOR signaling is consistent

with the T-cell-mediated inhibition of MSCs (Peter et al.,

2010). It is now well accepted that targeting mTOR exerts

both immunosuppressive and immunostimulatory properties

[(Jones and Pearce, 2017), (Weichhart et al., 2015)]. In

addition, some MSC-mediated metabolic effects, including the

inhibition of mTOR, reduction in glycolysis, and promotion of

autophagy, are associated with T-cell-mediated memory

formation and longevity [(Kesarwani et al., 2014), (Crompton

et al., 2015)].

Studies have shown that the mTOR signaling pathway plays a

crucial role in traditional T cells and T-RegS-mediated immune

function (Liu et al., 2015). Nitric oxide produced by MSCs

inhibits T cells by regulating the LKB1-AMPK-mTOR

pathway, thereby inhibiting CD25 translation (Yoo et al.,

2017). Moreover, the proinflammatory response mediated by

T helper 17 (Th17) cells is increased, while the anti-inflammatory

effect mediated by regulatory T (Treg) cells is decreased,

exacerbating renal tubular epithelial cell injury (Luo et al.,

2021). However, there is considerable evidence that MSCs can

control Th17 and Treg cell imbalances (Savio-Silva et al., 2020;

Song et al., 2020). By interfering with mTOR signaling, MSCs

suppress the differentiation of CD4 (+) T cells into Th17 cells and

facilitate Treg cell production (Ghannam et al., 2013; Varco-

Merth et al., 2022). Although MSCs suppress normal B-cell

proliferation, differentiation, and antibody secretion,

CCL2 silencing blocks the suppressive effects on B cells in the

MSCs of systemic lupus erythematosus (SLE) patients (Che et al.,

2014; Yang et al., 2021a). In a recent study, CCL2 deficiency was

shown to enhance synonyms B-cell receptor (BCR) signal

transduction through the MST1-mTORC1-STAT1 axis,

resulting in a decrease in marginal zone (MZ) B cells and an

increase in germinal center (GC) B cells (Yang et al., 2021a). In

addition, the suppression of mTORC1 can rescue the aberrant

changes in MZ and GC B cells in vivo (Yang et al., 2021a).

5 Themammalian target of rapamycin
signaling pathway in mesenchymal
stem cells-mediated treatments of
ageing-related diseases

Healthy ageing is a complex biological process

characterized by the gradual accumulation of senescent

cells and is characterized by stable cell cycle arrest,

resulting in impaired homeostasis, impaired regenerative

potential, and a gradual decline in the functions of multiple

tissues and organs (Shi et al., 2021). Adult stem cells are

pivotal for organ-specific regeneration and self-renewal with

advancing age, MSCs have become a dependable cell source

for stem cell transplantation and are currently being studies in

extensive clinical trials (Zhang et al., 2015). The use of MSCs,

particularly BMSCs, has therapeutic potential in the treatment

of rheumatic diseases and regenerative medicine. In BMSCs,

mTOR signaling plays a key role in skewed differentiation and

ageing, but its role in inhibiting MSC differentiation remains

controversial (Al-Azab et al., 2020). Furthermore, clinical

inhibition of this pathway may treat ageing-related

diseases, especially osteoporosis and arthritis (Ganguly

et al., 2017). Thus, abnormal activation of mTOR signaling

plays a crucial role in the treatment of ageing-related diseases

by MSCs (Liu et al., 2011; Gharibi et al., 2014).

The aging ofMSCs seriously affects their function in stem cell

transplantation therapy. In recent years, inhibiting MSC ageing

has become the focus of extensive research. Previous reports have

suggested that ascorbic acid and coenzyme Q10 suppress MSC

senescence, and high glucose induces MSC ageing through Akt/

mTOR signaling (Zhang et al., 2015; Zhang et al., 2017; Yang

et al., 2018). Moreover, Indian Hedgehog regulates MSC

senescence by modulating the ROS/mTOR/4EBP1 and

p70S6K1/2 pathways (Al-Azab et al., 2020). However, there

are many ageing-related diseases related to MSCs that are also

regulated by the mTOR signaling pathway, such as Alzheimer’s

disease (AD), Parkinson’s disease (PD), osteoporosis,

atherogenesis and so on.

5.1 Alzheimer’s disease

AD is a complex, heterogeneous and severe

neurodegenerative disease that represents a major form of

dementia and is characterized by cognitive behavioral

impairment, psychiatric symptoms, progressive cognitive

decline, disorientation, behavioral changes and death (Nikolac

Perkovic and Pivac, 2019). AD is the most common form of

dementia and has huge socio-economic impacts worldwide

(Dong et al., 2019). AD has been historically considered as a

disease of gray matter, but accumulating evidence has suggested

that white matter alteration occurs in the disease course

(Sachdev et al., 2013). MSCs have received much attention

for their potential in regenerative medicine, and they offer

new hope as a therapeutic strategy for neurodegenerative

disease treatment, including AD (Divya et al., 2012;

Farahzadi et al., 2020). New studies have shown that multiple

signaling pathways are involved in the pathophysiology of AD,

the most important of which include mTOR, AMPK, glycogen

synthase kinase 3 (GSK3), and Wnt3/β-catenin (Godoy et al.,

2014; Tramutola et al., 2015). Therefore, the effect of MSCs on

nerve cells as an AD treatment may be largely related to the

mTOR signal transduction network. In addition, autophagy has

been shown to reduce the proliferation of BMSCs treated with

amyloid-β1-42 (Aβ1-42) through the Akt/mTOR signaling

pathway (Yang et al., 2019).
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5.2 Parkinson’s disease

PD is an ageing-related neurodegenerative disorder

characterized by the loss of dopaminergic neurons in the

substantia nigra midbrain region and the presence of

intracytoplasmic inclusions called Lewy bodies (Dexter and

Jenner, 2013; Anderson and Maes, 2014; Safari et al., 2016).

When nearly 60% of dopaminergic neurons in the aubstantia

nigra dense region are eliminated, Parkinsonian symptoms begin

to appear (Cooper et al., 2009). The occurrence of PD is related to

many factors, such as ageing and oxidative stress (Ma et al.,

2022). It is estimated that approximately 12% of people 65 and

older have PD (Lan et al., 2017). In advanced PD patients, the

glutathione level is lower than that in the age-matched control

group, which suggests that the disease course may be involved in

the vulnerability of the substantia nigra pars compacta (SNc) to

oxidative stress (Salaramoli et al., 2022). In previous studies, the

combination of granulocyte colony-stimulating factor and

BMSCs has beneficial effects on a PD model (Ghahari et al.,

2020). There have been few reports of the direct involvement of

MSCs and regulation of the mTOR signaling pathway in PD, but

increasing evidence indicates that mTOR plays key roles in the

pathogenesis of PD (Zhu et al., 2019). The mTOR protein, which

is a key regulator of cell metabolism and survival, has emerged as

a novel therapeutic target for PD.

5.3 Osteoporosis

Osteoporosis is a major risk cause of fracture or broken bones

in later life (Otonari et al., 2021). In older individuals, the rate of

bone resorption exceeds the rate of bone formation, resulting in

bone loss (Owen-Woods and Kusumbe, 2022). Osteoporosis is a

major public health problem and a heterogeneous disease with

significant socioeconomic importance because it is associated

with fracture and appropriate early intervention can greatly

alleviate the problem before fracture occurs (Pietschmann and

Peterlik, 1999; Jordan and Cooper, 2002). The decline in MSC

proliferation and stem cell properties with age is also thought to

account for the gradual decrease in bonemass and reduced risk of

osteoporosis and fracture in older adults (Bellantuono et al.,

2009).

BMSCs isolated from elderly individuals or aged animals

exhibit decreased bone marrow frequencies and proliferation

rates and higher levels of ageing and ageing-related changes than

young cells (Gharibi et al., 2014). It has been reported that

activation/inhibition of mTOR signaling positively/negatively

regulates BMSC/osteoblast-mediated bone formation,

adipogenic differentiation, osteoblast homeostasis, and

osteoclast mediated bone resorption, leading to altered bone

homeostasis, which can lead to or prevent osteoporosis (Shen

et al., 2018). Other studies have shown that amyloid β induces

osteoporotic defects in vivo and in vitro through mTOR and

autophagy, and the regulation of amyloid β on BMSCs is

dependent on mTOR, thus providing a possible mechanism

for osteoporotic remodeling in AD patients (Yang et al., 2019;

Lin et al., 2021).

5.4 Atherosclerosis

Atherosclerosis is a common age-related disease, and increasing

age is one of the major risk factors for developing atherosclerosis

(Wang and Bennett, 2012). One of the phenotypic manifestations

of the arteries is atherosclerosis, which is a chronic inflammatory

disease (Poznyak et al., 2022). Primary atherosclerosis may be a

phenotypic feature of mitochondrial disease. It has been suggested

that atherosclerosis may be a major manifestation of metabolic

defects (Finsterer, 2020). In many cases, atherosclerosis is the root

cause of vascular disease, including heart disease and stroke

(Kazemi-Bajestani and Ghayour-Mobarhan, 2013). Previous

studies have shown that mesenchymal stem cells (MSCs) have

therapeutic effects on a variety of diseases, including atherosclerosis

(Yang et al., 2021b). Maldifferentiation of mesenchymal stem cells

and maladjustment of cell fate programs associated with age and

metabolic diseases may exacerbate arteriosclerosis due to excessive

transformation into osteoblast-like calcified cells (Schaub et al.,

2019). As a chronic vascular inflammatory disease, atherosclerosis

has been demonstrated to exert immunomodulatory and

immunosuppressive effects on MSCs by secreting humoral

factors (Takafuji et al., 2019). It has been reported that

Sestrin2 is a stress-inducing protein that inhibits mTOR by

activating AMPK (Tian et al., 2021b). Furthermore, Sestrin2 is

strongly associated with atherosclerosis, suggesting that inhibition

of mTOR signaling can be used to treat atherosclerosis (Tian et al.,

2021b). In other words, mTOR is a target for the treatment of

atherosclerosis.

5.5 Other diseases

The mTOR signaling pathway is involved in the development

of many human diseases, and its dysregulation has been reported

in several pathological processes, especially in age-related human

diseases and in mouse models of accelerated aging (Lee et al.,

2020). In addition to the specific diseases mentioned above,

mTOR signaling is also closely related to the occurrence and

development of many major diseases related to aging, such as

cardiovascular diseases and bone disease (He and Liu, 2014). In

the cardiovascular system, the mTOR signaling can regulate

angiogenesis (Samidurai et al., 2018; Liu et al., 2022).

Angiogenesis depends on the full function of vascular smooth

muscle cell progenitors such as pericytes and their circulating

counterparts mesenchymal stromal cells (Schaub et al., 2019).

MSCs are located around blood vessels, and hematopoietic stem

cells (HSCs) and MSCs occupy special microenvironments
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(Owen-Woods and Kusumbe, 2022). Blood vessel wear is a

precursor to aging, and loss of vascular density and pericytes

is a sign of aging of organs and tissues (Chen et al., 2021a).

Therefore, vascular vessels and microenvironments provide

secretory signals to affect cell function in age-related diseases,

except regulating organ development and stem cell behavior

(Chen et al., 2021b; Owen-Woods and Kusumbe, 2022).

Moreover, the Notch pathway is one of several pro-

proliferative pathways activated by mTOR (Ivanovska et al.,

2017). Notch signaling which negatively controls angiogenesis,

is an important component of crosstalk between vascular cells

and bone lineage cells in the process of bone formation and

remodeling (Chen et al., 2020). Activation of the VEGF-Notch

signaling pathway may restore the proliferation of MSCs in

patients with aplastic anemia (Deng et al., 2019). Anyhow,

crosstalk between the Notch and mTOR pathways may play

important roles in MSC-mediated senile diseases. In addition,

bone mesenchymal cells also undergo age-dependent alterations

(Chen et al., 2020). In osteoarthritis patients, TGF-β1 and mTOR

are highly expressed, and blocking TGF-β signaling in the MSCs

of subchondral bone deadens osteoarthritis (Zhen et al., 2013;

Owen-Woods and Kusumbe, 2022). In mice model,

osteoarthritis was induced by TGF-β1 overexpression, which

resulted in increased mTOR expression (Davidson et al., 2007;

Wen et al., 2021; Owen-Woods and Kusumbe, 2022). In addition,

previous studies have revealed that PI3K/AKT/mTOR signaling

is involved in the important regulation of ischemic brain injury

and tumors (Xu et al., 2020).

6 Discussion and conclusion

We summarized relevant studies on the involvement of

mTOR in the differentiation of adipocytes, bone and muscle.

We found that the mTOR signaling pathway in MSCs is crucial.

Inhibition or activation of this pathway can affect cell

differentiation of MSCs. In addition, there are many mTOR

related signaling pathways that have a certain impact on the

immune response, and regulate angiogenesis, such as the Notch

pathway. Therefore, in the future, the influences caused by

mTOR may be regulated by other pathways. What are the

difficulties in identifying these new approaches? What are the

disadvantages of these new pathways compared to the mTOR

pathway? Is the activation time of other regulatory pathways

different from the time or stage of activation of the mTOR

signaling pathway? Is it cost-effective to regulate MSC

differentiation through these new pathways? These questions

are all worth considering.

In recent years, there has been a sharp increase in the number

of articles on the activation and inhibition of the mTOR signaling

pathway, andmany researchers have focused on the development

of innovative inhibitors. Most of the reported inhibitors target

mTORC1 or PI3K and mTOR dual inhibitors, including

competitive inhibitors and allosteric inhibitors. The discovery

of rapamycin-insensitive mTORC2 stimulated the development

of mTOR inhibitors that target the kinase domain (el Hage and

Dormond, 2021). However, we need to identify more effective

activators that target positively regulated pathways. Therefore,

we can attempt to develop new inhibitors that negatively regulate

pathways or activators that positively regulate pathways by

exploring the relevant mechanisms of mTORC2. Perhaps we

can find more effective inhibitors or activators by examining

other upstream or downstream factors in the mTOR signaling

pathway. Moreover, although senile diseases are a difficult

problem facing society, there have been few studies on MSCs

or the regulation of the mTOR signaling pathway. In particular,

research on PD is scarce, but it is a typical disease worthy of

further study. Therefore, there is still considerable space and

prospects in this field, which is worthy of further exploration. We

believe that these problems will be solved in the future, so the

mTOR signaling pathway is still worthy of investigation.
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