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Contact guidance persists under 
myosin inhibition due to the 
local alignment of adhesions and 
individual protrusions
Kristopher E. Kubow1,3, Victoria D. Shuklis1, Dominic J. Sales1 & A. Rick Horwitz2,3

Contact guidance—cell polarization by anisotropic substrate features—is integral to numerous 
physiological processes; however the complexities of its regulation are only beginning to be discovered. 
In particular, cells polarize to anisotropic features under non-muscle myosin II (MII) inhibition, despite 
MII ordinarily being essential for polarized cell migration. Here, we investigate the ability of cells to 
sense and respond to fiber alignment in the absence of MII activity. We find that contact guidance 
is determined at the level of individual protrusions, which are individually guided by local fiber 
orientation, independent of MII. Protrusion stability and persistence are functions of adhesion lifetime, 
which depends on fiber orientation. Under MII inhibition, adhesion lifetime no longer depends on fiber 
orientation; however the ability of protrusions to form closely spaced adhesions sequentially without 
having to skip over gaps in adhesive area, biases protrusion formation along fibers. The co-alignment of 
multiple protrusions polarizes the entire cell; if the fibers are not aligned, contact guidance of individual 
protrusions still occurs, but does not produce overall cell polarization. These results describe how 
aligned features polarize a cell independently of MII and demonstrate how cellular contact guidance is 
built on the local alignment of adhesions and individual protrusions.

Directed cell migration is an important element of numerous physiological processes including cancer metastasis, 
inflammation, and wound healing, as well as a critical parameter in the design of engineered tissues for regen-
erative medicine1–4. Cells determine their migration direction based on one or a combination of extracellular 
guidance cues, including chemical gradients (chemotaxis), adhesion gradients (haptotaxis), stiffness gradients 
(durotaxis), cell-cell contacts (collective cell migration; contact inhibition), and anisotropic physical features 
(contact guidance). Contact guidance—the tendency of cells to migrate along physical features such as grooves, 
aligned fibers, and substrate edges—has long been recognized as an important cue for cell migration in vivo5–8 
that is not provided by traditional in vitro cell culture dishes9. In contrast to flat, isotropic glass and plastic sub-
strates, tissues and their mimetics provide an abundance of features that can stimulate contact guidance. For 
example, tumor cells in an orthotopic mammary gland mouse model orient to blood vessels and show increased 
invasiveness relative to cells in microenvironments with few blood vessels10. While cells might orient to any 
number of anisotropic tissue features, the fibers that comprise the tissue or scaffold are of special interest, because 
cells have the ability to reorganize them and create their own contact guidance features. One of the most common 
observations of contact guidance in 3D fibrillar environments is that cells apply force to the fibers, causing them 
to align, and then migrate along these “tracks” (e.g. refs11–15). This general phenomenon has been shown both in 
vivo and in vitro to be involved in guiding mammary epithelial branching direction16 and in facilitating tumor cell 
invasion into the surrounding tissue17,18.

Extensive research using reductionist cell culture models such as gratings and microcontact printed lines of 
extracellular matrix (ECM) proteins, as well as biomimetic 2D and 3D systems has led to the formation of two 
general, non-mutually-exclusive hypotheses about the biological mechanisms underlying contact guidance2,4,19. 
Substrates with large spacings between aligned features prevent cells from spreading across multiple ridges, fibers, 
or adhesive lines, thereby enforcing contact guidance along the one or two features that can be contacted8,19,20. 
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More applicable to cells migrating in dense tissue where potential contact guidance features abound is the focal 
adhesion restriction theory first proposed by Ohara and Buck7. According to this hypothesis, ECM fibers and 
features of similar dimensions (e.g. thin ridges), provide an essentially one-dimensional substrate upon which 
adhesions can only elongate and mature in one direction19–24. Because adhesions grow linearly, those elongating 
in the direction of fiber alignment have a large area on which to grow, while those elongating perpendicularly are 
restricted to the width of the fiber (typically < 1 µm). This dichotomy results in differences in adhesion composi-
tion22 and actomyosin organization20,22, leading to cell polarization in the direction of feature alignment. When 
the aligned features are deformable (e.g. aligned fibrillar collagen matrices), contact guidance is also likely influ-
enced by anisotropic substrate stiffness. Adhesions oriented along the long axis of aligned fibers sense a greater 
stiffness than those oriented perpendicularly25,26. Thus, contact guidance in ECM appears to involve elements of 
durotaxis and haptotaxis because aligned fibers provide both greater stiffness and greater co-linear adhesive area 
than randomly oriented fibers.

Migration guidance cues, whether chemical or physical, operate by polarizing a cell’s cytoskeleton to generate 
a protrusive front and a non-protrusive and/or contractile rear that directs the cell in a specific direction relative 
to the cue1. In cells that exhibit adhesion-based crawling migration (e.g. fibroblasts, branching endothelial cells), 
non-muscle myosin IIB (MIIB) stabilizes adhesions and locally inhibits protrusive signaling thereby defining the 
cell rear, while a zone of intense actin polymerization, opposite the rear, characterizes the front22,27–29. Cells on 
microcontact printed adhesive lines, 2D arrays of aligned fibers, and in 3D fibrillar ECMs organize non-muscle 
myosin (MII) along their lateral edges, focusing protrusive activity in the direction of substrate feature align-
ment22,27,29–31. Interestingly, while MII contractility is necessary to align randomly oriented fibers, there are 
reports that MII is not necessary to polarize cell migration on pre-aligned features16,23,31–33, although the extent of 
the polarization may be reduced20,21,24,34–37. Given that MII organization and activity are integral to adhesion mat-
uration and durotaxis38,39—the hypothesized bases for contact guidance in ECM—and localizing cell protrusive 
activity, it is unclear how contact guidance is maintained under MII inhibition.

In this study, we use 2D fibrillar substrates and 3D collagen ECMs to investigate the ability of cells to sense and 
respond to fiber alignment in the absence of MII organization and contractility. We focus here on the aspects of 
contact guidance related to the establishment of a polarized cell morphology and the polarization of cell protru-
sions, which are the elements that ultimately determine migratory persistence28,38. We find that contact guidance 
occurs at the level of individual protrusions, which are guided by local fiber orientation independently of one 
another and independent of MII activity. Individual protrusion stability and persistence are a function of adhe-
sion lifetime, which, in agreement with previous work, depends on fiber orientation. However, when MII activity 
is inhibited and adhesion lifetime no longer depends on fiber orientation, protrusion stability and persistence 
appear to depend on the ease with which protrusions can continue to form adhesions in a given direction. The 
ability to form closely spaced adhesions sequentially, without having to skip over gaps in adhesive area, biases 
protrusion formation in the direction of fiber alignment. Therefore, while MII activity controls the polarity of 
protrusion initiation by establishing non-protrusive zones22,28,29, it is not essential for biasing protrusion stability 
in the direction of feature alignment and therefore not essential for contact guidance.

Results
Cells polarize to aligned fibers regardless of MII activity.  Based on our current understanding, MII 
activity is involved in two critical aspects of cell polarity determination. First, MII creates non-protrusive zones 
along the edges of cells on 2D substrates and in 3D matrices, and its inhibition causes cells to protrude indiscrim-
inately in multiple directions, thereby reducing cell polarity22,27–29. Second, MII activity is hypothesized to be 
instrumental in contact guidance because of its role in adhesion maturation20–22,34. MII inhibition does eliminate 
the polarity of cells on isotropic substrates; however, in contrast to its hypothesized roles, it does not necessarily 
eliminate the polarity of cells on substrates with aligned features16,23,31–33.

To better understand the roles of MII activity and adhesion maturation in contact guidance, we measured the 
effects of MII inhibition on cell protrusion and polarity on aligned substrates. We used 2D scaffolds composed 
of aligned electrospun polycaprolactone (PCL) fibers, which mimicked the fibrous nature of ECM, but were 
sufficiently stiff to prevent nearly all cell-mediated fiber reorganization22. HT-1080 human fibrosarcoma cells 
seeded onto fibronectin-adsorbed, aligned PCL scaffolds exhibited contact guidance, elongating and migrating 
in the direction of fiber orientation (Fig. 1a, Supplementary Movie 1). Unlike cells on isolated single linear fea-
tures30,32, the cells spanned multiple neighboring fibers similar to closely spaced adhesive lines and gratings21,31,35. 
During spreading, cells protruded in all directions, including perpendicular to the direction of fiber alignment 
as observed previously21,31,35. However, once spread, the protrusive activity continued primarily along the fiber, 
parallel to the direction of fiber orientation (Fig. 1a). Cells incubated with a combination of the Rho kinase 
(ROCK) inhibitor Y-27632 and the MII light chain kinase (MLCK) inhibitor ML-7 exhibited a greater number of 
protrusions than control cells, but still showed persistent protrusion in the direction of fiber alignment (Fig. 1b, 
Supplementary Movie 2). Even after spreading, protrusions sometimes occurred perpendicular to the fibers; how-
ever these protrusions either retracted or turned 90° and protruded along the fiber (Fig. 1b, arrowheads).

To quantify cell morphology and orientation, we analyzed silhouettes of cells that were imaged 30 min after 
seeding and performed a semi-automated morphological analysis. Figure 1c shows representative cell silhou-
ettes under different experimental conditions, reoriented so that the direction of fiber alignment is vertical. Cells 
treated with Y-27632/ML-7 or with the MII ATPase inhibitor blebbistatin were more protrusive than control 
cells as quantified by the circularity morphological parameter (Fig. 1d) and as expected based on the known 
role of MII in restricting protrusion28 and previous reports31. However, although the inhibitor-treated cells had 
more protrusions, nearly all of these protrusions extended in the direction of fiber alignment (Fig. 1b,c). Indeed, 
80% of cells treated with 50 μM blebbistatin were oriented to within 10° of the average fiber orientation (Fig. 1e). 
Doubling the blebbistatin concentration yielded similar results (Fig. 1c,d,e), as did experiments utilizing NIH 
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Figure 1.  HT-1080 cells orient to aligned fibers even under MII activity and organization inhibition. HT-
1080 cells, stained with the membrane dye DiI were seeded on 2D PCL scaffolds with aligned fibers. (a and b) 
Selected frames from Supplementary Movies 1 and 2, respectively. Cells were imaged under control conditions 
(a) or treated with a combination of 20 µM Y-27632 and 10 µM ML-7 (b). Cells (DiI stain) are displayed using 
an intensity-based heatmap to better visualize them in spite of their large differences in brightness. The color of 
the heatmap has no physiological relevance. Under both control and inhibited conditions, cells protruded along 
the fibers, resulting in overall cell alignment to the fibers. Although protrusions perpendicular to the direction 
of fiber alignment did occur (often during spreading), the protrusions subsequently turned and proceeded 
along the fibers (e.g. arrowheads in B). Scale bar, 25 µm. (c–e) Images of multiple cells under control or inhibited 
conditions were acquired, 30 min after seeding: control, 53 cells from three experiments; 50 µM blebbistatin, 
48 cells from two experiments; 100 µM blebbistatin, 44 cells from two experiments; Y-27632/ML-7, 33 cells 
from two experiments. (c) Representative silhouettes of cells illustrating their morphology and orientation 
under control conditions, treated with blebbistatin (50 and 100 μM), and treated with Y-27632/ML-7. All 
silhouettes have been rotated so that the substrate fibers (not depicted) in each image are aligned vertically. Cells 
and their individual protrusions remained aligned to fibers under all conditions. (d) Plot of the “circularity” 
morphological parameter. Center line of each box indicates the median; upper and lower bounds of the box 
indicate the 75th and 25th percentiles, respectively; the “whiskers” indicate the 10th and 90th percentiles. Inhibited 
cells had a significantly lower circularity than control cells (p < 0.01, Kruskal-Wallis test, Tukey-Kramer 
posthoc), indicating that they exhibited a higher number of protrusions22. (e) Plot of the difference in angle 
between cell orientation and the average direction of fiber alignment. All groups showed a median deviation of 
less than 5 degrees and a deviation of less than 11 degrees for at least 90% of their individuals.
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3T3 fibroblasts (Supplementary Fig. S1). Therefore, although MII activity inhibition decreased the ability of cells 
to restrict the number and direction of their protrusions, these protrusions individually polarized along fibers, 
thereby allowing the cells to orient in the direction of fiber alignment.

Cells polarize to aligned fibers even when adhesion lifetime is uniformly minimized.  The 
hypothesized mechanism for contact guidance is based on differences in the maturation of adhesions formed 
along the long axis of vs. oblique to an aligned feature. Adhesions along aligned fibers should exhibit greater 
growth and longer lifetimes, leading to increased protrusion stability and persistence20–22,34. However, our obser-
vations show that individual protrusions exhibited contact guidance even in the absence of MII activity. To deter-
mine the basis for these observations, we analyzed adhesion lifetimes of cells on aligned fibers under normal 
conditions and under MII inhibition.

HT-1080 cells were co-transfected with Ruby-Lifeact (an actin maker40) and EGFP-paxillin, seeded onto 
aligned PCL scaffolds, and imaged over time, similar to the experiments in Fig. 1. Figure 2 shows frames from a 
movie of a representative cell under control conditions (no MII inhibition; Supplementary Movie 3). At the begin-
ning of imaging, the cell was already spread and polarized in the direction of fiber orientation. The primary pro-
trusions, in front of and behind the cell contained numerous large adhesions. There were also smaller protrusions 
extending perpendicular to the fibers and containing small adhesions (17 min, Fig. 2a inset and 2b). Over time, 
the primary protrusions proceeded along the fibers, with adhesions progressively forming in front of one another 
(Fig. 2c). The broad protrusion extending perpendicular to the fibers (Fig. 2b) protruded up through 21 min 
and formed multiple small adhesions; however the protrusion retracted and most of the adhesions disappeared 
by 35 min. Interestingly, the cell encountered a single fiber that was roughly perpendicular to the predominant 
alignment (Fig. 2d) and began following this fiber, forming stable protrusions and adhesions.

The two contrasting cases of protrusions perpendicular to the cell orientation (Fig. 2b and d) implicate adhe-
sions in directing the polarity of stable protrusions. The protrusion that extended perpendicular to the fibers 
(Fig. 2b) formed multiple small, but no large, adhesions and was eventually retracted by the cell. The protrusion 
that extended along a single, errantly oriented fiber (Fig. 2d) formed stable adhesions and persisted through 
the end of the movie. The protrusion that extended across the fibers was likely retracted through MII-mediated 
“pruning”29. The protrusion that extended along a fiber was also at a high angle to the cell cytoskeleton (Fig. 2a, 
magenta and bottom row), yet it persisted, perhaps because it was able to form more stable adhesions.

These observations support the mechanism whereby fiber orientation controls protrusion stability by regu-
lating adhesion lifetime. However, adhesion maturation and lifetime depend on MII activity38 and our previous 
experiments indicated that fiber orientation controls cell orientation even in under MII inhibition. We therefore 
repeated the above experiment in the presence of a cocktail of Y-27632 and ML-7, which produce similar effects 
to blebbistatin on cell morphology and adhesion (Fig. 1 and ref.22). Blebbistatin was not used because it is incom-
patible with live cell imaging using blue light (e.g. 488 nm laser used to excite EGFP-paxillin)41. As expected, cells 
treated with the inhibitors (Fig. 3a, Supplementary Movie 4) were more protrusive and had fewer and smaller 
visible adhesions than in control cells (Fig. 2a). Nevertheless, as seen in earlier experiments (Fig. 1), the cells 
remained oriented in the direction of fiber alignment. Stable protrusions that extended perpendicular to the 
alignment axis, turned and protruded along the newly contacted fibers (Fig. 3b) similar to our previous obser-
vations (Fig. 1b). This agrees with a previous report that blebbistatin reduced adhesion size in cells on isolated 
polymer fibers, but did not affect cell alignment23.

To investigate the relationship between adhesion stability, fiber angle, and protrusion stability, we tracked 
individual adhesions in multiple timelapse movies and quantified their lifetimes as a function of the angle of 
the fiber relative to the protrusion direction. As a result of the highly aligned PCL fiber substrate, protrusions 
were nearly always perfectly aligned to fibers or at high angles (approaching 90°). Because of this and the inher-
ent uncertainty in identifying precise fiber and protrusion angles, we classified protrusions as either “aligned” 
or “oblique” (see Materials and Methods). Survival curve analysis (Fig. 4a) revealed that adhesions in protru-
sions aligned to fibers had longer median lifetimes than those at oblique angles (16.7 vs. 3.8 min; p < 0.001 
log-rank test). The shorter lifetime of adhesions on oblique fibers was due in large part to a precipitous drop 
in survival within the first four minutes after formation. This low survival rate subsequently transitioned to a 
higher survival rate (lower slope of the survival curve), more similar to that of the adhesions on aligned fibers 
(Fig. 4a). The steep initial phase of the oblique survival curve reflects the tendency of protrusions on oblique 
fibers to retract within the first few minutes of attachment. Indeed, all of the adhesions observed on oblique fib-
ers were associated with protrusions that retracted over the duration of filming (Fig. 4c) and the survival curve 
of adhesions in retracting protrusions (Fig. 4b, blue) resembled that of adhesions to oblique fibers (Fig. 4a). In 
contrast, nearly all adhesions to aligned fibers were associated with persistent (actively advancing) or station-
ary protrusions (Fig. 4b,c).

MII contractility inhibition significantly reduced the median lifetime of adhesions on aligned fibers (compare 
Fig. 4a,d) from 16.7 to 5.5 min (p = 0.018, log-rank test). The median lifetime of adhesions to oblique fibers was 
reduced slightly (3.8 to 2.3 min, not statistically significant), but the major effect of MII inhibition was to effec-
tively eliminate the second phase of the survival curve seen under control conditions (Fig. 4a). Similar results were 
obtained when the data were plotted as a function of protrusion fate (Fig. 4e). The general decrease in longer-lived 
adhesions, regardless of fiber orientation, indicates that MII contractility plays an important role in adhesion sta-
bilization and is responsible for much of the difference in adhesion lifetimes as a function of fiber alignment and 
protrusion fate that were observed in control cells (Fig. 4a,b,c). Indeed, proportionally fewer adhesions to oblique 
fibers were associated with retracting protrusions (Fig. 4f), presumably due to decreased MII-mediated protru-
sion pruning29. Nevertheless, although the difference in adhesion lifetimes on aligned and oblique fibers was 
dramatically reduced (compare Fig. 4a,d), cells continued to align to fibers (Fig. 1f) and adhesions in persistent 
and stationary protrusions still predominantly associated with aligned fibers (compare Fig. 4c,f). Therefore, while 
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a contact guidance mechanism involving differential adhesion maturation and stability is sufficient to explain 
our observations under control conditions, our observations under MII inhibition suggest that an additional 
adhesion-based mechanism is involved in biasing protrusion in the direction of fiber alignment.

Gaps between fibers provide an obstacle to sequential adhesion formation.  In our analysis of the 
above experiments, we observed that, in both control and MII-inhibited cells, adhesions formed preferentially 
in the direction of fiber alignment, rather than at oblique angles (Fig. 5a). Even with the significant reduction in 

Figure 2.  The persistence of individual protrusions is correlated with adhesion stability and fiber orientation. HT-
1080 cells expressing EGFP-paxillin (green) and Ruby-Lifeact (actin; magenta) were seeded on 2D PCL scaffolds 
with aligned fibers (blue) and imaged over time. Note that small fluctuations in focus changed the intensity of 
the reflectance signal coming from the fibers, resulting in a few fibers appearing very dim in some frames. Times 
indicated in the figure are relative to the time of seeding. All images are maximum projections of z-stacks. Paxillin 
images have been additionally processed (“flattened”) to reduce background noise (see Materials and Methods). 
(a) Selected frames from Supplementary Movie 3, representative of seven independent experiments. The cell 
forms adhesions primarily along aligned fibers (e.g. panels C and D) but also in protrusions perpendicular to 
the direction of alignment (e.g. panel B and inset at 17 min). (b) Enlargement of area B in panel A, showing a 
protrusion that has formed perpendicular to the direction of fiber alignment. The protrusion extends from 17 
to 21 min and forms small adhesions (see area in white oval), which quickly disappear when the protrusion is 
retracted beginning at 27 min. (c) Enlargement of area C in panel A, showing a protrusion in the direction of fiber 
alignment. The protrusion forms adhesions as it progresses along the fibers. (d) Enlargement of area D in panel A. 
A protrusion extending in the direction of fiber alignment encounters a fiber perpendicular to its path (at 21 min 
in panel A) and splits, sending a second protrusion along the angled fiber. This secondary protrusion forms large, 
stable adhesions as it progresses along the fiber. Scale bars: 20 µm (a), 5 µm (b,c,d).
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the lifetime of adhesions on aligned fibers under MII inhibition (Fig. 4a,d), the ratio of adhesions forming on 
aligned vs. oblique fibers remained the same. This further suggests that higher adhesion lifetime is not the only 
mechanism capable of biasing adhesion formation to aligned fibers. A potential complementary mechanism is 
that it is simply easier for an active protrusion to form a sequential series of adhesions along the continuous 
surface of a fiber, rather than skipping over gaps between fibers. In support of this hypothesis, we observed the 
sequential formation of adhesions as protrusions extended along fibers in control (Fig. 2c) and MII-inhibited cells 
(Figs 3b and 5b). Similar observations have been made in cells cultured in 3D collagen ECMs22 and 1D fibers30. 
In MII-inhibited cells, sequentially formed adhesions were spaced an average (median) of 2 µm apart (Fig. 5c); 
however this is likely an overestimate because under our experimental conditions it was not possible to visualize 
nascent adhesions. Moreover, we also observed new adhesions being added very close to the distal ends of exist-
ing adhesions (Fig. 5d, similar to 4c) such that it was not possible to measure the spacing. In comparison, the 
median lateral spacing between fibers in the PCL scaffolds was 4 µm, which was greater than the spacing between 
80% of measurable sequentially formed adhesions (Fig. 5c). These data suggest that the gaps between fibers can 
act as a barrier to the sequential formation of adhesions and therefore the persistence of their associated protru-
sion. Therefore, aligned features could enable contact guidance in MII-inhibited cells by providing a continuous 
adhesive surface that biases the progression of individual protrusions, causing the overall polarization of the cell.

Under MII inhibition, individual protrusions exhibit contact guidance regardless of fiber ori-
entation.  The above hypothetical mechanism suggests that, under MII inhibition, an individual protru-
sion should progress along its associated fiber, regardless of the fiber’s orientation. To test this prediction, we 

Figure 3.  The persistence of individual protrusions is correlated with fiber orientation even when under MII 
inhibition. HT-1080 cells expressing EGFP-paxillin (green) and Ruby-Lifeact (actin; magenta) were seeded 
on 2D PCL scaffolds with aligned fibers (blue) in the presence of 20 µM Y-27632 and 10 µM ML-7 and imaged 
over time. Times indicated in the figure are relative to the time of seeding. All images are maximum projections 
of z-stacks. Paxillin images have been additionally processed (“flattened”) to reduce background noise (see 
Materials and Methods). (a) Selected frames from Supplementary Movie 4 representative of seven independent 
experiments. The cell aligns to the predominant direction of fiber orientation, despite it being highly protrusive 
in nearly all directions. Adhesions (center column of images) are generally small. (b) The cell forms a protrusion 
perpendicular to the direction of fiber alignment shortly after 18 min, then turns approximately 90 degrees and 
protrudes along the aligned fibers, progressively forming small transient adhesions (arrowheads) as it extends. 
Scale bars: 20 µm (a), 5 µm (b).
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performed timelapse imaging of HT-1080 cells spreading on PCL scaffolds with randomly oriented fibers in the 
presence of 50 μM blebbistatin. The cells attached to the scaffolds within 5 min of seeding and imaging began 
approximately 5–25 min later. Figure 6 shows a representative cell on a PCL scaffold (Supplementary Movie 5; 
additional image set in Supplementary Fig. S2). The cell’s protrusions extend along fibers at various angles to the 
cell, following the direction of the fibers rather than skipping over them in an independent direction. This stands 
in contrast to cells on isotropic 2D substrates (e.g. fibronectin-adsorbed glass) in which MII inhibition by bleb-
bistatin causes loss of polarity and indiscriminate protrusion in multiple directions28. While blebbistatin-treated 
cells on PCL scaffolds were highly protrusive and did not show an overall cell polarity, their individual protru-
sions followed the orientation of their associated fibers. Had the PCL fibers been aligned, the individual protru-
sions would have oriented in the same direction, resulting in cell polarization (Fig. 1).

While these observations support our sequential-adhesion-based contact guidance mechanism, the gaps 
between the PCL fibers were large relative to the gaps that typically exist between fibers in connective tissue 
ECM20,42. We therefore asked if cells would behave similarly in 3D fibrillar collagen matrices. Unlike stiff PCL 
fibers, collagen fibers can be moved and aligned by cells. Indeed, as adherent cells polarize and migrate in pli-
able, randomly oriented ECM, they will simultaneously align fibers in the direction of migration, creating a 

Figure 4.  Persistent protrusions occur predominantly along aligned fibers even when adhesion lifetime is 
reduced. Quantitative analysis of the 14 movies represented by Figs 2 and 3. Movies of HT-1080 cells on 2D PCL 
scaffolds with aligned fibers under control (a–c) conditions or in the presence of 20 µM Y-27632 and 10 µM 
ML-7 (d–f) were analyzed with respect to adhesion lifetime, protrusion fate, and fiber orientation. Due to the 
highly aligned PCL fiber substrate, protrusions were nearly always perfectly aligned to fibers or at high angles 
(approaching 90°). Because of this and the inherent uncertainty in identifying precise fiber and protrusion 
angles, we classified protrusions as either “aligned” or “oblique” (see Materials and Methods). (a,d) Survival 
curves for adhesions associated with aligned and oblique fibers. Under control conditions, adhesions on aligned 
fibers had longer median lifetimes than those at oblique angles (16.7 vs. 3.8 min; p < 0.001 log-rank test). MII 
inhibition reduced the median lifetime of adhesions on aligned fibers from 16.7 to 5.5 min (p = 0.018, log-rank 
test). The median lifetime of adhesions to oblique fibers was reduced slightly (3.8 to 2.3 min, n.s.). Number of 
adhesions analyzed: control-aligned, 75; control-oblique, 31; inhibited-aligned, 24; inhibited-oblique, 9. (b,e) 
Survival curves for adhesions associated with persistent, retracting, and stationary protrusions. Under control 
conditions, the median lifetime of adhesions in retracting protrusions (3.8 min) was shorter than for adhesions 
in persistent and stationary protrusions (17.3 and 18.8 min, respectively; p < 0.01 log-rank test). Median 
lifetimes under MII inhibited conditions were not significantly different. Number of adhesions analyzed: 
control-persistent, 56; control-retracted, 35; control-stationary, 15; inhibited-persistent, 22; inhibited-retracted, 
6; inhibited-stationary, 5. (c,f) Bar graph showing fraction of adhesions associated with aligned vs. oblique fibers 
and the three protrusion fates. For both control and MII inhibited conditions, adhesions associated with oblique 
fibers were also associated with retracting protrusions.
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positive feedback loop between cell polarization and fiber alignment (e.g. refs11,13,14,16–18,33). To minimize any 
such “pre-conditioning” of the collagen ECM fiber structure, and therefore any associated effect on the polari-
zation of individual cells, we investigated the earliest stages of the cell polarization process. We seeded HT-1080 
cells sparsely in rat-tail collagen type I ECMs and began imaging their movements within 10 min. Rat-tail 
(non-pepsinized) collagen polymerizes much faster than bovine dermis collagen42 and a dense network of ran-
domly oriented collagen fibers was already visible by 5 min after the onset of gelation.

In control samples (no MII inhibition), we routinely observed bundles of fibers centripetally aligned to cells 
and terminating at small protrusions (Fig. 7a, Supplementary Movie 6). These were detected even at our earliest 
observable timepoints (6–7 min after seeding), suggesting that cells begin aligning fibers at the very onset of 
spreading. Cells exhibited cycles of protrusion along centripetally aligned fibers and retraction that applied force 
sufficient to enhance fiber alignment in the direction of protrusion (Fig. 7a, i-iii). These observations suggest that, 
even at very early timepoints, cell-generated matrix fiber alignment serves as a local polarity cue that determines 
the direction of individual protrusions, in agreement with previous reports18,43.

Cells treated with blebbistatin and imaged as above produced numerous thin and highly dynamic protru-
sions, and exhibited only very low levels of fiber rearrangement (Fig. 7b, Supplementary Movie 7). Many protru-
sions appeared to follow a meandering path that was not coordinated with neighboring protrusions. Upon closer 
inspection, we observed that the protrusions were in fact following fibers, generally without regard for orientation 
(Fig. 7b, i-ii). For example, Fig. 7 bii shows a prominent protrusion that makes a 90° turn (toward the bottom of 

Figure 5.  Aligned fibers provide a continuous substrate for the sequential formation of adhesions. (a) Fraction 
of new adhesions associated with protrusions aligned or oblique to the predominant fiber orientation on aligned 
PCL scaffolds in the presence of absence of 20 µM Y-27632 and 10 µM ML-7. Distribution of adhesions on 
aligned vs. oblique fibers is essentially unchanged under MII inhibition. (b) HT-1080 cell under MII inhibition, 
cultured on an aligned PCL substrate (blue) and expressing EGFP-paxillin (green) and Ruby-Lifeact (actin; 
magenta). Inset: Small, transient adhesions form sequentially as a protrusion progresses along a fiber (inset 
is rotated 90 degrees clockwise with respect to the color image). (c) Distribution of spacing between newly 
formed adhesions in HT-1080 cells under MII inhibition and between fibers in aligned PCL scaffolds (in the 
direction perpendicular to fiber alignment). Average spacing between PCL fibers is significantly larger than 
average spacing between sequentially formed adhesions (p < 0.01; Kruskal-Wallis test; n = 20 adhesions, 67 
fibers). (d) MII-inhibited HT-1080 imaged under conditions similar to panel B. Inset: Adhesion appears to grow 
from distal end (left side), likely due to the sequential formation of closely spaced sub-diffraction adhesions as 
the protrusion advances along the fiber (inset is rotated 90 degrees counter-clockwise with respect to the color 
image). Images in panels B and D are representative of observations made in seven independent experiments. 
Data are from same experiments as Fig. 4. Times indicated in the figure are relative to the time of seeding. All 
images are maximum projections of z-stacks. Paxillin images have been additionally processed (“flattened”) to 
reduce background noise (see Materials and Methods). Scale bars, 10 µm (main panels), 5 µm (insets).
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the image) to follow a string of interconnected fibers. U2OS human osteosarcoma cells, although less protrusive 
than HT-1080 cells, behaved similarly in separate experiments (Supplementary Fig. S3). Therefore, fibers guide 
the direction of individual protrusions, even under MII inhibition and even when the fibers are not aligned. 
Again, had the cell been presented with pre-aligned fibers, we hypothesize that the individual protrusions would 
have progressed in the same direction, leading to polarized cell migration. Taken together, our experiments in 3D 
collagen and on 2D fibrillar scaffolds support the hypothesis that the continuous adhesive surface afforded by a 
fiber is sufficient to enable contact guidance of individual protrusions.

Discussion
Contact guidance is an important cell migration guidance cue in numerous physiological contexts; however, 
while this behavior seems intuitive and is frequently observed, its underlying mechanisms are still being eluci-
dated. In particular, it is not understood how contact guidance can occur in the absence of MII organization and 
activity. This study demonstrates that contact guidance is regulated locally: individual protrusions are guided 
by local fiber orientation independently of one another and independent of MII activity. Individual protrusion 
stability and persistence are a function of adhesion lifetime, which depends on fiber orientation. However, when 
MII activity is inhibited and adhesion lifetime no longer depends on fiber orientation, the ability of protrusions 
to form closely spaced adhesions sequentially without having to skip over gaps in adhesive area, biases protrusion 
persistence along fibers. Therefore, while inhibiting MII activity eliminates polarity with regard to where protru-
sions form, protrusion stability and persistence are maintained in the direction of fiber alignment resulting in 
the co-alignment of multiple protrusion fronts and cell polarization. If substrate fibers do not present a uniform 
orientation, contact guidance of individual protrusions still occurs on a local level, but this does not result in an 
overall cell polarization. These results provide a mechanism for how aligned features can polarize a cell in the 
absence of MII activity and, more broadly, demonstrate how contact guidance of an entire cell is built on the local 
alignment of adhesions and individual protrusions.

The role of MII in contact guidance has been tested with numerous cell types, substrates, and inhibitors, with 
some studies reporting an adverse effect of MII inhibition (e.g. refs20,21,24,34–37), while others reporting no effect 
(e.g. refs16,23,31–33). The varied observations may be due in part to differences in experimental design. For exam-
ple, Ray et al.20 and Wang and Schneider37 noted that more-contractile cells showed a greater response to MII 
inhibition than less-contractile cells. In addition, the magnitude of the contact guidance effect may depend on 
substrate type (e.g. grating vs. printed lines vs. aligned collagen fibers)37 and substrate design (e.g. grating depth 
and spacing)2. Differences are likely not due to whether contact guidance was evaluated based on cell polarity 
(morphology) or migration persistence as studies using both metrics found that they generally agreed20,34,37. The 
differences also cannot be easily explained by inhibitor type: some studies have observed differences between 
the effects of blebbistatin and ROCK inhibition (by Y-27632 or H1152)37, while other studies have not21,31,35. 
Nevertheless, it is notable that most of the studies listed here in which MII inhibition had an effect, did not see 
a reduction in contact guidance to the level of a negative control such as a cell on an isotropic surface20,21,34,35,37. 
Therefore, in these studies, which used varied substrates, cell types, and inhibitors, MII inhibition reduced but did 
not eliminate contact guidance. For example, Wang and Schneider37 showed that Y-27632 reduced the migration 
persistence of MDA-MB-231 breast cancer cells on gratings with aligned ridges, but not to the level of cells on a 
planar substrate. They saw reduced levels of contact guidance in less-contractile MTLn3 cells; however again, the 
levels of these cells, even under Y-27632 inhibition, were still higher than on planar controls37. These experiments 
demonstrate that, although contact guidance is affected by MII activity, it can persist in its absence; findings that 
are entirely consistent with our results.

Contact guidance is hypothesized to depend in part on substrate feature orientation regulating adhesion mat-
uration by limiting the area for adhesion elongation7,19–22,24. In this study we show that this principle extends 
beyond single adhesions: aligned fibers provide a continuous area for the sequential formation of adhesions in 

Figure 6.  HT-1080 cell protrusions exhibit contact guidance along randomly oriented PCL scaffold fibers. 
HT-1080 cells, stained with the membrane dye DiI (magenta) were seeded on 2D PCL scaffolds (green) in the 
presence of 50 µM blebbistatin and imaged over time. Images are selected frames from Supplementary Movie 5, 
representative of six independent experiments (see Supplementary Fig. S2 for an additional image set). Times 
indicated in the figure are relative to the time of seeding. The cell protrudes in multiple directions, with each 
protrusion independently extending along a fiber (arrows), rather than skipping over gaps between fibers. 
Lamellae often stretch between protrusions that are anchored to nearby fibers (arrowheads). All images are 
maximum projections of z-stacks. Scale bar, 10 µm.
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Figure 7.  HT-1080 cell protrusions exhibit contact guidance along collagen I fibers under control or 
blebbistatin-treated conditions. HT-1080 cells, stained with the membrane dye DiI (magenta) were seeded in 
1.2 mg/ml rat-tail collagen ECMs (green) and imaged over time. Times indicated in the figure are relative to 
the time of seeding. Primary panels (a and b) are maximum projections of z-stacks. The sub-panels (i,ii,iii) 
show selected frames and z-slices from regions of interest in the associate full-cell image. (a) Selected frames 
from Supplementary Movie 6, representative of seven independent experiments. (7–16 min) The cell initially 
protrudes in multiple directions. Stable protrusions coincide with centripetally aligned fibers (e.g. arrows). 
(16–25 min) Cell begins moving predominately in one direction (toward the bottom of the frame) and the 
associated protrusion/retraction activity compacts fibers and aligns them in the direction of migration (see 
A.iii and Supplementary Movie 6 for clearer depiction of fiber movement). (a.i) Protrusion progresses along 
an aligned fiber. (a.ii) Two protrusions progress along centripetally aligned fibers (arrows). The tensile forces 
applied during the protrusion/retraction cycles cause the movement and reduction in angle (alignment) 
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persistent protrusions. Notably, the lifetime of individual adhesions was not necessarily a mitigating factor, since 
the contact guidance of individual protrusions still occurred in the presence of MII inhibition when adhesion 
lifetimes on aligned and oblique fibers were similar. Note that, in Figs 3b and 5b, although adhesions do form 
sequentially, they have relatively short lifetimes with the earliest adhesions not persisting throughout the duration 
of the movies. Thus it appears that, at least under MII inhibition, the ease of sequential adhesion formation plays 
a larger role than adhesion lifetime in directing local contact guidance. It is nevertheless possible that physiologi-
cally significant differences in adhesion lifetimes on aligned and oblique fibers do exist in MII-inhibited cells, but 
that they are smaller than the resolution of our analysis. Regardless of whether local protrusion polarity is guided 
by individual or sequential adhesion dynamics, both are instances of haptotaxis: increased adhesion leads to 
increased protrusive activity and stability. These results support previous studies of cells on isolated (or pairs of) 
polymer fibers23 and printed lines of fibronectin30 showing that narrow aligned features concentrated adhesion 
formation in defined areas, leading to polarization23, higher protrusion rates, and higher adhesion stability com-
pared to cells on isotropic surfaces30. However, in contrast to the work presented here, the cells in these studies 
were confined to one or two features (fibers or lines) and did not have alternative features on which to spread and 
deviate from the substrate-imposed polarity.

Our results support the theory that, at its most basic level, contact guidance in tissues is a function of adhesion 
area regulation7,19–22,24. While anisotropic mechanical properties likely are involved in many physiological con-
texts15,25,26, contact guidance can occur in their absence and/or under impaired mechanosensitivity (e.g. MII inhi-
bition). Eliminating adhesive area as a guidance cue would require making the substrate structurally isotropic. 
For example, Autenrieth et al.44 measured polarized migration of cells on patterns of 2 × 2 µm squares with a gra-
dient in spacing to study haptotaxis. The cells migrated in the direction of decreasing spacing (increasing pattern 
density), but migrated randomly when MII was inhibited. Because adhesive area was discontinuous in all direc-
tions (instead of only one direction as with aligned fibers), the sequential adhesion mechanism identified in our 
study would not apply; rather the mechanism by which the cells sensed the spacing gradient was MII-dependent.

A more physiologically relevant situation that would eliminate adhesive area as a guidance cue is decreased 
fiber spacing sufficient to allow adhesions to freely bridge the gaps or to allow sequential adhesion formation. 
(With regard to sequential adhesions, it is important to remember that the 2 µm average spacing measured in 
Fig. 5 is likely a substantial overestimate.) Ramirez-San Juan et al.34 measured NIH 3T3 fibroblast orientation 
on micropatterened parallel lines with variable spacing and observed a modest decrease in cell alignment with 
decreasing fiber spacing (from 2 to 10 µm). However, the smallest spacing they tested was 2 µm, which still ena-
bled significant cell alignment. It is likely that much finer features would need to be tested to determine the 
threshold for contact guidance. For example, numerous cell types have been observed to align to grooves spaced 
as close as 130 nm (depth, 100 nm)45. As fiber spacing decreases, the surface becomes essentially non-fibrillar, 
which could occur, for example, along blood vessels or if a large number of ECM fibers were tightly bundled. 
However, even in such cases, cell adhesion would still be limited by the edges of the bundle or vessel.

Importantly, as has been widely shown, cells themselves can generate and modify contact guidance cues by 
rearranging the fiber structures in their local environment. Here, we show that this begins at the earliest time-
points—at the onset of spreading. Similar to recently published observations18, we see that early cell-mediated 
alignment of collagen fibers guides initial stable cell protrusions and that this cycle of local alignment and protru-
sion continues as the cell protrusions progress. These findings imply that cells using adhesion-based migration 
in matrices with flexible fibers are never really sensing randomly oriented fibers; there is always some amount of 
fiber alignment—even if only local and temporary.

Structured adhesive areas are an inherent property of fibrillar environments and likely affect most aspects of 
adherent cell-ECM interaction. We demonstrate that this property is important in guiding cell polarity through its 
hierarchical effects on adhesion and protrusion polarization. Although there are other microenvironment prop-
erties that affect migration in 3D environments2,3,46 and other modes of migration47, adherent cells encountering 
distinct fibers should be at least partially guided by adhesive area structuring. This has important implications 
for the design of artificial tissues that seek to promote and therapeutics that seek to inhibit cell migration. For 
example, inhibiting cellular mechanosensing may not prevent tumor cell invasion when contact guidance cues 
are present. Indeed squamous cell carcinoma cells were able to invade collagen matrices under Rho or Rho-kinase 
inhibition when they were preceded by fibroblasts that produced tracks for the cells to follow48. Alternatively, 
immigration of cells into an artificial tissue scaffold may be impaired if the scaffolds fibers are not aligned and not 
sufficiently flexible to be aligned by migrating cells. Further research into how cells integrate the myriad guidance 
cues they receive will help us know how to better control cell migration for the remediation of pathologies and 
the regeneration of tissues.

of fibers (arrowheads). (a.iii) A protrusion causes fiber alignment and compaction. (b) Selected frames 
from Supplementary Movie 7 of a cell treated with 50 µM blebbistatin (representative of four independent 
experiments). The cell extends many thin and highly dynamic protrusions. Protrusions are not localized to areas 
of high matrix alignment, but a higher number of protrusions extend toward the bottom of the frame, possibly 
in response to the predominant alignment of the fibers. There is little cell-mediated fiber movement; instead, 
protrusions often follow fibers like tracks, even if they do not follow a straight line. (b.i) Protrusions progress 
along fibers at multiple angles to the cell. (b.ii) (12 min) Two protrusions appear (arrows), extending downward 
from a different z-plane (not depicted). (15–24 min) The two main protrusions split into multiple smaller 
protrusions (arrows) that progress along fibers at multiple angles to the cell. (27 min) A third main protrusion 
progresses along two, non-aligned fibers (arrowheads). Scale bars, 10 µm (main panels), 5 µm (sub-panels).
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Materials and Methods
Cell culture, transfection, staining, and inhibitors.  HT-1080 human fibrosarcoma cells (ATCC, CCL-
121) were cultured in MEM + Earl’s Salts, L-glutamine, 10% fetal bovine serum (FBS), and non-essential amino 
acids. U2OS human osteosarcoma (ATCC, HTB-96) cells were cultured in McCoy’s 5 A medium + 10% FBS. 
NIH 3T3 mouse fibroblasts (ATCC, CRL-1658) were cultured in high-glucose DMEM + 10% FBS. During exper-
iments, the cells were cultured in CCM1 (a CO2-independent medium; Hyclone, Thermo Fisher Scientific). All 
cell-culture reagents were from Thermo Fisher Scientific unless otherwise indicated.

HT-1080 cells were transfected with TransIT-2020 (Mirus Bio; Madison, WI). The EGFP-paxillin plasmid 
has been previously described49 (Addgene, 15233) Ruby-lifeact (actin probe) was a gift from R. Wedlich-Soldner 
(Max-Planck Institute of Biochemistry, Germany)40.

For timelapse/morphology experiments, U2OS and HT-1080 cells were stained with DiI (Molecular Probes, 
Thermo Fisher). DiI staining in NIH 3T3 cells was too patchy to allow accurate morphology quanitification; there-
fore cells were stained with phalloidin-TRITC (Cytoskeleton) for morphology measurements (not timelapse). 
Briefly, NIH 3T3 samples were fixed with 4% formaldehyde, permeabilized with 0.5% Triton X-100, blocked with 
4% BSA, and then stained with a 1:200 dilution of phalloidin-TRITC before being mounted on coverslips.

Inhibitors: Y-27632 (Calbiochem and Cayman Chemical) stock was prepared in deionized water and diluted 
to a final working concentration of 20 μM in CCM1. ML-7 (Calbiochem) stock was prepared in DMSO and 
diluted to 10 µM in CCM1. Blebbistatin (+/−) (Calbiochem and Cayman Chemical) stock was prepared in 
DMSO and diluted to 50 and 100 µM in CCM1.

3D collagen sample experiments.  3D collagen samples were prepared according to our previously pub-
lished protocols50. Collagen matrices for all experiments consisted of 200 µl 1.2 mg/ml non-pepsinized rat-tail 
collagen (Gibco, Thermo Fisher) in CCM1 medium with 30 × 103 cells per matrix and inhibitors as necessary. 
Samples were quickly moved to the microscope and imaging began within 15 minutes. A dish heater mounted on 
the microscope stage maintained the samples at 37 °C and ensured that gelation of the collagen matrix continued 
normally. Z-stacks were acquired every 3 min for 30–40 min.

PCL scaffold experiments.  20 µm thick scaffolds with random or aligned 700 nm diameter electrospun 
polycaprolactone (PCL) fibers, mounted on 15 mm diameter plastic coverslips were purchased from Nanofiber 
Solutions (NanoAligned and NanoECM 24-well plate inserts, respectively). The scaffolds were placed in 12-well 
plates and adsorbed with 5 µg/ml human plasma fibronectin (Invitrogen and Corning, Fisher Scientific) in PBS 
for 30 min at room temperature or overnight at 5 °C. The scaffolds were rinsed once with PBS before seeding cells.

For timelapse experiments, cells were seeded on scaffolds in CCM1 (containing inhibitors as necessary) and then 
incubated for 10 min at 37 °C. The scaffolds were then inverted, placed in a glass-bottomed dish (produced in-house) 
filled with CCM1 (containing inhibitors as necessary), and quickly moved to the microscope where imaging began 
with 20 min of cell seeding. Z-stacks for high-resolution adhesion timelapse movies were acquired every 2 min for 
20–60 min. Z-stacks for low-magnification, multi-cell movies were acquired every 1 min for 30–45 min.

For morphology experiments, cells were seeded on scaffolds in CCM1 (containing inhibitors as necessary), 
incubated for 30 min at 37 °C, fixed with 4% formaldehyde for 15 min, and then mounted on coverslips.

Basic imaging protocol and image processing.  Except as indicated below, samples were imaged on an 
Olympus Fluoview 1000 laser scanning confocal microscope with a UPlanSApo 60x (1.20 NA) water-immersion 
objective. Settings were adjusted to give pixel dimensions of 0.08–0.10 µm in the x-y direction and 0.33 µm in 
the z-direction. Low-magnification, multi-cell movies on PCL scaffolds were acquired with a UPlanFluor 10x 
(0.30 NA) objective and x-y pixel dimensions of 0.83 µm. Samples were excited with the appropriate laser lines: 
488 nm Ar-ion laser (for GFP) and 543 nm HeNe laser (for Ruby and DiI). Collagen and PCL fibers were imaged 
simultaneously by confocal reflectance microscopy. Settings were adjusted to minimize photodamage. Some of 
the HT-1080 and all of the NIH 3T3 morphological data (Fig. 1 and Supplementary Fig. 1) were acquired on a 
Nikon TE2000 microscope with a PlanApo 20x (0.75 NA) objective and a Photometrics CoolSnap HQ2 mono-
chrome camera. DiI and TRITC-phalloidin fluorescence was excited by a mercury arc lamp (X-Cite, Excelitas) 
and collected using a standard long-pass filter set (Ex: 545/22, Em: 605/70). PCL fiber images were acquired using 
transmitted light. Live samples were maintained at 37 °C with a stage-mounted dish heater (Warner Instruments). 
Sample pH was maintained using a CO2-independent medium (CCM1, see above).

Images and videos were processed and analyzed with MATLAB (MathWorks) and ImageJ (http://rsb.info.
nih.gov/ij/). Unless otherwise indicated, the intensities of images in the displayed figures and movies were not 
modified except for linear adjustments to the display range. Adhesion images in Figs 2, 3, and 5 were “flattened” to 
reduce background noise. Briefly, individual images were median filtered using a sliding box (20 × 20 pixels) filter, 
then the filtered image was subtracted from the original image to produce a “flattened” image.

Cell shape and orientation analyses.  The cell shape analysis procedure has been previously described22. 
Briefly, all protrusive cells with sufficient fluorescent intensity within a given area of each sample were imaged. 
Images were acquired at a resolution of 300–400 nm/pixel, which allowed fast acquisition and processing, but 
was still sufficient to identify non-filopodia protrusions. Cell “circularity” and orientation were measured with 
custom-written, semi-automated MATLAB scripts. Images were subjected to interactive thresholding, resulting 
in a binary image (a 2D silhouette). The circularity (c) was calculated as c = 4πA/P2, where A is the area and P 
is the perimeter. Cell area, perimeter, and orientation were determined by pre-packaged MATLAB algorithms.

The distribution of fiber orientations in images of aligned PCL fibers was determined using a custom-written 
MATLAB script implementing a previously published gradient mask convolution algorithm51,52. The mode of 
the orientation distribution generated by this script was taken as the predominant fiber orientation in the image.
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Adhesion, protrusion, and fiber orientation analyses.  Movies of HT-1080 cells migrating on aligned 
PCL scaffolds and expressing EGFP-paxillin and Ruby-Lifeact were analyzed for correlations between adhesion 
lifetime, fiber angle, and protrusion fate. Individual adhesions were tracked over time by hand using “flattened” 
images (see Basic Imaging Protocol and Image Processing, above). Only adhesions that appeared during the 
course of the movie were analyzed because the lifetimes of adhesions that existed before the beginning of the 
movie could not be determined. Adhesions that did not disappear before the end of the movie (thus preventing 
an accurate lifetime measurement) were “censored” during the survival analysis. The protrusion associated with 
each adhesion was classified as persistent if it actively protruded after formation of the adhesion, retracted if it 
retracted after adhesion formation, or stable if it did not retract or protrude after adhesion formation. The angle 
between the direction of protrusion and the fiber on which the adhesion formed was classified as either aligned 
(~0° angle difference; parallel) or oblique (~90° difference; perpendicular). Nearly all protrusions fell into one of 
these two categories; protrusions that intersected fibers at intermediary angles were omitted from the analysis.

Adhesion and fiber spacing analysis.  Distances between sequentially formed adhesions were measured 
only from experiments in which cells were inhibited with Y-27632 and ML-7. Adhesions were considered sequen-
tial if they formed in close temporal succession (within 1–2 frames or 2–4 min) and were co-linear (part of the 
same protrusion and forming in the same direction). Sequential adhesions that formed too closer than 0.5 µm 
were excluded because distances could not be accurately determined. Measurements were performed using the 
profiler function in ImageJ on flattened images that were additionally filtered with a sliding block (3 × 3 pixel) 
Gaussian filter to reduce background noise. Since adhesions did not elongate and remained punctate, distances 
were measured between adhesion centers (peaks of the intensity profiles). Distances between fibers were meas-
ured from the same movies as used for adhesion spacing measurements. Spacing was measured perpendicular 
to the direction of fiber alignment using the profiler function in ImageJ on maximum-intensity-z-projections of 
fiber images. Spacing measurements for adhesions and fibers were rounded to the nearest 0.5 µm. The optical res-
olution of the images was diffraction-limited (approximately 220 nm); the sampling resolution (pixel size) varied 
from 82 to 98 nm per pixel.

Statistics.  Non-normally distributed data are displayed with box-and-whisker plots: error bars show the 10th 
and 90th percentiles; lower and upper sides of the box show the 25th and 75th percentiles, respectively; and the line 
within the box shows the median. The Kruskal-Wallis test was used to test for differences between non-normally 
distributed populations. Statistics were computed with pre-packaged MATLAB algorithms except for the survival 
analysis, which was performed using the kmplot.m and logrank.m functions written by G. Cardillo (2008) and 
downloaded from http://www.mathworks.com/matlabcentral/fileexchange/2293 and /22317, respectively. These 
two functions use the Kaplan-Meier method and the Log-rank test. Pair-wise comparisons of log-rank data were 
performed using the sequential Dunn-Sidak method. Graphs were made in SigmaPlot.

Data Availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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