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Background: Tuberculosis (TB) remains a major public health problem. Long non-coding RNAs 
(lncRNAs) are important regulators of gene expression. In this study, we explored the association between 
the expression of lncRNA AC007128.1 and TB susceptibility.
Methods: Three single-nucleotide polymorphisms (SNPs) (rs12333784, rs6463794, and rs720964) 
of lncRNA AC007128.1 were selected using the 1000 Genomes Project database and offline software 
Haploview V4.2, and were genotyped by a customized 2×48-Plex SNPscan™ Kit.
Results: We identified two differentially expressed lncRNA including AC007128.1 and AP001065.3 in 
comparisons of expression profiles between ATB vs. LTBI, LTBI vs. HCs, and AC700128.1 expression was 
specifically and significantly up-regulated in TB patients by verification of external data. Gene Ontology 
functional enrichment analysis and co-expression network showed up-regulated mRNA was mainly 
involved in negative regulation of the G protein-coupled receptor (GPCR) signaling pathway, and FPR1 
and CYP27B1 were involved in the co-expression of AC007128.1. Using the 1000 Genomes Project, 
software Haploview V4.2, and SNP genotype, we screened out SNP rs12333784 which locus at 7p21.3 in 
AC007128.1 associated with TB susceptibility. The G carrier of rs12333784 was then finally verified to be 
significantly associated with pulmonary TB (PTB) and extrapulmonary tuberculosis (EPTB) susceptibility 
(pBonferroni =0.03878), and a similar but more significant effect was observed under the dominant model 
analysis (pBonferroni =0.013, OR =1.349, 95% CI, 1.065–1.709). In addition, the GG + GA genotype of 
SNP rs12333784 was significantly correlated with higher glucose (GLU) (P=0.03), higher gamma-glutamyl 
transferase (GGT) (P=0.05), and higher erythrocyte sedimentation rate (ESR) (P=0.05). 
Conclusions: Our findings show lncRNA AC007128.1 can be regarded as biomarkers discriminating 
between ATB and LTBI and may also be a diagnostic biomarker for LBTI. These findings may aid clinical 
decision making in the management of TB.
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Introduction

Tuberculosis (TB) remains a major challenge to global 
public health. According to the WHO Global Tuberculosis 
2020 Report there were 10 million new TB cases worldwide 
in 2019, of which pulmonary TB (PTB) accounted for 
more than 80% (1) Approximately 1.4 million people died 
of TB in 2019, making it the major cause of mortality 
among chronic infectious diseases. In addition, new 
cases of TB in China in 2019 accounted for about 8.4% 
of those worldwide, ranking it third to only India and 
Indonesia in new cases, indicating that the need to explore 
potential biomarkers for the diagnosis of TB is urgent. 
The complications of tuberculosis include hemoptysis, 
pneumothorax, bronchiectasis, secondary lung infection, 
and cardiopulmonary failure. The diagnostic characteristics 
of hemoptysis are the presence of exudation and cavitation 
or bronchial tuberculosis and local tuberculosis that 
cause bronchial deformation, distortion and dilation. 
The diagnostic characteristics of pneumothorax include 
the lesion or cavity breaking into the thoracic cavity, and 
the thoracic cavity exuding more fluid which can form 
liquid pneumothorax and empyema. The bronchiectasis 
is characterized by pulmonary tuberculosis lesions 
destroying the bronchial wall and surrounding tissues of 
the bronchus. Bronchial tuberculosis itself can also cause 
bronchial deformation and expansion. The secondary lung 
infection is associated with airway obstruction caused by 
bronchiectasis, atelectasis, and bronchial tuberculosis. The 
diagnostic characteristics of cardiopulmonary failure are 
that the treatment of pulmonary tuberculosis is ineffective, 
and chronic disease damages the lung tissue, causing acute 
respiratory failure and long-term hypoxia.

Deficiencies exist in current laboratory TB diagnosis 
technology. Although traditional identification based on 
Mtb culture is the current “gold standard” for clinical TB 
diagnosis, it is time-consuming and the delay in results may 
cause further spread and a delay in timely treatment (2). As a 
form of immunological testing, T-SPOT.TB is an enzyme-
linked immunospot assay designed to use specific T cells 
present in peripheral blood mononuclear cells (PBMC) of 
TB patients to secrete γ-interferon after stimulation by an 
antigen. Although T-SPOT.TB greatly shortens the testing 

time, it is associated with a high-risk of false positives as it 
may detect infections and inflammatory reactions caused by 
other diseases and does not distinguish between latent TB 
infection (LTBI), active TB infection (ATB), and past TB 
infection. The WHO estimates that as many as one-third of 
the global population have LTBI with continuous bacterial 
survival and bacterial immune control, but no symptoms 
of ATB. However, there is no direct test to diagnose LTBI, 
resulting in a reliance on the pure protein derivatives 
(PPD) test and IGRA assay for auxiliary diagnosis (3), and 
as these tests have poor prognostic value, there is an urgent 
need to discover new biomarkers for the timely clinical  
diagnosis of TB.

The host immune response has become a significant topic 
for research into the diagnosis of TB. After TB infection, 
the host immune system initiates a series of responses and 
host-specific TB diagnostic markers may be found based 
on this. Long non-coding RNA (lncRNA) are defined as 
transcripts with lengths exceeding 200 nucleotides that are 
not translated into protein (4). An increasing number of 
studies have shown that lncRNAs play crucial roles in the 
development of many different types of tumors, including 
XIAP-AS1 in gastric cancer (5), HOXA-AS3 in human 
glioma (6), OIP5-AS1 in multiple myeloma (7), MIAT 
in breast cancer (8), and CRNDE in colon cancer (9). In 
addition, some evidence suggests lncRNAs participate in 
host inflammatory responses. Atianand et al. reported that 
LncRNA-EPS, as a repressor of inflammatory responses, 
is precisely regulated in macrophages to control the 
expression of immune response genes (IRGs) (10). Zhang 
et al. found that MARCKS or ROCKI, induced by multiple 
TLR stimuli and interacted with APEX1, acted as a master 
regulator of inflammatory responses (11). Genetic variants 
of IncRNA’s were also associated with TB susceptibility 
and clinical phenotypes of active TB (12-14). Until now, 
the pathogenesis and roles of the host lncRNAs in TB were 
unclear, and further understanding of the pathogenesis of 
TB in humans will help find novel approaches to prevention 
and therapy.

AC007128.1 belongs to a lncRNA transcribed from 
chromosomal region 7p21.3. Studies have found that 
AC007128.1 promoted migration and invasion in 
esophageal cancer cell lines and was up-regulated in both 
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esophageal cancer tissues and cells, resulting in a poor 
prognosis (15), and a linkage analysis study based on a full 
microsatellite genomes scan showed that chromosomal 
region 7p21-22 was s ignif icantly associated with 
susceptibility to active TB (P=0.0002) (16). Therefore, we 
speculated that significantly up-regulated AC007128.1 may 
correlate with TB development.

Genetic predisposition plays an important role in defense 
of TB (17), and the association between polymorphisms in 
host immune-related genes and TB susceptibility has been 
identified (18,19). However, the exact molecular regulatory 
mechanism of TB remains unclear. Genetic polymorphisms 
associated with PTB, including OXTR polymorphisms in 
the endocrine system (rs2254298, rs237911, and rs2228485) 
were found to be significantly associated with an increased 
risk of PTB (20) and maternal KCNN3 polymorphisms in 
vascular angiogenesis (rs1218585, rs1218584, and rs883319) 
increased the infection risk of PTB (21). In addition, a 
previous analysis of innate immunity and inflammation 
gene polymorphisms found that polymorphisms in TNFα 
promoter and fetal catechol-o-methyltransferase (COMT) 
genes (rs4818) each conferred an increased risk of PTB (22). 
However, there are no reports of research on correlation 
analysis between gene polymorphism and EPTB and PTB.

Our study revealed that AC007128.1 was a potential 
specific biomarker for TB and was significantly likely to 
participate in immune responses to TB through the G 
protein-coupled receptor (GPCR) signaling pathway. We 
aimed to investigate the association between three single 
nucleotide polymorphisms (SNPs) within AC007128.1 
genes and susceptibility for TB in the western Chinese 
population to provide useful information for understanding 
the role of the AC007128.1 gene variant in the clinical 
diagnosis and prevention of PTB and EPTB. We present 
the following article in accordance with the MDAR 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-2724).

Methods

Study subjects

Our retrospective study recruited 900 TB patients and 1,534 
healthy controls. All subjects were recruited from the West 
China Hospital of Sichuan University from Jan 2014 to Feb 
2016 as described previously (23,24).

GEO dataset reanalysis

We used the AnnoProbe (V0.1.0) R package to reannotate 
microarray probes from the GSE98461 dataset (25). We 
then filtered lncRNAs for the analysis and performed 
the Wilcoxon rank sum test to determine significantly 
differently expressed lncRNAs with log2 (fold change) ≥1 
and P value <0.05.

Function enrichment analysis

Through correlation analysis, mRNAs with significant 
positive correlation (cor ≥0.5 and P value <0.05) with 
AC007218.1 were screened in groups with a TB and 
healthy control group. This saw 760 mRNAs obtained in 
the TB group, 455 mRNAs in the healthy control group, 
and a total of 23 mRNAs obtained by the two groups. The 
top eight significant enrichment pathways (ranked by the 
P value) were screened through Gene Ontology functional 
enrichment analysis.

SNPs selection

The genetic variation information of lncRNA was 
obtained from VCF to PED Converter on Ensembl (http://
asia.ensembl.org/Homo_sapiens/Tools/VcftoPed), then 
imported into Haploview software. The marker SNPs 
represented by the Han Chinese in Beijing (CHB) minor 
allele frequency (MAF) ≥0.2 were screened. Genotype 
distributions of SNPs within the lncRNA gene did not 
deviate from Hardy-Weinberg equilibrium (HWE) (P>0.05 
for all loci).

Genotyping

We used QIAamp® DNA blood Mini Kit (Qiagen, 
Germany) to isolate genomic DNA from peripheral 
blood samples and used modified multiple linkage analysis 
(Genesky biotechnology Inc., Shanghai, China) to 
genotype the candidate SNPs. The primers for multiplex 
PCR amplification and probes for all three SNPs linkage 
reactions were then added. The 0.5 μL ligation product 
was fractionated and loaded into ABI 3730xl and the 
original data were analyzed by GeneMapper v4.1 software. 
Different fluorescent-labeled allele-specific oligonucleotide 
probes were used to distinguish the specific alleles of each 
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SNP and differentiate the extension length of different 
SNPs at the 3' end. In addition, we introduced ddH2O 
as a negative control reaction to monitor the quality of 
genotyping. Genotyping was blinded for all investigators, 
and we randomly selected 10% of genotypes with a 100% 
coincidence rate. The study conformed to the provisions of 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics committee of Clinical 
Trial and Biomedical Ethics Committee of West China 
Hospital of Sichuan University [No. (198) trial 2014]. 
Individual consent for this retrospective analysis was waived.

Statistical analysis

Chi-square test and Mann-Whitney U test were used to 
analyze categorical and continuous variables, respectively, 
and HWE was used to evaluate all SNPs in the control 
group. The relationship between candidate SNPs and TB 
infection was determined by the distribution of alleles and 
genotype frequencies, and genetic models (both dominant 
and recessive). The Plink v1.07 command-line program 
was used for unconditional logistic regression analysis, 
odds ratio (ORs) and 95% confidence interval (CIs) were 
used for estimation, and age and gender were adjusted for 
correction. The Bonferroni method was used to further 
calibrate many tests by using the “--adjust” option in the 
Plink program. The statistical software was SPSS version 
19.0 (IBM, Chicago, USA) and all statistical tests were 
bilateral (P<0.05).

Results

Differential expression of lncRNAs in TB 

To discover the lncRNA that were differentially expressed 
in TB, differentially expressed genes (Kruskal-Wallis Test 
P<0.05) were re-detected in comparisons of ATB patients 
vs. LTBI patients vs. healthy controls from the GEO 
dataset GSE98461. Hierarchical cluster demonstrated the 
expression patterns of lncRNA (Figure 1A). In addition, 
AC007128.1 (Kruskal-Wallis; P=0.012) and AP001065.3 
(Kruskal-Wallis; P=0.018) showed significant differences 
in comparisons of expression profiles between ATB vs. 
LTBI and LTBI vs. healthy controls (Kruskal-Wallis Test 
P<0.05, Fold Change TB/LTBI >1.2, and Fold Change 
LTBI/HC >1.2) (Figure 1B). This suggested AC007128. and 
AP001065.3 could be regarded as biomarkers which could 
discriminate between ATB and LTBI and may also be a 

diagnostic biomarker for LBTI.

AC007128.1 specifically expressed in TB patients

To verify whether the above two lncRNAs in the heat map 
were specifically expressed in patients with TB but not 
with other diseases, we analyzed GSE107231 with non-
alcoholic fatty liver disease (NAFLD) datasets, GSE94519 
with rheumatoid arthritis (RA) datasets, GSE163980 with 
type 2 diabetes (T2D) datasets, GSE145227 with pediatric 
sepsis datasets, GSE123932 with hepatitis B (HBV) 
datasets, GSE169256 with coronary heart disease (CHD), 
GSE102541 with acute cerebral infarction (ACI), and 
GSE165934 with asthma, all of which have AC007128.1. 
The results showed that while AC700128.1 expression was 
significantly up-regulated in TB compared to LTBI patients 
as well as healthy controls, the expression of AC700128.1 in 
patients with metabolic diseases (NAFLD, RA, and T2D), 
bacterial infectious (pediatric sepsis), and viral infectious 
disease (HBV) were down-regulated in comparison to 
healthy controls (Figure 2A,B,C). Compared with healthy 
controls, AC007128.1 was up-regulated in cardiovascular 
diseases (CHD and ACI) and asthma with no statistical 
significance (Figure 2D). Given the specific expression of 
AC700128.1 in TB patients, this suggested AC700128.1 
plays an important role in the pathogenesis of TB and may 
be a potential TB biomarker. Since AP001065.3 cannot be 
annotated in other datasets, no further data analysis was 
performed.

Biological function of AC007128.1 in TB patients

We further explored whether AC700128.1 was involved 
in the regulation of TB by taking the mRNAs in each 
group and those present in both groups by correlation 
analysis (Figure 3A). Gene Ontology functional enrichment 
analysis using the 23 mRNAs that had both TB and healthy 
control expression showed that the upregulated mRNAs 
were mainly involved in negative regulation of the GPCR 
signaling pathway (Figure 3B). It also revealed that up-
regulated mRNA may block the G protein-coupled receptor 
signaling pathway that elicits the host immune response 
and inflammation, subsequently suppressing the immune 
response of TB patients. 

To understand the AC700128.1 expression profile 
and assess its relationships with protein-coding genes, a  
co-expression network was constructed and hub nodes were 
analyzed. Networks of AC700128.1 and 16 mRNA which 
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Figure 1 Differential expression of lncRNAs by reannotating microarray probes from GSE98461 dataset. (A) Unsupervised cluster 
analysis of differentially expressed lncRNAs in pair-wise comparisons. (B) AC007128.1 and AP001065.3 showed significant differences 
in comparisons of expression profiles between TB vs. LTBI and LTBI vs. HCs. TB, tuberculosis; ATB, active tuberculosis; LTBI, latent 
tuberculosis infection; HCs, healthy controls.

were strongly co-expressed in the network were assembled, 
and the topological characteristics of the co-expression 
network were analyzed with degree >80 and topological 
coefficient >0.04 (Figure 3C). As reported in previous research, 
among these mRNAs, FPR1 was detected to be important 
in neutrophil function-related pathways (26) and has been 
found to play a key role in human immune responses and 

progression to ATB (27), consistent with our data analysis. 
CYP27B1 genes encode for the 1α-hydroxylase enzyme that is 
involved in the activation of 25-hydroxyvitamin D3 (25-OH-
D3) to 1,25-(OH)2D3, and genetic variants of these genes 
may alter Vitamin D levels and render TB susceptibility (28). 
This implies FPR1 and CYP27B1 also have crucial roles in 
TB through certain key genes.
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Figure 2 AC007128.1 lncRNA expression in metabolic disease, bacterial infectious disease, viral infectious disease, and other diseases. (A) 
Expression of AC007128.1 was decreased in NAFLD patients, RA patients, and T2D patients versus HCs, respectively. (B) Expression of 
AC007128.1 was up-regulated in PediatricSepsis versus HCs without significant difference. (C) Expression of AC007128.1 was decreased 
in HBV patients versus HCs. (D) Expression of AC007128.1 was up-regulated in CHD, ACI, and asthma patients versus HCs without 
significant difference, respectively. NAFLD, non-alcoholic fatty liver diseases; RA, rheumatoid arthritis; T2D, type 2 diabetes; HBV, 
Hepatitis B; CHD, coronary heart disease; ACI, acute cerebral infarction.

LncRNA AC007128.1 polymorphism is associated with the 
susceptibility of PTB and EPTB 

Both PTB and EPTB infection are difficult to diagnose. 
To explore whether tagSNPs of lncRNA AC007128.1 
polymorphism were associated with TB risk, we selected 
tagSNPs using data from the 1000 Genomes Project 
database and offline software Haploview V4.2. The data 
were then genotyped by a customized 2×48-Plex SNPscan™ 
Kit among a total of 900 TB patients and 1,534 healthy 
individuals in a western Chinese Han population. Among 
the 900 TB patients, 657 (73%) were PTB, 93 (10.3%) 
were EPTB, and 150 (16.7%) were PTB and EPTB  
(Figure 4A,B). We found that rs12333784, rs6463794, and 
rs720964 (3 SNPs) were successfully genotyped in the case-
control population which was consistent with the HWE test 
results (P>0.05) (Figure 4C). Statistical analysis showed that 
subjects carrying the rs12333784 (A > G) mutant G allele 
had an increased susceptibility to PTB and EPTB compared 

with A allele carriers (P=0.013, or 1.349, 95% CI, 1.065–
1.709). Furthermore, this relationship remained significant 
via Bonferroni correction with P=0.039 (Table 1), and after 
adjusting for age and gender, the genotype distributions 
of rs12333784 were significantly associated with PTB and 
EPTB both before and after Bonferroni correction (Table 1). 
We also conducted a genetic model analysis where 
rs12333784 also showed a significantly increased association 
with PTB and EPTB susceptibility (OR =1.702, 95% CI, 
1.196–2.424, P=0.01 after Bonferroni correction) in the 
recessive model (Table 2). Therefore, the data revealed that 
the rs12333784 of AC007128.1 was associated with the risk 
of PTB and EPTB.

To further explore whether rs12333784 was associated 
with the clinical features of PTB and EPTB, we analyzed 
data between rs12333784 genotypes and laboratory indices 
in the PTB and EPTB group. This revealed patients with 
the rs12333784 GG + GA genotype (in the dominant 
model) were significantly correlated with higher glucose 
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(GLU) (P=0.03), gamma-glutamyl transferase (GGT) 
(P=0.05), and erythrocyte sedimentation rate (ESR) (P=0.05)  
(Figure 4D,E,F, Table 3) and indicates the rs12333784 GG 
+ GA genotype may be involved in the immune response of 
PTB and EPTB patients.

Discussion

TB remains one of the top 10 causes of morbidity 
and mortality worldwide (1). A major challenge in the 
management of TB is the existence of a large population 
infected with LTBI, and the lifetime risk of reactivation for 
those with documented LTBI is estimated to be 5–10%. 
The effective treatment of LTBI is essential to prevent 
progression to ATB and may reduce the risk of the latter 
by at least 60%. The Tuberculin Skin Test (TST) and 
Interferon-Gamma Release Assays (IGRAs) are currently 
the main tests used for the diagnosis of LTBI, and positive 

results in either may indicate an immune response to 
Mtb. However, these tests have limitations as they cannot 
distinguish between LTBI with viable microorganisms and 
ATB groups (1). Our study explored lncRNA as a biomarker 
to discriminate between ATB and LTBI groups and the 
application of screening methods for lncRNA specifically 
expressed on TB to resolve the difficulty of false positives in 
the clinical diagnostic process. In addition, we explored the 
characteristics of susceptible populations at the molecular 
level and used these to better understand TB in the Chinese 
Han population.

Previous research reported that lncRNAs are the largest 
group of non-coding RNAs produced from the genome 
and mediate their functions through interactions with 
proteins, RNA, DNA, or a combination of these. lncRNAs 
can clearly function through a variety of mechanisms to 
regulate gene expression both at the transcriptional and 
post-transcriptional levels (29). the bulk of lncRNA studies 
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to date have focused on cancer (30). Recent years, data on 
the association of polymorphism in lncRNAs with cancer 
susceptibility suggested that SNPs in lncRNAs hold great 
potential as prognostic biomarkers for cancer. It has been 
confirmed that the rs1041279 SNP in the promoter region 
of HULC could enhance hepatocellular carcinoma risk 
without significantly altering the expression level of the 
LncRNA (31). Data indicated that the rs3787016 SNP 
in POLR2E might increase the susceptibility to prostate 
cancer (32). In addition, three HOTAIR SNPs, rs12826786, 

rs874945 and rs1899663, were identified as being associated 
with increased neuroblastoma risk (33) .  The SNP 
rs10845671 on lncRNA RP11-392P7.6 is associated with 
an increased risk of colorectal cancer (34). Moreover, More 
and more tumors including lung cancer, breast cancer, 
pancreatic cancer, etc., have been found to be associated 
with LncRNA SNP. In-depth research on it may provide 
the possibility to find suitable markers for the diagnosis of 
malignant tumors.

While  they are  now branching out  to  include 
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Table 1 Alleles and genotypes of AC007128.1 in Chinese Han patients with PTB & EPTB

SNPs Allele Case, n (%) Control, n (%) OR (95% CI) P P** Genotype Case, n (%) Control, n (%) P* P**

rs12333784 G 168 (56.76) 1,495 (48.73) 1.349  
(1.065–1.709)

0.01293 0.03878 GG 52 (35.14) 364 (23.73) 0.01433 0.04298

A > G A 128 (43.24) 1,573 (51.27) AG 64 (43.24) 767 (50.00)

AA 32 (21.62) 403 (26.27)

rs6463794 A 79 (26.69) 731 (23.80) 1.174  
(0.8992–1.532)

0.2382 0.5958 AA 11 (7.43) 83 (5.40) 0.2315 0.5956

C > A C 217 (73.31) 2,341 (76.20) CA 57 (38.51) 565 (36.78)

CC 80 (54.05) 888 (57.81)

rs720964 A 115 (38.85) 1,112 (36.27) 1.171  
(0.9205–1.489)

0.1986 0.7147 AA 24 (16.22) 191 (12.46) 0.1985 0.6946

G > A G 181 (61.15) 1,954 (63.73) GA 67 (45.27) 730 (47.62)

GG 57 (38.51) 612 (39.92)

P*, P value after adjusting for gender and age; P**, P or P* value after Bonferroni correction. SNP, single nucleotide polymorphism; OR, 
odds ratio; PTB, pulmonary tuberculosis; EPTB, extrapulmonary tuberculosis.

Table 2 Analysis of the AC007128.1 genotype relevant to PTB & EPTB risk in Chinese Han population

SNPs
Dominant model Recessive model

OR (95% CI) P* P** OR (95% CI) P* P**

rs12333784 A > G 1.244 (0.8359–1.852) 0.2787 0.8361 1.702 (1.196–2.424) 0.003442 0.01033

rs6463794 C > A 1.189 (0.8521–1.66) 0.3053 0.916 1.351 (0.704–2.594) 0.1139 0.3416

rs720964 G > A 1.125 (0.7983–1.586) 0.4939 1 1.45 (0.9262–2.271) 0.356 1

P*, P value after adjusting for gender and age; P**, P* value after Bonferroni correction. SNP, single nucleotide polymorphism; OR, odds 
ratio; PTB, pulmonary tuberculosis; EPTB, extrapulmonary tuberculosis.

Table 3 Clinical indicators in relation to rs12333784 polymorphisms of AC007128.1 in PTB & EPTB patients 

Variables Total (n=149) rs12333784 GG + GA (n=116) rs12333784 AA (n=33) P value

Age 31.00 (22.00–47.00) 30.50 (22.00–47.00) 32.00 (24.00–50.00) 0.71

Sex 149 (100%) 116 (100%) 33 (100%) 0.7

Male 79 (53%) 60 (52%) 19 (58%)

Female 70 (47%) 56 (48%) 14 (42%)

RBC 4.26 (3.90–4.59) 4.22 (3.86–4.61) 4.32 (4.00–4.56) 0.69

WBC 6.44 (5.28–8.33) 6.48 (5.062–8.335) 6.41 (5.72–8.23) 0.57

N 5.07 (3.66–6.96) 5.15 (3.53–6.76) 4.73 (3.78–7.25) 0.63

L 1.05 (0.66–1.43) 0.95 (0.63–1.35) 1.23 (0.83–1.72) 0.96

M 0.49 (0.34–0.64) 0.48 (0.34–0.64) 0.55 (0.35–0.65) 0.77

PLT 259.00 (188.00–307.50) 260.00 (187.20–309.00) 258.00 (197.00–301.00) 0.47

HCT 0.37 (0.32–0.40) 0.37 (0.32–0.40) 0.36 (0.28–0.42) 0.52

Table 3 (continued)
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Table 3 (continued)

Variables Total (n=149) rs12333784 GG + GA (n=116) rs12333784 AA (n=33) P value

Hb 119.00 (108.00–131.50) 118.50 (108.00–131.00) 124.00 (108.00–135.00) 0.64

TP 69.70 (63.45–74.80) 69.60 (63.40–74.80) 70.35 (65.10–75.40) 0.58

ALB 37.90 (33.80–42.10) 37.55 (33.70–42.17) 39.40 (35.20–42.05) 0.76

GLB 30.55 (27.10–35.02) 30.45 (27.02–35.35) 31.30 (28.25–34.75) 0.60

ALP 80.00 (64.00–104.00) 81.00 (65.50–104.00) 79.50 (63.25–101.25) 0.38

ALT 17.00 (11.00–27.00) 17.00 (11.00–27.75) 17.00 (12.00–22.00) 0.27

AST 22.00 (15.00–31.00) 22.00 (15.00–31.75) 25.00 (17.50–28.00) 0.71

GGT 35.00 (22.00–66.50) 37.00 (25.50–69.50) 29.50 (16.00–54.75) 0.05

TG 1.06 (0.77–1.52) 1.07 (0.75–1.62) 1.04 (0.89–1.30) 0.43

CHOL 3.95 (3.01–4.73) 3.95 (3.03–4.72) 3.95 (2.94–4.71) 0.36

HDL-C 1.07 (0.69–1.34) 0.99 (0.74–1.36) 1.09 (0.67–1.29) 0.57

LDL-C 2.25 (1.64–2.75) 2.25 (1.68–2.74) 2.35 (1.57–2.86) 0.40

TBIL 8.80 (6.30–13.70) 9.25 (6.23–14.63) 8.40 (6.50–10.70) 0.20

DBIL 3.60 (2.50–6.30) 3.65 (2.43–6.68) 3.60 (2.85–5.00) 0.57

IBIL 5.00 (3.40–6.80) 5.00 (3.33–7.12) 4.80 (3.55–5.90) 0.35

GLU 5.13 (4.73–5.65) 5.22 (4.74–5.82) 4.96 (4.73–5.24) 0.03

UREA 3.90 (2.88–5.00) 3.74 (2.80–4.90) 4.87 (3.25–5.21) 0.93

CREA 55.0 (46.00–69.00) 53.50 (45.00–66.90) 60.30 (50.00–70.00) 0.88

URIC 292.00 (197.00–446.00) 286.50 (199.20–397.50) 314.00 (189.00–481.50) 0.74

Cys-C 0.92 (0.79–1.06) 0.90 (0.77–1.04) 0.97 (0.85–1.09) 0.88

CRP 12.75 (2.78–31.83) 13.40 (2.70–32.55) 10.30 (3.00–31.10) 0.35

ESR 31.00 (18.00–56.00) 34.00 (18.50–59.50) 21.50 (14.00–50.50) 0.05

TBA 34.00 (35%) 28.00 (35%) 6.00 (35%) 1.00

Smear 20.00 (18%) 17.00 (19%) 3.00 (14%) 0.76

TB culture 18.00 (26%) 14.00 (26%) 4.00 (27%) 1.00

Liver damage 24.00 (35%) 20.00 (37%) 4.00 (27%) 0.59

Fever 70.00 (53%) 53.00 (51%) 17.00 (58%) 0.53

Loss 61.00 (47%) 49.00 (48%) 12.00 (41%) 0.67

night sweat 40.00 (31%) 32.00 (32%) 8.00 (30%) 1.00

Poor appetite 61.00 (47%) 50.00 (49%) 11.00 (41%) 0.52

Fatigue 34.00 (26%) 30.00 (29%) 4.00 (14%) 0.15

PTB, pulmonary tuberculosis; EPTB, extrapulmonary tuberculosis; RBC, erythrocyte/red blood cell; WBC, white blood cell; N, neutrophil; 

L, lymphocyte; M, monocytes; PLT, platelets; HCT, red blood cell specific volume; HB, hemoglobin; TP, total protein; ALB, albumin; GLB, 

globulin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transpeptidase; TG, 

triglyceride; CHOL, cholesterol; HDL-C, high density liptein cholesterol; LDL-C, low density liptein cholesterol; TBIL, total bilirubin; DBIL, 

direct bilirubin; IBIL, indirect bilirubin; GLU, glucose; CREA, creatinine; URIC, uric acid; Cys-C, cystatin C; CRP, C-reactive protein; ESR, 

erythrocyte sedimentation rate; TBA, total bile acid.
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questions about the regulatory impact of these pervasive 
long noncoding gene species. Therefore, we aimed at 
determining the disease association between lncRNA 
and TB. Pan et al. found that expression of the resistin 
(RETN) and kallikrein 1 (KLK1) genes showed the greatest 
difference between TB and LTBI or HC groups (25). 
We filtered lncRNAs for reannotating microarray probes 
data and surprisingly discovered that lncRNA AC007128.1 
showed significant differences in comparisons of expression 
profiles between ATB vs. LTBI and LTBI vs. healthy 
controls. While AC007128.1 has been previously reported 
as correlating with the overall survival of patients with 
esophageal cancer (15), we were the first to show its 
expression was significantly different between ATB and 
LTBI, and that it is expected to become a key molecule in 
their differential diagnosis.

We then analyzed the interaction relationship of 
AC007128.1 and differentially expressed mRNAs using co-
expression analysis, and found 16 mRNAs in the prospective 
cohort, four of which have been found to play key roles 
in human immune responses or progression to ATB. 
Human FPR1 is a high affinity receptor for N-formyl-
methionyl peptides (fMLP), which are powerful neutrophil 
chemotactic factors, and binding of fMLP to the receptor 
stimulates intracellular calcium mobilization and superoxide 
anion release. This response is mediated via a G-protein 
that activates a phosphatidylinositol-calcium second 
messenger system (35-37). FPR1 could serve as a receptor 
for TAFA4 and mediate its effects on chemoattracting 
macrophages, promoting phagocytosis and increasing ROS 
release (38). Both Ai and Chen et al. found FPR1 separated 
ATB from LTBI patients in a Chinese Han population 
(27,39). CYP27B1 encodes for the 1α-hydroxylase enzyme 
that is involved in the activation of 25-hydroxy Vitamin 
D3 (25-OH-D3) to 1,25-(OH)2D3, and genetic variants 
of these genes may alter Vitamin D levels and render TB 
susceptibility (28). Wang et al. found that CYP27B1 in the 
metabolic pathway of Vitamin D is related to the risk and 
prognosis of TB (40). In addition, SAMSN1, a negative 
regulator of B-cell activation, was involved in B cell related 
pathways and played a key role in the immune response (41). 
Further, CD276 may participate in the regulation of T-cell-
mediated immune responses, and the isoform 2 of CD276 
has been shown to enhance the induction of cytotoxic T-cells 
and selectively stimulate interferon gamma production 
in the presence of T-cell receptor signaling (42). Our 
analysis shows these co-expression mRNAs are proven 
to be critical elements in the development of TB.Using 

the Gene Ontology functional enrichment analysis of  
23 mRNAs simultaneously expressed in TB and HC in 
dataset GSE98461, we successfully found upregulated 
mRNAs were mainly involved in negative regulation of 
the GPCR signaling pathway. A previous study suggested 
a variety of GPCRs were involved in immune and 
inflammatory responses, and the stimuli involved were 
usually activated by some cytokines and inflammatory 
mediators in the immune or inflammatory process. In 
turn, this activated downstream effector molecules and 
transcription factors and eventually affected gene expression 
and biological functions. Our data also revealed FPR1, 
which co-expressed with AC007128.1, was involved in 
neutrophils function-related pathways by mediating via a 
G-protein that activated a phosphatidylinositol-calcium 
second messenger system. This suggested that AC007128.1 
may participate in the up-regulation of mRNA, which 
blocks the G protein coupled receptor signaling pathway 
that elicits the host immune response and inflammation, 
and subsequently suppresses the immune response of TB 
patients.

Genome-wide association studies (GWAS) have 
revolutionized the study of complex diseases by allowing 
the quantitative disease-association of thousands of genetic 
loci (43) studies include evaluations of single-nucleotide 
polymorphisms (SNPs) or deletions, and determination of 
their association with disease phenotypes. Previous studies 
have shown that 90% of disease-related SNPs were located 
in non-coding regions of the genome (44). Zhang et al. 
found that lncRNA LIN00305 had five SNPs that were 
associated with atherosclerosis and all were located within 
an intronic region (45) SNP rs917997 is associated with 
celiac disease and is located within lncRNA Lnc13 (46). 
This suggests that SNPs located in the lncRNA region 
are associated with inflammatory diseases. While further 
research is required to elucidate the relationship between 
SNPs in lncRNAs and TB susceptibility, we discovered 
that SNP rs12333784 in AC007128.1, which locates at 
7p21.3, showed a significant difference in PTB and EPTB 
and healthy controls. One hypothesis to be proposed is 
that SNPs in the gene responsible for immune responses to 
Mtb infection might change its coded proteins’ molecular 
function and consequently influence this dissemination 
process (47) and another concerned the linkage imbalance 
with other undetermined susceptible loci in different 
populations (15).

We found that rs12333784 was related to higher 
GLU, GGT, and ESR concentrations. Patients carrying 
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rs12333784 GG + GA genotypes had a higher inflammatory 
level and host immunity to PTB and EPTB infection, 
causing an increase in the ESR of patients with PTB and 
EPTB. In addition, patients with rs12333784 GG + GA 
genotypes showed high levels of GGT, which may be 
because this genotype is likely to cause severe liver damage. 
At the same time, the GLU level also increased, which 
may be due to the high sugar content in lung tissue, which 
contributes to the growth of Mtb and potentially, diabetes. 
Previous studies have demonstrated that rs9297758 in 
CASC8 is significantly associated with neutrophil counts 
among TB patients (23). Moreover, another study showed 
that rs218916 and rs160441 within lncRNA RP11‐37B2.1 
were significantly related to thrombocytopenia in anti-
TB treatment (13). Taken together, our results suggested 
that rs12333784 is important in multiple facets of PTB and 
EPTB susceptibility.

To our knowledge, this is the first study to analyze the 
role of AC007128.1 and its genetic polymorphisms in the 
gene susceptibility of latent and active TB infection status. 
Our results provide a new direction for further study on the 
mechanism of TB infection and provide the groundwork for 
future studies on potential biomarkers or the development 
of novel therapeutic targets for a variety of TB. However, 
further clinical research is required to verify this.

Conclusions

In this  s tudy,  we found AC007128.1 speci f ica l ly 
differentially expressed in comparisons of expression profiles 
between ATB vs. LTBI and LTBI vs. healthy controls. 
Up-regulated mRNAs were mainly involved in negative 
regulation of the GPCR signaling pathway and AC007128.1 
co-expressed with FPR1 and CYP27B1, participating in 
TB development. We found 12333784 were associated 
with PTB and EPTB susceptibility and might affect human 
immune responses in PTB and EPTB. Our research may 
provide potential biomarkers for discriminating between 
ATB and LTBI groups, and might assist clinical research. 
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