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Abstract

Background: Visualization tools for deep learning models typically focus on discovering key input features without
considering how such low level features are combined in intermediate layers to make decisions. Moreover, many of
these methods examine a network’s response to specific input examples that may be insufficient to reveal the
complexity of model decision making.

Results: We present DeepResolve, an analysis framework for deep convolutional models of genome function that
visualizes how input features contribute individually and combinatorially to network decisions. Unlike other methods,
DeepResolve does not depend upon the analysis of a predefined set of inputs. Rather, it uses gradient ascent to
stochastically explore intermediate feature maps to 1) discover important features, 2) visualize their contribution and
interaction patterns, and 3) analyze feature sharing across tasks that suggests shared biological mechanism. We
demonstrate the visualization of decision making using our proposed method on deep neural networks trained on
both experimental and synthetic data. DeepResolve is competitive with existing visualization tools in discovering key
sequence features, and identifies certain negative features and non-additive feature interactions that are not easily
observed with existing tools. It also recovers similarities between poorly correlated classes which are not observed by
traditional methods. DeepResolve reveals that DeepSEA’s learned decision structure is shared across genome
annotations including histone marks, DNase hypersensitivity, and transcription factor binding. We identify groups of
TFs that suggest known shared biological mechanism, and recover correlation between DNA hypersensitivities and
TF/Chromatin marks.

Conclusions: DeepResolve is capable of visualizing complex feature contribution patterns and feature interactions
that contribute to decision making in genomic deep convolutional networks. It also recovers feature sharing and class
similarities which suggest interesting biological mechanisms. DeepResolve is compatible with existing visualization
tools and provides complementary insights.
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Background

Deep learning has proven to be powerful on a wide range
of tasks in computer vision and natural language process-
ing [1-5]. Recently, several applications of deep learning
in genomic data have shown state of art performance
across a variety of prediction tasks, such as transcrip-
tion factor (TF) binding prediction [6—9], DNA methy-
lation prediction [10, 11], chromatin accessibility [12],
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cell type-specific epigenetic[13], and enhancer-promoter
interaction prediction [14] However, the composition of
non-linear elements in deep neural networks makes inter-
preting these models difficult [15], and thus limits model
derived biological insight.

There have been several attempts to interpret deep net-
works trained on genomic sequence data. One approach
scores every possible single point mutation of the input
sequence [6]. Similarly, DeepSEA analyzed the effects of
base substitutions on chromatin feature predictions [8].
These ‘in silico saturated mutagenesis’ approaches reveal
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individual base contributions, but fail to identify higher
order base interactions as they experience a combinato-
rial explosion of possibilities as the number of mutations
increases.

The second class of efforts to visualize neural networks
uses internal model metrics such as gradients or activa-
tion levels to reveal key input features that drive network
decisions. Zeiler et al. used a de-convolutional structure to
visualize features that activate certain convolutional neu-
rons [16, 17]. Simonyan et al. proposed saliency maps
which use the input space gradient to visualize the impor-
tance of pixels to annotate a given input [18] . Simonyan’s
gradient based method inspired variants, such as guided
back-propagation [19] which only considers gradients that
have positive error signal, or simply multiplying the gradi-
ent with the input signal. Bach et al. [20] proposed layer-
wise relevance propagation to visualize the relevance of
the pixels to the output of the network. Shrikumar et al.
[21] proposed DeepLIFT which scores the importance of
each pixel, by defining a ‘gradient’ that compares the acti-
vations to a reference sequence, which can resolve the
saturation problem in certain types of non-linear neu-
ron paths. LIME [22] creates a linear approximation that
mimics a model on a small local neighborhood of a
given input. Other input-dependent visualization meth-
ods include using Shapley values [23], integrated gradients
[24], or maximum entropy [25]. While these methods can
be fine-grained, they have the limitation of being only
locally faithful to the model because they are based upon
the selection of an input. The non-linearity and complex
combinatorial logic in a neural network may limit net-
work interpretation from a single input. In order to extract
generalized class knowledge, unbiased selection of input
samples and non-trivial post-processing steps are needed
to get a better overall understanding of a class. Moreover
these methods have the tendency to highlight existing pat-
terns in the input due to the nature of their design, while
the network could also make decisions based on patterns
that are absent.

Another class of methods for interpreting networks
directly synthesize novel inputs that maximize the net-
work activation, without using reference inputs. For
example, Simonyan et al. [18] uses gradient ascent on
input space to maximize the predicted score of a class,
and DeepMotif [26] is an implementation of this method
on genomic data. These gradient ascent methods explore
the input space with less bias. However their main focus
is generating specific input patterns that represent a class
without interpreting the reasoning process behind these
patterns. Moreover when applied to computer vision net-
works the images they generate are usually unnatural
[27]. Thus gradient methods are typically less informa-
tive than input-dependent methods for visual analysis.
The unnaturalness of gradient images can be caused by
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the breaking of spatial constraints between convolutional
filters.

While all of the above methods aim to generate visual
representations in input space, few have focused on the
interpretation of feature maps that encode how input fea-
tures are combined in subsequent layers. In genomic stud-
ies, lower level convolutional filters capture short motifs,
while upper layers learn the combinatorial ‘grammar’ of
these motifs. Recovering these combinatorial interactions
may reveal biological mechanism and allow us to extract
more biological insights.

Here we introduce DeepResolve, a gradient ascent based
visualization framework for feature map interpretation.
DeepResolve computes and visualizes feature importance
maps and feature importance vectors which describe the
activation patterns of channels at a intermediate layer
that maximizes a specific class output. We show that
even though gradient ascent methods are less informa-
tive when used to generate representations in input space,
gradient methods are very useful when conducted in fea-
ture map space as a tool to interpret the internal logic
of a neural network. By using multiple random initializa-
tions and allowing negative values, we explore the feature
space efficiently to cover the diverse set of patterns that
a model learns about a class. A key insight of DeepRe-
solve is that the visualization of the diverse states of an
internal network layer reveals complex feature contribu-
tion patterns (e.g. negatively contributing or non-linearly
contributing features) and combinatorial feature interac-
tions which can not be easily achieved using other existing
visualization tools that operate on input space. The corre-
lation of the positive feature importance vector for distinct
classes reveals shared features between classes and can
lead to an understanding of shared mechanism. Our auto-
matic pipeline is capable of generating analysis results on
feature importance, feature interactions and class similar-
ity, which can be used for biological studies. DeepResolve
requires no input dataset or massive post-processing steps
and thus is spatially efficient.

Methods

Visualizing feature importance and combinatorial
interactions

Class Specific Feature Importance Map and Feature
Importance Vector

Unlike methods which use gradient-ascent to generate
sequence representations in the input layer[18, 26] , Deep-
Resolve uses gradient-ascent to compute a class-specific
optimal feature map H, in a chosen intermediate layer L.
We maximize the objective function:

H, = argmax S.(H) — A||H||3
H
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S¢ is the score of class ¢, which is the c¢-th output in
the last layer before transformation to probability distri-
bution (before sigmoid or soft-max). The class-specific
optimal feature map is H, € RX*Y for a layer having
K feature maps of size W (W is the width of the feature
maps after max-pooling and W = 1 when global max-
pooling is used). K is the number of sets of neurons that
share parameters. Each set of neurons that share parame-
ters is called a channel, and each channel captures unique
local features within a receptive field. We name H, a fea-
ture importance map (FIM) for class ¢, and each map
entry (Hlk)c evaluates the contribution of a neuron from
channel k in a specific position i in a layer. When local
max-pooling is used, a FIM is capable of capturing the
spatial pattern of feature importance within each chan-
nel. In typical biological genomic neural networks, spatial
specificity is in general low because of the stochasticity in
input feature locations. Therefore we compute a feature
importance score ¢} for each of the K channels by taking
the spatial average of the feature importance map (HX),
of that channel. These scores collectively forms a feature
importance vector (FIV) &, = ((qbcl), (¢62), e (qbé‘)):

w

¢ = % > H).

i=1

Note that although the natural domain of feature map is
R(J{ if ReLU units are used, we allow FIMs to have negative
values during gradient ascent so as to distinguish channels
with negative scores from those with close to zero scores.
The feature importance score for each channel represents
its contribution pattern to the output prediction and a
channel can contribute positively, negatively or trivially.
Positive channels usually associate with features that are
‘favored’ by the class, whereas negative channels repre-
sents features that can be used to negate the prediction.
We found that negative channels contain rich informa-
tion about the reasoning of network decisions. Negative
channels can capture patterns that do not exist in positive
samples or non-linearly interacting patterns.

Visualizing complex feature contribution patterns and
interactions

Since deep neural networks have the capacity to learn
multiple patterns for a single class, the learned function
space can be multimodal. Moreover, the channels may
contribute differently in different modes and their contri-
butions may condition on the other channels, which indi-
cate complex feature contribution patterns and interac-
tions. However an input dependent visualization method
usually explores only one of the modes when a specific
sample is given. To explore the optimums in the space
more efficiently, we repeat gradient ascent multiple times
(T times) for each target class ¢ using different random
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initialization sampled from normal distribution. This gen-
erates an ensemble of FIMs {H!} and FIVs {®} for each
class.

To reduce the effect of bad initializations we weight each
gradient ascent result using the output class score. We
add an offset to the scores such that all trials have non-
negative weights. The ensemble of FIVs exhibits diverse
representations of feature space patterns learned by the
corresponding class, with some channels having more
inconsistent contribution than others. We evaluate the
weighted variance of the feature importance score of each
channel k in the ensemble, and use it as a metric to evalu-
ate the inconsistency level (IL) of the channel k for target
class c:

Iy = Var[ (¢5)']

Channels with a low inconsistency level contribute to
the output either positively, negatively, or not at all.
We define this type of channel as a additive channel
because their contributions can be combined additively
(e.g. AND/OR/NOT logic). We define channels with high
inconsistency as non-additive channels since their con-
tribution is inconsistent and usually conditioned on the
other channels (e.g. XOR logic). We visualize the signs and
magnitudes of FIV scores of the entire ensemble of FIVs
as shown in Figs. 1 and 2. In this way both individual and
combinatorial interactions between channels can be eas-
ily perceived. In the results section below we show the
effectiveness of this visualization using synthesized data
in discovering XOR logic where two channels always have
opposite contributions.

Summarizing feature contributions using Overall Feature
Importance Vector

We summarize the contribution of a feature using an over-
all feature importance vector (OFIV) @, that takes into
account the rich information of the magnitude and direc-
tion of the feature contribution embedded in the ensemble
of FIVs.

We first calculate the weighted variance of the FIVs for
each channel to get the inconsistency level (IL). Three
Gaussian mixture models with the number of components
varying from one to three are fitted over the IL scores to
account for channels that are additive and non-additive.
The final number of mixture components is picked to
minimize the Bayesian Information Criterion (BIC).

We next categorize the channels by IL score and the
sign of contribution to calculate category-specific OFIVs
that properly characterizes the feature importance. The
channels in the mixture component with the lowest mean
are considered as either additive or unimportant. The
remaining mixture components (if any) are considered as
non-additive channels and can be further categorized by
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Fig. 1 lllustration of DeepResolve’s working flow. a Feature Importance Vectors calculation. After a network is trained and a intermediate layer is
selected, DeepResolve first computes the feature importance maps (FIM) of each of the channels using gradient ascent. Then for each channel, the
Feature Importance Vector (FIV) score is calculated as the spatial average of its FIM scores. b Overall Feature Importance Vector calculation. For each
class, DeepResolve repeats the FIV calculation T times with different random initializations. The weighted variance over the T times is then
calculated as an indicator of inconsistency level (IL) of each channel. A Gaussian Mixture Model is trained on IL scores to determine the
non-additiveness of a channel. For each channel, the T FIVs are combined with the reference to the inconsistency level to generate an Overall
Feature Importance Vector (OFIV) which summarizes all ‘favored’ and ‘unfavored’ patterns of a class. Finally, we use the non-negative OFIVs of each
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whether the sign of its FIVs in the ensemble is consis-
tent. For channels considered as additive, unimportant,
or non-additive with consistent sign, the OFIV is calcu-
lated as the weighted average of its scores across all FIVs.
For channels considered as non-additive with inconsistent
sign, the OFIV is calculated as the weighted average of the
positive FIVs in the ensemble to reflect the feature con-
tribution in cases where the channel is not used to negate
the prediction.

Visualizing OFIVs and IL scores together, we recover
both the importance level of different features and the
presence of non-additive channels. We automatically pro-
duce a list of important features, and a list of non-additive
features that are highly likely to involved in complex
interactions.

Visualizing feature sharing and class relationship
The weight sharing mechanism of multi-task neural net-
works allows the reuse of features among classes that
share similar patterns. In past studies, the weight matrix
in the last layer has been used to examine class similar-
ity. However, this is potentially problematic because the
high-level features in a network’s last layer tend to be
class-specific. This method also fails to discover lower
level feature sharing between classes that are rarely labeled
positive together. Using OFIVs proposed above, we revisit
the feature sharing problem to enable the discovery of
lower-level feature sharing when the class labels are poorly
correlated.

We observe that the network learns to use negative
channels to capture class-specific patterns in other classes
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(IL score) of each channel is plotted below the FIVs, where the darkness and circle size is proportional to the variance. The OFIV is visualized below,
where the circle size reflect the overall importance score of a channel. The channels that are predicted as non-additive by the Gaussian Mixture
Model fitted on the IL scores are labeled by a star. A seglogo visualization of the filter weight is plotted next to the corresponding channel. Filter
{a,ft and {c,d} which capture sequences that involve in XOR logic are correctly predicted as non-additive. Among the remaining filters, the top-OFIV
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as a process of elimination to maximize the prediction
accuracy. This potentially increases the distance of those
classes in hidden space despite the fact that they may share
other features. Thus, while neurons with both strong pos-
itive and negative OFIV scores are potentially important
for making the prediction, only the ones with positive
OFIV scores are truly associated with the target class.
Inspired by this finding, we introduce a class similar-
ity matrix A by taking pair-wise Pearson correlation of
non-negative OFIV of all the classes.

Cov (&Di, 5);“)
i j
A =—FT—""
Gi’iaéi
i Y
®} encodes the composition of all positive contributing
features for a given class in intermediate layer. By taking
the difference of OFIV of a pair of classes, we can also
generate a class difference map.

DCiCj = &)Ci — <I>C].

This map highlights features that are favored by one class
but not favored by the other. This is especially help-
ful when studying cell-type specific problems where a
key feature deciding differential expression or binding in
different cell type might be crucial.

Implementation details

We trained all of our models with Keras version 1.2 and
the DeepSEA network is downloaded from the official
website. We convert the torch DeepSEA model into Caffe
using torch2caffe and the resulting model has same
performance as the original network. We implemented
DeepResolve for both Caffe and Keras. As baselines, we
implemented saliency map and DeepMotif in Keras, and
used DeepLIFT v0.5.1 for generating DeepLIFT scores.

Results

Synthetic datasets

Recovering important features and combinatorial
interactions

We tested if FIVs would highlight important features
and identify complex feature interactions in a synthetic
data set which contains both additive and non-additive
combinatorial logic. Synthetic dataset I contains 100,000
DNA sequences, each containing patterns chosen from
CGCTTG, CAGGTC and GCTCAT in random positions.
We label a sequence 1 only when CAGGTC and one of
(GCTCAT, CGCTTG) present, and otherwise 0. This is the
combination of AND logic and XOR logic. We also include
20,000 sequences that are totally random and label them
as 0. We trained a convolutional neural network with a
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single convolutional layer with 32 8bp filters and local
max-pooling with stride 4, followed by a fully connected
layer with 64 hidden units. 20% of the data were held
out as a test set and the resulting test AUC was 0.985.
We applied DeepResolve on the layer in between convo-
lutional layer and fully connected layer, and each channel
correspond to a convolutional filter that can be visualized
as Position Weight Matrix after normalization.

As shown in Fig. 2, when ranked by OFIV, the top fil-
ters predicted to be non-additive capture CGCTTG and
GCTCAT, the pair of motifs that non-linearly (XOR) inter-
act with each other. The top filters predicted to be additive
characterize CAGGTC, the motif that additively (AND)
interacts with the other ones. Furthermore, the FIVs cor-
rectly unveil the non-additive XOR interaction between
GCTCAT and CGCTTG as the corresponding filters tend
to have opposite signs all the time. The optimal num-
ber of Gaussian mixture components of the IL score is 3
(Additional file 1: Figure S1), indicating the existence of
non-additiveness.

We further compared three types of input-dependent
visualizations: DeepLIFT, saliency map, and saliency map
multiplied by input. For our comparison we used posi-
tive and negative examples from synthetic dataset I, where
the positive example contains GCTCAT and CAGGTC, and
the negative example contains all three patterns. The net-
work prediction on these examples are correct, suggesting
that it has learned the XOR logic. Note that the origi-
nal saliency map takes the absolute value of the gradients
which never assign negative scores and thus limits the
interpretation of the internal logic of a network. Thus we
used the saliency map without taking the absolute value to
allow for more complex visualizations. We compute attri-
bution scores for each base pair in the input with regard
to the positive class’s softmax logit. As shown in Fig. 3,
the visualization on positive example can be biased by the
choice of input since only the 2 patterns that present in the
input will be highlighted and the third pattern is always
missing. On the other hand, when a negative example is
used as input, all three methods assign scores with the
same signs to all three patterns, making the XOR logic
indistinguishable from AND logic. DeepLIFT assigns pos-
itive score to both GCTCAT and CAGGTC even though
their co-existence lead to negative prediction. Moreoever,
the saliency methods incorrectly assign negative score to
CAGGTC which is designed to always exists in positive
class. This shows that saliency methods can be unstable in
attributing positively contributing patterns when complex
non-linear logic exists.

Recovering class relationships

We synthesized dataset II to test our ability to discover
feature sharing when the labels are poorly correlated. Syn-
thetic dataset II has 4 classes of DNA sequences with
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one class label assigned to each sequence. Class 1 con-
tains GATA and CAGATG, class 2 contains TCAT and
CAGATG, Class3 contains GATA and TCAT, while class
4 only contains CGCTTG. The introduced sequence pat-
terns are deliberately selected such that three of the classes
share half of their patterns, while class 4 is totally differ-
ent. These four classes are never labeled as 1 at the same
time, thus the labels yield zero information about their
structural similarities. We trained a multi-task CNN with
a single convolutional layer that has 32 8bp long filters,
one fully connected layer with 64 hidden neurons, and a
four-neuron output layer with sigmoid activation to pre-
dict the class probability distribution. The test AUC is
0.968, 0.967, 0.979, 0.994 for class 1 to 4.

Figure 4a shows the OFIV for each of the classes, and the
optimal number of Gaussian mixture components of the IL
score for all of the classes is one (Additional file 1: Figure S1),
correctly indicating that only additive channels exist in
these classes. We observe that the channels with the top
OFIV (red) correctly capture the sequence determinants
of the corresponding class. We observe strong nega-
tive terms (blue) in OFIVs for all classes, representing
sequence patterns ‘favored’ by other alternative classes,
which validates our hypothesis that the process of elim-
ination’ truly exists. Figure 4b compares class similarity
matrices generated by our method and using the last layer
weight matrix. The non-negative OFIV correlation matrix
successfully assigned higher similarity score to class 1+2,
class 143 and class 2+3, while the other methods failed to
do so. Note that for class 1+3 and class 2+3, the similarity
scores estimated by the last layer weight dot product are
strongly negative, suggesting that the same features will
lead to the opposite predictions between these pairs of
classes. While consistent with label correlation, this inter-
pretation is contradictory to the fact that those classes
are actually similar in feature composition, showing lim-
itations of conventional methods that are based on the
last layer weight. The correlation when using both pos-
itive and negative ONIV scores suggest similar pattern
as the last layer weight, showing that the negative terms
confounds the similarity analysis.

Experimental datasets

We analyzed two experimental datasets to examine Deep-
Resolve’s ability to recover biologically important features,
and to discover correlation in features that might relate to
mechanism.

Identifying key motifs in models of TF binding

We applied DeepResolve to convolutional neural net-
works trained on 422 Transcription Factor ChIP-Seq
experiments for which the TF motifs are available in
the non-redundant CORE motifs for vertebrates in JAS-
PAR 2015 ([6, 7]) and only one motif exists for each TF.
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Fig. 3 Input-dependent visualizations produce unstable results on XOR logic and fail to capture the XOR interaction. Three types of input-dependent
visualizations on example positive and negative sequence from synthetic data set I. The visualization using positive example (left) only highlight two
of the 3 predefined patterns because a positive sample can only contain one of GCTCAT,CGCTTG, while the third pattern will always be missing.

When using negative example which contains all three patterns as the input, all of the methods assign either all positive or all negative scores to the
three patterns (right), failing to capture the XOR interaction between GCTCAT and CGCTTG. The saliency methods predict negative score for CAGGTC,

a pattern that should always exists in positive examples, suggesting that these methods are not stable enough when dealing with complex logic

The positive set contains 101-bp sequences centered at
motif instances that overlap with the ChIP-seq peaks.
For each TF, the JASPAR motif for the corresponding
factor (Additional file 1: Table S1) is used to identify
motif instances using FIMO. The negative set are shuffled

positive sequences with matching dinucleotide compo-
sition. Each sequence is embedded into 2-D matrices
using one-hot encoding. We train a single-class CNN for
each experiment using one convolutional layer with 16
filters of size 25 with global max-pooling, and 1 fully
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Fig. 4 Visualization of DeepResolve in multi-task networks. a Overall Feature Importance Vector for Synthetic dataset Il class 1 - 4. Each circle on the
X-axis represents a channel, with red representing positive OFIV score and blue representing negative OFIV score. Each column corresponds to one
of the 32 channels that is shared among all four classes. OFIV successfully ranks predefined sequence features as the most important features for
each of the classes, while reveals ‘unfavored’ features that are used to separate a class from its competing classes. b Correlation matrix of class based
features shows the benefit of non-negative OFIV scores. The predefined sequence pattern for each class is shown (a). Our proposed Class Similarity
Matrix (top-left) successfully assigns high correlation to (Class1, Class2), (Class2, Class3) and (Class1, Class3) and low correlation to all pairs with Class
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connected layer with 32 hidden units. The mean of the
AUC for these 422 experiments is 0.937 and the stan-
dard deviation is 0.035. We then generate FIMs and
OFIVs for each experiment on the last convolutional layer,
and rank the filters using OFIV scores. 420 of the 422
experiments contain only additively contributing features
(Additional file 1: Figure S1).We convert the top filters
into position weight matrices (PWMs) and match them
with known motif for the target TF using TOMTOM [28],
and count how many times we hit the known motif in
top 1, top 3 and top 5 filters with matching score p-value
less than 0.5 and 0.05. We compare our method to Deep-
Motif ([26]), a visualization tool that generates important
sequence features by conducting gradient ascent directly
on the input layer. We improved DeepMotif’s initialization
strategy to allow multiple random initializations instead of
using an all 0.25 matrix (naming it enhanced-DeepMotif),
and take the most informative 25bp fragment of generated
sequences with top 5 class score. We also compared with
three gradient-based methods, deepLIFT,saliency map,
and its variation where the gradients are multiplied by the
inputs to the neurons. However we conducted them on
an intermediate layer instead of on input layer. We used
all sequences from the positive training set, and took the
average of scores assigned to a channel as an indication of
the importance of a channel.

Shown in Table 1, our method successfully proposes
known matching motifs as top 5 features in all of the
422 experiments with TOMTOM p-value less than 0.5,
and in 421 out of 422 experiments with p-value less than
0.05, which outperforms enhanced DeepMotif by ~ 3-
fold. Our method also outperforms saliency map and
its variation in top-1, top-3, top-5 accuracy, and outper-
forms deepLIFT in top-3, top-5 accuracy with TOMTOM
p-value less than 0.5. We selected the top filter that
matched a known canonical motif with lowest TOMTOM
p-value from each experiment, and conducted Mann-
Whitney Ranksum (unpaired) and Wilcoxon (paired)
rank test between the ranks that DeepResolve and
input-dependent methods assign to these filters. Our
method is significantly better (p < 0.000001) then the
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saliency map method and its variation on both tests
and is comparable to DeepLIFT even though we did not
refer to any input dataset when calculating our OFIVs.
The distribution of optimal numbers of Gaussian mix-
ture components for all the experiments is plotted in
Additional file 1: Figure S1, where only 2 of the experi-
ments have potentially non-additive channels. This result
demonstrates that the logic for single TF binding is mostly
additive and complex feature interactions such as XOR
logic are unlikely. It also shows that the convolutional
filters in genomic studies can capture motifs accurately
by themselves, which lays a good foundation for hier-
archical feature extraction and interpretation tools like
DeepResolve.

We further analyzed the learned convolutional filters
from all 422 TF binding models by visualizing their activa-
tion patterns and relevance to known motifs. We grouped
them into four groups by the ranks of ONIV score and
plotted the distribution of the averaged activation scores
across all negative and positive examples. We also plotted
the distribution of TOMTOM p-values of the correspond-
ing motif for each group. As shown in Fig. 5, the top
ranking group (right most) has highest activation in posi-
tive examples and lowest activation in negative examples,
and has the most significant motif matching p-values. This
suggest that ONIV successfully selected highly relevant
and informative filters that can separate the positive and
negative sets.

Identifying sequence feature sharing and class correlations in
DeepSEA

We evaluated DeepResolve’s ability to discover important
features and identify shared features and class similari-
ties across distinct classes in the DeepSEA network[8], a
classic multi-task convolutional network trained on whole
genome data to predict 919 different features including
chromatin accessibility, TF binding and histone marks
across a variety of cell types. DeepSEA compresses a
large training set into its parameters and thus we sought
to interpret DeepSEA’s parameters to uncover biological
mechanism.

Table 1 Top-1, top-3, top-5 accuracy in identifying matching motif for TF binding (out of 422 experiments) with similarity score
(p-value) smaller than 0.5 and 0.05, and the paired/unpaired rank tests of the proposed ranks of best matching filters between our

method and the input-dependent methods

Top 1 Top 3 Top 5 Ranksum Wilcoxon
TOMTOM P-value 0.5 0.05 0.5 0.05 0.5 0.05 p-values p-values
DeepResolve (ours) 412 407 421 418 422 421 N/A N/A
DeepLIFT 418 418 420 420 421 421 0.784 0412
Saliency*activation 404 393 419 419 420 420 7478 x 10~/ 1.049 x 1079
Saliency 388 377 417 416 420 420 463 x 107/ 463 x 1071
enhanced DeepMotif 217 89 310 123 343 147 N/A N/A
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Fig. 5 Distribution of positive sample activation level, negative sample activation level and motif matching p-values of filters grouped by their ONIV
score ranking. We collected convolutional filters from all 422 TF binding models and group them into four groups by the ranks of ONIV score, each
containing 1688 filters. Each panel represents one of the groups and the ONIV ranks increase from left to the right. The averaged activation scores
across all negative and positive examples are calculated for each filter, and is normalized to [0,1] within each network. The top ranking group (right
most) has high activation in positive examples while low activation in negative examples, and has the most significant motif matching pvals. This is

Frequency

suggesting that DeepResolve ranks highly relevant and informative filters that can separate positive and negative set well

In DeepSEA, input sequences are 1000bp long, and the
labels are 919 long binary vectors. The network has 3 con-
volutional layers with 320, 480, 960 filters, and 1 fully
connected layer. We chose the input to the 3rd convo-
lutional layer as H to generate feature importance maps,
where the activation of a channel is determined by a 51bp
sequence segment in the input (receptive field). We visu-
alized the sequence features of a channel by /;-regularized
gradient ascent over its receptive field to maximize the
channel activation. We initialized the input with the
top ten 51bp fragment from the training sequences that
maximize the channel activation. We applied a heuris-
tic thresholding to the optimized input segments and
normalized them to sum up to one in each column,
and used TOMTOM to compare the resulting position
weight matrix with known JASPAR motifs. Figure 6 left

panel shows the -logl0 of the TOMTOM Q-values for
each pair of channel and its top matching motifs. We
discovered 218 channels that capture sequence features
that match with 200 known JASPAR motifs with Q-value
smaller than 0.005, and we observed channels that capture
single motif, multiple motifs, consecutive motif with its
reverse compliment (Fig. 6). We show that a single chan-
nel can capture both a motif and its reverse compliment
depending on the input sequences, and we captures this
dynamic by using multiple initializations for the gradient
ascent.

We next computed a class similarity matrix based upon
OFIVs and found that the resulting matrix revealed sim-
ilarities between the decision functions that underlie dis-
tinct classes, even when the classes themselves were not
strongly correlated. We first calculated FIVs and their
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Fig. 6 Visualization of sequence features captured by the 480 channels in 2nd convolutional layer of DeepSEA. The sequences are generated using
gradient ascent (see section 1). The matrix represents -log10 of TOMTOM Q-values for each pair of channel and its top matching motifs. Each row
represents a known JASPAR motif which has been ranked as top 1 matching motif for at least one of the channels. Only pairs that achieve less than
0.005 Q-value are represented with actual Q-value, and the dark blue region represents default value for low Q-values. In the right panel, the left
column shows the SeglLogo visualizations of representative gradient ascent outputs of 5 of the channels, and the top matching motifs are shown in
the right column. Channel 116 and 451 captures single motif of Alx4 and MafG. Channel 280 captures 3 consecutive motifs (GATAT,Myod1 and
GATA2), while channel 77 captures consecutive NFYB/YA motif and its reverse compliment. Channel 179 captures either REST or its reverse
compliment depending on the input sequences used for initialization
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weighted variances for each class. The distribution of opti-
mal numbers of Gaussian mixture components for all
the experiments is plotted in Additional file 1: Figure S1,
where only 2 of the experiments have potentially non-
additive channels. This indicates that the majority of the
classes in DeepSEA employ additive logic where binding
can be determined by the additive contribution of sev-
eral motifs. We then generated a class similarity matrix
as described in Section 1. Given that DeepSEA takes in
1000bp long sequences around the biological event, it cap-
tures upstream and downstream sequence context. There-
fore our proposed metric measures similarities between
the contextual structures of a pair of regulators, which
could imply interesting correlations in functionality and
mechanism. Figure 7 compares DeepResolve’s class simi-
larity matrix with the label correlation matrix and the dot
product matrix of last layer weights for all classes. Deep-
Resolve’s class similarity matrix revealed strong correla-
tion between pairs of TFs/histone marks/DNase hyper-
sensitivity that do not necessarily co-appear within 200
bp or having strong last layer weight correlation, but are
functionally relevant.

We then examined the correlation pattern between
selected TF/histone marks and DNase I hypersensitivity
across different cell types to explore the shared compo-
nents of their decision functions. Figure 8a shows the
bi-clustering result on the TF-histone mark/DNase sim-
ilarity matrix. We observed clusters of TFs and histone
marks sharing similar patterns, and some of them exhibit
cell-type specific effect on DNase hypersensitivity (see
Additional file 1: Figure S2). We collapsed the map into
1-D by calculating number of strong positive similarity
(larger than 0.52, 85% quantile of all correlations) and neg-
ative similarity (smaller than 0, 15% quantile of all corre-
lations) with DNase experiments for each TF/Chromatin
mark. As shown in Fig. 8b, we characterized each TF and
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histone mark’s association with chromatin accessibility
using these indexes. We identified groups of TFs/histone
marks that are highly correlated with DNase hypersensi-
tivity (located to the left side of the histogram), and most
of them are known to be involved in Chromatin Regu-
lation / Acetylation Pathway, e.g. CTCF, POL2, CHD1/2,
PLU1(KDM5B), SMC3, RAD21, GTF2B/GTF2F1, TBP,
etc., or known to be essential for transcription activation,
e.g. PHF8, USF2, H3K4me2, H3K27ac. We also identified
groups of TFs/histone marks that are negatively corre-
lated with DNase hypersensitivity and observe that most
of them are well-known transcriptional repressors and
repressive marks, e.g. ZNF274, EZH2, SUZ12,H3K9me3,
H3K27me3 (see Additional file 1: Figure S3 for detailed list
of the TFs/histone marks inside the box plotted in Fig. 8).

Another way of utilizing the class similarity matrix is
to directly use it as a metric of distance for clustering.
We performed hierarchical clustering of the 919 ChIP-seq
experiments and identified meaningful clusters where tar-
gets within the same cluster are known to be similar to
each other, including groups of the same TF across dif-
ferent cell types, or groups of different TFs in same cell
type (Fig. 9). We found many of the clusters consist of TFs
that are known to be interacting, such as forming a com-
plex or cohesin (c-Fos and JunD [29]; SMC3 and Rad21
[30, 31]),co-repression(KAP1 and ZNF263 [32, 33]), com-
peting (ELK1 and GABP [34]) or known to be essential for
each other to regulate transcription (EZH2, SUZ12 and
H3K27me3 [35, 36];Pol III (RPC155),TFIIIB (BRF1/2 and
BDP1 are subunits for TFIIIB) and TFIIIC). We contrast
the result from DeepResolve with the label correlation
matrix for each cluster and show that even though label
correlation pick up some of the above mentioning pairs
(e.g. SMC3 and Rad21), it can sometimes miss some pairs
(e.g. c-Fos and JunD, KAP1 and ZNF263) while DeepRe-
solve captures these pairs even when data from different

Label correlation

919 classes

919 classes

Last layer weight dot product

919 classes

DeepResolve Class similarity map

919 classes

Fig. 7 Class similarity map for DeepSEA. X and Y axis represents 919 different experiments including DNase | hypersensitivity, TF binding and histone
marks across different cell types. The sub-matrix highlighted by the red box is used for DNase correlation pattern analysis in Fig. 8
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cell types are used. We further visualize the OFIV of clus-
ters that exhibit cell type or TF specificity, and recognize
sequence features that are potentially contributing to cell
type specific binding or the binding of a single TF across
different cell types (see Additional file 1: Figure S4).

Discussion
Potential artifacts in minor cases
Our method is designed to preserve positively attributed
channels when generating an ONIV. It is possible that a
channel detects the existence of an input feature through
reduction of activation, and a negatively attributed chan-
nels of this type can be positively contributing to the out-
put. We visualize the information content of positive and
negative weights from all convolutional filters in the 422
TF binding experiments (see Additional file 1: Figure S5),
and we show that networks tend to learn more informa-
tion from positively weighted evidence than negatively
weighted evidence. This can be in part explained by the
bias of back-propagating gradients for positively activated
neurons when ReLU is used. Our observations suggest
that negative-negative paths in neural networks are infre-
quent and thus our design choice towards biasing the
positive channels is not very likely to be confounded by
these paths.

We noticed that in some experiments, high ranking fil-
ters do not always match the known ground truth. While

these filters may be artifacts, we found their existence
highly relevant to the network and the training data and
thus they should not be ignored. We analyzed the normal-
ized activation level in the postive examples, information
content and the motif matching p-values of all convo-
lutional filters in the 422 TF experiments. As shown in
Additional file 1: Figure S5B, there exist strongly acti-
vated filters with high information content while their
p-value for motif matching is not significant. Moreover,
we divided filters into four groups depending on the ranks
that DeepResolve assigned to them, and we visualized
their activation level in positive examples verses the motif
matching p-values, colored by the information content
of its positive weights. As shown in Additional file 1:
Figure S5C and Fig. 5, the top ONIV ranked filters are
highly activated in positive samples and have low activa-
tion in negative examples, and match known motifs with
high significance. Filters located on the right top corners
are strongly activated in positive training example while
not matching a known motif. These could either be the
result of over-fitting the training set or true patterns in
the training set that are not covered by the chosen known
motif. There exist some top ranking filters that are low in
both activation and motif matching significance (circled
in green in Additional file 1: Figure S5C), we consider this
type of filters as artifacts of the visualization procedure.
Among 1688 filters in the top 25% group, only 67 (less
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Fig. 9 Hierarchical clustering results of 919 biological targets using correlation of positive OFIV as distance metric. Each panel represents a cluster, in
which the left matrix is the sub-matrix of the class similarity map in 2nd convolutional layer(see Fig. 7) among classes in the cluster, and the right
matrix is the sub-matrix of label correlation between the classes. Each of the clusters consist of TFs that are known to be interacting, such as forming
a complex or cohesin (c-Fos and JunD (b), SMC3 and Rad21 (a)), co-repression (KAP1 and ZNF263 (c)), competing (ELK1 and GABP (d) or known to
be essential for each other to regulate transcription (EZH2, SUZ12 and H3K27me3 (f)). Cluster (e) consists of the subunits of Pol Il (RPC155) and 2
essential transcription factors for Pol Il : TFIIIB (BRF1/2 and BDP1 are subunits for TFIIIB) and TFIIIC. We show that even when the label correlation is
not significant, our class similarity matrix can still capture the functional relevance of the interacting TFs

than 4%) of them belong to this type (p-value larger than
0.5, activation level within bottom 25%). We also found
that this artifact exists in all visualization methods that we
examined, 12 in DeepLIFT and 35 in saliency map.

Intermediate layer selection for analysis

DeepResolve can learn feature contribution and interac-
tion patterns at any layer of a network with regard to
any desired output neuron, and thus it is important to
select a layer for network interpretation that is informa-
tive for a specific task. We find that a good heuristic is
to select a layer L such that its neuron activation corre-
spond to local sequence patterns comparable to motifs.
In addition, the selected layer should not be distant from
an output neuron of interest. This is because additional
intervening non-linear layers introduce excessive instabil-
ity that can inhibit learning accurate feature interactions.
For many existing networks for predicting genomic func-
tional regulatory elements the optimal choice for analysis
is the layer located between the fully connected layers
and convolutional layers [6, 7]. For DeepSEA [8] which

has 3 convolutional layers, we found the input to last
convolutional layer is most informative. We also observed
that as we pick layers that are closer to the input, the simi-
larity matrix becomes denser because the sharing of lower
level features is more likely than the sharing of higher level
features. Thus picking the right layer for analyzing class
similarity depends on the feature granularity desired.

Selection of hyper-parameters

The L2 norm in the objective function for gradient ascent
is essential in controlling the scale of generated feature
maps. We experimented with different L2 coefficients A
ranging from 0.3 to 2.8 and observed that A does not sub-
stantially affect the ranking of channels in general, even
though the scale of generated FIVs varies with the choice
of A. A good heuristic for picking A is to select a A such
that the resulting feature importance map has a norm that
is comparable to the norm of mean feature map activation
which can be calculated using a small set of realistic input
sequences randomly sampled from the training set. We
tested different step sizes including 0.1,0.01,and 0.001, and
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we also found that the step size of gradient ascent does not
have a significant effect on the results when it is reason-
ably selected. It should not be so large that the objective
does not increase and not so small such that the conver-
gence rate is extremely slow. In practice we use learning
rate decay to gradually reduce the learning rate with the
number of steps.

Ir = Iry * max((step — start_decay)™%, min_Ir)

Complex logic and feature sharing in biological problems
While we observed the DeepSEA model consists mainly of
additive logic with a few non-additive channels, XOR logic
may exist. The fact that XOR logic was not more obvi-
ous could be the consequence of the unbalanced train-
ing data in DeepSEA where most of the sequences have
negative labels for a single class, which makes the learn-
ing of complex logic difficult. DeepResolve is defined to
uncover non-additive interactions when they are present
in a model, while the training of model with robust non-
additive interactions can be difficult. Biological systems
do contain TFs that bind differently but have partially
shared features, including TFs that associate with different
co-factors and shared pioneer factors[37]. In these inter-
actions a pioneer factor opens chromatin that enables a
distinct TF specific co-factor to bind. Our capability of
discovering feature space correlations that are not present
in label space can suggest interesting similarities between
TFs that partially share a co-factor or functional role.

Combining DeepResolve with existing tools

DeepResolve is designed to visualize how complex inter-
mediate layer channel interactions contribute to decisions
about a network task. It can be combined with any exist-
ing input-level visualization tools such as a saliency map
or deepLIFT, which can provide fine-grained visualization
of sequence features captured by the important channels
that DeepResolve identifies. Similar work-flow was used
to discover epistatic feature interactions [38]. The use
of DeepResolve can ease the computational burden for
input-space visualization tools by reducing the number
of layers and the length of receptive field for traditional
methods which can lead to better location specific and
more accurate visualizations.

Conclusions

DeepResolve is a gradient ascent based method that
summarizes feature importance maps for visualizing and
interpreting a network’s behavior in feature space that is
reference input free. DeepResolve visualizes the complex
combinatorial interactions of lower level features that are
crucial to model decision making. It also recovers feature
space similarities between poorly correlated classes which
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may suggest shared biological mechanism. It is compati-
ble to existing methods in discovering important sequence
features and provides complimentary insights.

Additional file

Additional file 1: Supplementary Figures S1-S5, Supplementary Table S1.
(PDF 10,216 kb)
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