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ABSTRACT

Chromatin modifiers and histone modifications are
components of a chromatin-signaling network in-
volved in transcription and its regulation. The in-
teractions between chromatin modifiers and histone
modifications are often unknown, are based on the
analysis of few genes or are studied in vitro. Here,
we apply computational methods to recover interac-
tions between chromatin modifiers and histone mod-
ifications from genome-wide ChIP-Seq data. These
interactions provide a high-confidence backbone of
the chromatin-signaling network. Many recovered in-
teractions have literature support; others provide hy-
potheses about yet unknown interactions. We experi-
mentally verified two of these predicted interactions,
leading to a link between H4K20me1 and members
of the Polycomb Repressive Complexes 1 and 2. Our
results suggest that our computationally derived in-
teractions are likely to lead to novel biological in-
sights required to establish the connectivity of the
chromatin-signaling network involved in transcrip-
tion and its regulation.

INTRODUCTION

Transcription and its regulation are facilitated by a complex
interplay between various molecular players, such as tran-
scription factors, chromatin modifiers (CMs), histone mod-
ifications (HMs) and RNA polymerase II (Pol II). Together
these components form a chromatin-signaling network (1)
whose signaling activity affects the transcriptional and the
chromatin state of a particular genomic region. Thus, it is
not surprising that the presence of certain HMs at the pro-
moter or the gene body coincides with the transcriptional
status of the corresponding gene (2,3). This close link is fur-
ther substantiated by the finding that there is even a quanti-

tative relationship between HM levels and the steady-state
level of mRNAs (4–6).

HMs are closely linked to the transcriptional process
but their functional role in transcription remains largely
unknown. On one hand, HMs may modulate the stabil-
ity of nucleosomes or the chromatin conformation (7) and
thereby directly interfere with Pol II recruitment or proces-
sivity. On the other hand, HMs may play an indirect role by
recruiting CMs to well-defined regions of the genome. Thus,
because histones are firmly bound to DNA, HMs may re-
strict the signaling activity to certain genomic features, such
as enhancers and promoters.

The activity of the chromatin-signaling network leads to
co-localization of HMs and CMs on the genome, which
can be determined by chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-Seq; (8–10)). Accordingly, clus-
tering HM and CM ChIP-Seq data identifies patterns of
co-localized HMs and CMs, which can be associated with
genomic features like enhancers and promoters (11). The
co-localization pattern specific to, e.g. promoters, unravels
those CMs and HMs that constitute the building blocks
of the underlying chromatin-signaling network. However,
such an analysis is unlikely to identify the specific interac-
tions between CMs and HMs.

Recently, two approaches, one based on Bayesian Net-
work inference (12) and the other on a maximum entropy
framework (13), have been proposed to infer chromatin-
signaling networks in Drosophila melanogaster. Both ap-
proaches require discrete data. This, however, involves diffi-
cult decisions on optimal decision thresholds. To circum-
vent these problems we use the ChIP-Seq levels directly
and infer a human chromatin-signaling network. We con-
struct this network drawing on two complementary philoso-
phies. We model each HM level as a weighted linear com-
bination of the CM levels and select those CMs that have
the most consistent quantitative information about the HM
level using Elastic Nets (14). This approach accounts for
interactions induced by correlations between CMs, but is
not able to remove interactions induced by correlations be-
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tween HMs. Consequently, we prune the so-derived can-
didate chromatin-signaling network by computing sparse
partial correlation networks (SPCN) (15), which is aimed
to identify direct interactions between HMs and CMs ac-
counting for correlations between CMs and HMs.

MATERIALS AND METHODS

ChIP-Seq and gene expression data

The raw HM and CM ChIP-Seq reads were obtained
from the SRA Archive (GSE29611 and GSE32509). We
merged multiple replicates and mapped uniquely map-
ping reads to the hg19 genome using Bowtie (16). We
counted the number of reads falling into a ±2000 bp
window centered at the Transcription Start Sites (TSSs)
of all known RefSeq genes (accessed: 19 October 2012).
Only promoter regions with at least one sample having a
read count larger than the input control were used. The
expression data from Cap Analysis of Gene Expression
(CAGE) was obtained from the UCSC genome browser (ac-
cessed: 14 November 2012; K562CellPapAlnRep1/2.bam
and H1hescCellPapAlnRep1/2.bam). The CAGE-counts
were averaged over the available replicates.

Read count normalization

We normalized the HM and CM read counts by the fol-
lowing procedure: We estimated the slope of the correlation
between the read counts of the sample (S) versus the read
counts of the input control (C) (adding a pseudo-count of
1) by the median (m = median ((S + 1)/(C + 1))) of the ra-
tio between the two over all promoters. The read counts
were then replaced by the enrichment of the sample over
the input normalized by the median (Snorm = (S + 1)/(C +
1) ∗ 1/m). This procedure shrinks all the read counts that
are highly correlated with the input toward zero. The nor-
malized read counts and average CAGE-counts were log-
transformed and scaled to have mean zero and standard de-
viation one.

Linear regression and regularization using Elastic Nets

We use a combination of computational methods to deci-
pher the chromatin-signaling network as described in the
Result section. First, we would like to uncover direct in-
teractions between each HM and the CMs taking into ac-
count all other CMs at hand. This can be done by predict-
ing each HM from the CMs using linear regression. Linear
regression has been applied in various problems for out-
come prediction. Here, apart from achieving good predic-
tion accuracy, we are interested in determining the subset
of variables (CMs) that is most useful for the prediction.
The latter can be obtained with regularized linear regres-
sion methods, which, in contrast to simple linear regression
models, impose soft constraints on the number of non-zero
coefficients. Moreover, it would be desirable that correlated
variables, i.e. equally good predictors, have similar weights.
This is especially useful for our case, where we might have
sets of CMs that interact with an HM only when being in
a complex. For this reasons, we used Elastic Nets (14) as
implemented in the glmnet-package (17) for R (18). The

objective function of Elastic Net (as for simple linear re-
gression) is the Residual Sum of Squares (RSS) criterion:
RSS = ∑N

j=1

(
yj − β0 − ∑p

i=1 Xi jβi
)2

, which is the sum of
squared errors that should be minimized. In the Elastic Net
this objective function is subjected to the constraint: (1 −
α)||β||1 + α||β||2 ≤ t, where ||β||1 = ∑p

i=1 |βi | and ||β||22 =∑p
i=1 β2

i , for α ∈ [0, 1] and some t. The first constraint is
based on the L1-norm and forces the coefficients to shrink
to 0, thereby favoring sparsity (LASSO-type). The second
constraint is based on the L2-norm and favors similar val-
ues for the coefficients (Ridge-type), thereby avoiding pick-
ing one variable over another when both are redundant. The
α-parameter specifies the contribution of each constraint.
Throughout the paper we first choose α between 0.01 and
0.99 using 10-fold cross-validation (CV) on each cross-fold.
The best α is selected such that the average RSS of the se-
lected α lies within standard deviation of the α having the
minimal average RSS. Once α is fixed, the t-parameter is
then automatically optimized by the cv.glmnet- function in
a similar fashion.

We estimated the importance of a CM in predicting a spe-
cific HM using Elastic Nets and 10-fold CV. Due to the large
number of promoters and due to the smoothing operated
by the L2-norm, we expect all coefficients to be non-zero,
as the prediction accuracy will increase more with one coef-
ficient than the penalty. However, the L1-norm will enhance
the contrast between useful and unuseful variables, and will
make the selection for the network representation easier.
For the graphical representation of the important CMs we
select only those CMs that have an average coefficient that
deviates from the average of all coefficients by at least one
standard deviation (Supplementary Figure S4).

Partial correlations and the SPCN

We combine the Elastic Net approach described above with
SPCN (15), which take into account both HMs and CMs.
The SPCN approach is based on the partial correlation co-
efficient P(X,Y|Z) that gives the correlation coefficient be-
tween X and Y after they are controlled for Z. In other
words, X and Y are both regressed against the control set Z,
and the correlation between their respective residuals r(X)
and r(Y) is computed. This allows us to focus on associ-
ations that are as direct as possible within the data set at
hand. For a data set D, the pairwise partial correlations
P(X,Y|D\{X,Y}) between every pair X and Y, where all
other variables D\{X,Y} are in the control set, can be effi-
ciently computed by inverting and normalizing the covari-
ance matrix of a data set D.

We build the SPCN on all CMs and HMs (15). In short,
we compute the pairwise partial correlation between the
ranked ChIP-Seq levels of a CM and an HM conditioned on
all other variables (Supplementary Figure S5). Only those
edges having a significant, non-zero partial correlation co-
efficient are retained. Sparseness is introduced in a 10-fold
CV scheme which, at the same time, is designed to maintain
high accuracy of the resulting (15). For the graphical repre-
sentation we select only those links from the full SPCN that
are between HMs and CMs.
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Figure 1. HMs and CMs hold redundant information about gene expres-
sion. Scatterplots with the predicted gene expression by HMs (A), CMs (B)
and both (C) on the x-axis and the measured gene expression (CAGE-tags)
on the y-axis. The blue color indicates the densities of points, the darker
the denser. The gray dashed line indicates identity. In the left upper corner
of each plot the coefficient of determination (R2), i.e. the variance in the
gene expression measure explained by the model, is indicated.

Cell lysis and immunoprecipitation (IP)

K562 cells (3 × 106) were lysed in 350 �l cytoskeletal ly-
sis buffer (10 mM PIPES, 100 mM NaCl, 300 mM Sucrose,
3mM MgCl2, 0.1% NP40) for 10 min on ice. The lysate was
then centrifuged at 5000 × g for 5 min and the supernatant
discarded. The pellet was resuspended in 350 �l of chro-
matin lysis buffer (300 nM NaCl, 50 mM Hepes pH 7.4,
0.5% Igpal, 2.5 mM MgCl2, 5 U Benzonase from Novagene,
1× protease inhibitor cocktail from Roche) for 30 min on
ice, with periodic mixing. The lysate was centrifuged at 13
000 × g for 10 min and the supernatant collected.

Note that 2 �g of a mouse immunoglobulin G (IgG)
control antibody (Diagenode C15200007) or 2 �g of
a monoclonal mouse H4K20me1 antibody (Diagenode
C15200147) were incubated with 10 �l of magnetic protein
G beads (Dynabeads Life Technologies) for 2 h under rota-
tion at 4◦C and then washed several times in the IP buffer. A
total of 150 �l of nuclease digested chromatin lysate was di-
luted with dilution buffer (100 nM NaCl, 50 mM Hepes) to
500 �l and incubated with the antibody coated beads for 4 h
under rotation at 4◦C. The beads were then washed 3× with
IP buffer and resuspended in 50 �l of chromatin lysis buffer
supplemented with 10 �l of 5× Lammeali buffer. The input
and IPs were then heated to 99◦C for 10 min prior to loading
on a 4–12% gradient gel (Invitrogen). The immunoblot was
detected with specific antibodies against H4K420me1 (Ab-
cam ab9057), EZH2 (Epitomics 1940-7) and CBX2 (Abcam
ab18968 and Bethyl A302-524A).

RESULTS

HMs and CMs hold redundant information about gene ex-
pression

As both, HMs and CMs, are components of the chromatin-
signaling network involved in transcription and its regula-
tion, both should contain information about gene expres-
sion. To test this idea we used linear regression models to
predict gene expression values from HM or CM levels at
promoters in the human K562 cell line. The HM levels ex-
plain 76% of the variance in gene expression (Figure 1A),
which is similar to the results from earlier work (4–6). The
CMs capture 75% of the variance in gene expression (Figure
1B). The good predictive performance confirms that both
HMs and CMs contain extensive information about gene
expression.
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Figure 2. CM levels predict HM levels and vice versa. (A and B) Boxplots
showing the range of coefficients of determination (R2) obtained by 10-
fold CV using CMs to predict HMs (A) and HMs to predict CMs (B). The
boxes indicate the range of R2 values between the first and third quartile,
the horizontal thick line indicates the median and the whiskers extend the
range to 1.5-fold the range from the median to the lower and upper hinge
of the box. R2 values outside this range are depicted as points. The dashed
gray line indicates an R2 of 0.5. (C and D) Barplots showing the coefficients
of determination (R2) obtained by training the model with data from the
K562 cell line and testing it in the H1 cell line (C) and by training in H1
and testing in K562 (D). The total height of the bar indicates the average
R2 obtained by 10-fold CV in the training cell line, while the darker part
indicates the R2 obtained by testing in the other.

If HMs and CMs reflect the same chromatin-signaling
network, both should contain redundant information about
gene expression such that combining them should yield only
a marginal increase in the predictive power. Indeed, using
both, CMs and HMs, improves the explained variance in
gene expression only by 3% (4%) compared to using only
HMs (CMs) at the expense of a higher model complexity
(Figure 1C). Thus, these findings support that CMs and
HMs jointly constitute a chromatin-signaling network in-
volved in transcription and its regulation.

CM levels predict HM levels and vice versa

Given that CMs and HMs are coupled together by the
chromatin-signaling network, the levels of CMs should con-
tain information about the HM levels and vice versa. To test
this idea we separated the HMs from the CMs and mod-
eled each group of variables using the other. For each HM
we built simple linear regression models using 10-fold CV
and predicted the HM level based on a weighted combina-
tion of the CM levels. For all HMs the models account for
at least 50% of the variance in the HM or CM level (Figure
2A). For H3K9ac, H3K4me3, H3K4me2 and H3K27ac the
model explains even more than 85% of the variance, which
is close to the agreement between biological replicates (Sup-
plementary Figure S1). The high explanatory power of CMs
for these four HMs suggests that many CMs interact with
these HMs. Indeed, roughly half of the CMs are known to
interact with modifications of the H3K4, the H3K9 or the
H3K27 residue (Supplementary Table S1).

We repeated this analysis by predicting CM levels from
a linear combination of HM levels. For about half of the
CMs the models account for over 50% of the variance (Fig-
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ure 2B). Thus, for those well-predicted CMs the HMs in the
data set cover the bulk of the recruitment mechanisms and
enzymatic targets.

Under the assumption that the chromatin-signaling net-
work is a common mechanism underlying transcription and
its regulation, we expect that the contribution of a CM to
the prediction of an HM in one cell type is similar in an-
other cell type. Thus, given the regression model trained
on the data from K562 cells we should be able to predict
the HM levels in another cell type. We tested this using
ChIP-Seq data for 14 CMs and 11 HMs in human embry-
onic stem cells (H1) that were also measured in the K562
cells. Indeed, the regression models learned from the data
available for both cell types show good agreement (Figure
2C and D). The lower performance of the models when
tested on the data from a different cell type is expected
due to biological variation, e.g. different expression levels
of the CMs. Thus, the quantitative effects of the interac-
tions within the chromatin-signaling network are preserved
suggesting a cell-type independent chromatin-signaling net-
work involved in transcription and its regulation.

From co-localization to interactions

We have shown that CM levels accurately predict HM lev-
els and vice versa. We argued that the prediction accuracy
depends on the expression and biochemical activities of
the available CMs toward the HMs. To identify CM-HM
pairs that are likely to interact with each other, we selected
those CMs that contributed most to the prediction of an
HM level. The most straightforward approach is to select
those CM-HM pairs that show the highest pair-wise cor-
relation. This has been done in recent work by clustering
HMs and CMs into correlated subgroups based on their co-
occupancy patterns (11).

There are groups of HMs and CMs that exhibit very high
pairwise correlation (Supplementary Figure S2), suggest-
ing that they are functionally related. However, within these
groups no internal structure is visible, rendering an iden-
tification of interactions between the group members dif-
ficult. As CMs and HMs constitute a chromatin-signaling
network, this high correlation is expected due to direct in-
teractions between its components. However, high correla-
tions could also be induced by other factors connecting the
respective CM and HM. In general, the identity of these ad-
ditional factors is not known, but we can account for those
factors that are present in the data set. Thus, we want to re-
cover interactions between CMs and HMs that cannot be
‘explained away’ by other variables in the data set.

We recovered these interactions by applying a two-step
procedure (see Materials and Methods). First, we used a
regularized regression technique called ‘Elastic Net’, where
the CMs are used to predict HMs, to select only CMs that
are informative for the prediction of a HM. Moreover, in
case of groups of strongly correlated CMs the members of
these groups tend to remain all in the model or are removed
together (14). This approach accounts for possible interac-
tions induced by correlations within the CMs but does not
take into account correlations between the HMs. This in-
dicates that highly correlated HMs might be predicted by
similar sets of CMs, while only certain CMs actually in-

teract with specific HMs. Second, to remedy this situation
we used a technique called ‘SPCN’ (15), where the pairwise
rank correlation between a CM and a HM is conditioned
on all other variables in the data set. This method takes into
account the correlation structure of both, CMs and HMs,
and is conservative in proposing interactions. As a conse-
quence, in groups of strongly correlated CMs and/or HMs,
interactions may be explained away by individual members
of the group (15). Thus, in the SPCN framework an iden-
tified interaction is likely to represent a direct interaction
in the sense that it cannot be explained by other variables
in the data set. However, the failure to recover an interac-
tion does not imply the absence of a biologically meaning-
ful interaction. Within the SPCN framework some interac-
tions between CMs and HMs arise from logical dependen-
cies induced by sharing a common target. Thus, to recover
interactions, we establish first the necessary condition that a
CM is consistently highly predictive for an HM level by the
Elastic Net approach and in a second step we prune those
interactions that may be induced by correlations between
the HMs using the SPCN approach. Thus, we focus only
on interactions that are recovered by both methods. These
interactions may originate from a direct function of the CM
in setting, erasing or binding the HM but also from indirect
interactions via unobserved CMs.

Distinct sets of CMs associate with each HM

In the Elastic Net network each HM is linked to a different
set of CMs indicating the different specificities of the CMs
toward the individual HMs (Supplementary Figure S3A).
The densest part of the network connects several CMs to
the HMs H3K4me3, H3K9ac, H3K27ac and H3K79me2.
The effect of the SPCN framework becomes most appar-
ent on this dense cluster (compare Supplementary Figure
S3A and B) where most of the interactions are resolved. It
is important to note that the lack of a predicted interaction
by the SPCN is not sufficient evidence to prove the absence
of a biological relevant interaction. However, an interaction
recovered by both approaches is likely to represent a true in-
teraction between the CM and the HM.

The chromatin-signaling network recovers biologically mean-
ingful interactions

Many of the interactions identified by both Elastic Net and
SPCN (Figure 3) are supported by published experimental
evidence (Supplementary Note S1 and Supplementary Ta-
ble S2), strengthening our confidence in the recovered inter-
actions. For example, H3K27me3 has a positive interaction
with members of the Polycomb Repressive Complex (PRC)
1 (CBX2 and CBX8; (19,20)) and members of the PRC2
(EZH2 and SUZ12 (20)), as well as a negative interaction
with Pol II phosphorylated at serine 5 (RNAPIIS5P).

The interaction between H3K27me3 and EZH2 is direct,
because EZH2 sets H3K27me3 (21–24). The interaction be-
tween H3K27me3 and SUZ12 may be direct, because it can-
not be ‘explained away’ by EZH2. However, EED which
forms a trimeric complex together with SUZ12 and EZH2
binds H3K27me3 directly (25), and most likely explains the
interaction between H3K27me3 and SUZ12 (26). The in-
teraction between the PRC1 components CBX2 and CBX8
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Figure 3. Chromatin-signalling network. Graphical representation of the
interactions between CMs (circles) and HMs (squares). Shown are the in-
teractions recovered both by the Elastic Net and SPCN approach. Red
lines indicate positive and blue lines negative interactions. The continu-
ous lines indicate interactions with supporting evidence in the literature,
while the dashed lines indicate interactions without supporting evidence.
The stars indicate the two interactions confirmed in this study.

and H3K27me3 is direct, because CBX2 and CBX8 bind to
H3K27me3 (23).

A negative interaction connects RNAPIIS5P and
H3K27me3 in our network. The serine 5 phosphorylation
of Pol II is mediated by the pre-initiation complex factor
TFIIH (27–30) and is present in the initiating and the
elongating form of Pol II (31). A role of H3K27me3 is to
repress transcription, which is accompanied by low levels
of initiating and/or elongating Pol II marked by serine 5
phosphorylation, explaining the negative interaction with
RNAPIIS5P in our network.

Using H3K27me3 as an example, these results show that
our approach identifies biological meaningful interactions
between the members of PRCs and H3K27me3. If we did
not have any prior information about the interactions be-
tween H3K27me3 and PRC, we would conclude that mem-
bers of the PRCs are involved in setting and/or reading
H3K27me3 and that high levels of H3K27me3 are incom-
patible with high levels of Pol II phosphorylated at serine
5.

In summary, 19 (58%) of the 33 identified interactions
are supported by experimental evidence as collected from
the literature, showing a direct interaction or involving only
one unobserved, additional protein (Supplementary Note
S1 and Supplementary Table S2). Our predictions comple-
ment the experimental evidence obtained either in vitro or
by using one or few genes as model system. In addition, as
we used ChIP-Seq data the inferred interactions between
CMs and HMs provide evidence for the interactions in vivo
and genome-wide. Finally, we provide testable hypotheses
regarding novel interactions, which may be instrumental to
define chromatin signaling and its impact on transcription.

Verification of two predicted interactions links H4K20me1 to
Polycomb-mediated repression

Two predicted interactions involve the HM H4K20me1 and
CBX2 and EZH2, which are components of PRC1 and 2, re-
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H4K20me1. 10% input was loaded. (B) Model of the role of H4K20me1 in
the maintenance of Polycomb-mediated repression through the cell-cycle.
During the G1-phase PRCs bind to H3K27me3 (indicated by three red cir-
cles) on two adjacent nucleosomes. During S-phase one of the two nucleo-
somes is replaced by a new one, which acquires H4K20me1 (indicated by
a single red circle). After replication PRCs bind to H3K27me3 on the old
nucleosome (in blue) and H4K20me1 on the new (in green), possibly via a
yet unknown factor (indicated by the violet circle with the question mark).
In M-phase, serine 28 gets phosphorylated (indicated by a yellow circle),
which prevents PRCs from binding. PRCs are maintained on chromatin by
their interaction with H4K20me1.

spectively. In both cases the interaction is positive suggest-
ing that CBX2 and EZH2 are involved in setting, stabilizing
and/or reading H4K20me1.

Given the biochemical properties of CBX2 and EZH2,
a role in setting or stabilizing H4K20me1 seems unlikely.
However, CBX2 and EZH2 may directly or indirectly bind
to H4K20me1. To test the latter possibility, we performed
an IP against H4K20me1 and probed for the presence of
CBX2 and EZH2 (Figure 4A). The presence of a positive
signal of CBX2 and EZH2 in the H4K20me1 IP and the
absence in the control IgG IP suggests that both proteins in-
teract with H4K20me1. Our results are in line with the idea
that H4K20me1 is linked to Polycomb-mediated repression
by interacting with PRCs 1 and 2.

DISCUSSION

Taken together, we propose a novel computational ap-
proach to enrich for potential direct interactions linking
CMs and HMs within a chromatin-signaling network. We
have applied this approach to the most comprehensive set
of CMs and HMs in human cells and identified interac-
tions between the CMs and HMs. Furthermore, we have
demonstrated that at least two of the predicted but yet un-
known interactions can be verified by experimental means.
These verified interactions provide an unexplored link be-
tween Polycomb-mediated repression and H4K20me1.

Analyzing the pairwise correlation patterns between the
levels of CMs and HMs identifies groups of CMs and
HMs, which are likely to constitute the building blocks of
a chromatin-signaling network. However, unraveling spe-
cific interactions between the group members by focusing
only on the pairwise correlations is difficult. This difficulty
arises from the propagation of correlations along the di-
rect interactions of the network components. For example,
H3K27me3 is set by EZH2, which is in a complex with
SUZ12 and EED, which itself binds to H3K27me3 (Figure
5A). Thus, the H3K27me3 ChIP-Seq levels correlate with
those of EZH2, EED and SUZ12. However, only in the case
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Figure 5. From correlation to direct interactions. (A) Model of the in-
teraction of the PRC2 trimeric complex (EZH2, SUZ12 and EED) with
H3K27me3. The blue lines indicate protein-protein interactions. The red
arrows indicate direct causal interactions, with EZH2 setting H3K27me3
and EED reading H3K27me3. The orange double-headed arrow indicates
a correlation between SUZ12 and H3K27me3 induced by either EZH2
and/or EED. (B–D) Toy example of the de-correlation action of multi-
variate regression. Modeling of, e.g. H3K27me3 levels by a linear combi-
nation of EZH2, EED and SUZ12 leads to an estimate of the influence of
SUZ12 independent on the influence of EZH2 and EED. This is achieved
by modeling SUZ12 (B) and H3K27me3 levels (C) by a linear combina-
tion of EZH2 and EED. The predictions of these models are subtracted
from the actual SUZ12 and H3K27me3 levels (residuals, depicted by blue
(SUZ12) and red (H3K27me3) vertical lines). The residuals of SUZ12 af-
ter incorporating the information of EZH2 and EED are used to predict
the corresponding residuals of H3K27me3 (D), which in this case fails be-
cause there is no information of SUZ12 on H3K27me3 left after consider-
ing EZH2 and EED levels.

of EZH2 and EED this is due to a direct interaction with
H3K27me3. To remedy such a situation, in our example we
need to ask how much more information SUZ12 provides
on H3K27me3 given the information provided already by
EZH2 and EED. We achieve this by modeling H3K27me3
levels as a weighted linear combination of EZH2, EED and
SUZ12 levels. Here, the correlations between EZH2, EED
and SUZ12 are taken into account, such that we obtain
a weight for SUZ12, which corresponds to the remaining
information that SUZ12 has on H3K27me3 after the in-
formation of EZH2 and EED on SUZ12 (Figure 5B) and
H3K27me3 (Figure 5C) has been subtracted (Figure 5D).

We use this mathematical framework to explain away in-
direct interactions and thus to obtain the most direct in-
teractions given the data. This implies that the uncovered
interactions may change if additional information is added.
For example, we had only data for H3K27me3, EZH2 and
SUZ12, but lacked data for EED. Our analysis uncovers an
interaction between H3K27me3 and EZH2, which has been
shown to set H3K27me3 (21–24). We also identified an in-
teraction between H3K27me3 and SUZ12. The latter inter-
action is independent of EZH2, but may be dependent on
the unobserved EED, such that the addition of EED to the

data set will remove the indirect interaction between SUZ12
and H3K27me3.

Within this mathematical framework, we have shown that
HM levels are accurately predicted by CM levels and vice
versa (Figure 2), suggesting a close relationship between
CMs and HMs. Given the high predictive power, we are
confident to take the weights of the Elastic Net as evidence
for an interaction between a HM and a CM. By combining
Elastic Net and SPCN we further eliminated indirect inter-
actions moving closer toward a mechanistic understanding
of the interactions between HMs and CMs (Figure 3).

These interactions should not be confused with causal in-
teractions. Inference of causality from data requires pertur-
bation experiments as discussed extensively in the literature
(32). In our setting such experiments are notoriously diffi-
cult to perform, because perturbations of CMs usually ei-
ther lead to pleiotropic effects, including cell death (33), or
are buffered by redundant mechanisms (34,35). Addition-
ally, manipulation of the histones, i.e. single amino acid sub-
stitutions, is not feasible in most organisms except for yeast
(36) and Drosophila (37,38).

Our analysis predicted many interactions between CMs
and HMs, of which many are supported by the literature
(Supplementary Note S1 and Supplementary Table S2).
Others provide novel hypotheses about yet unknown in-
teractions between CMs and HMs, which are amenable
to experimental verification. To demonstrate this, we vali-
dated two interactions involving the HM H4K20me1 and
the CMs EZH2 and CBX2 by co-IP (Figure 4A). These re-
sults link H4K20me1 to Polycomb-mediated repression by
PRCs 1 and 2, which may form a mechanistic basis for the
maintenance of Polycomb-repression through the cell cycle.

The progression of cells through the cell cycle consti-
tutes two challenges for the maintenance of Polycomb-
mediated repression: (i) During DNA replication old and
newly synthesized nucleosomes are randomly distributed
to the daughter strands (39). This leads to an effective
dilution of H3K27me3-bearing nucleosomes by half. (ii)
During mitosis HMs, chromatin composition and structure
change dramatically, rendering the proper transmission of
H3K27me3 difficult.

H4K20me1 is tightly regulated during the cell cycle. It
starts accumulating during S-phase and attains high lev-
els during mitosis (40). Given this pattern, H4K20me1 may
play an important role in maintaining PRCs at their target
sites throughout the replicative and mitotic challenges by
recruiting PRCs 1 and 2 to regions with old H3K27me3-
and new H4K20me1-bearing nucleosomes (Figure 4B).

Taken together, we provide a chromatin-signaling net-
work in K562 cells that links CMs to specific HMs. Our
approach aims at high specificity and sacrifices sensitivity
leading to high-confidence interactions. We verified two yet
unknown interactions, which gives rise to novel biological
insights about the interplay between Polycomb-mediated re-
pression and H4K20me1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gku1234/-/DC1
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38. Günesdogan,U., Jäckle,H. and Herzig,A. (2010) A genetic system to
assess in vivo the functions of histones and histone modifications in
higher eukaryotes. EMBO Rep., 11, 772–776.

39. Jackson,V. and Chalkley,R. (1985) Histone segregation on replicating
chromatin. Biochemistry, 24, 6930–6938.

40. Pesavento,J.J., Yang,H., Kelleher,N.L. and Mizzen,C.A. (2008)
Certain and progressive methylation of histone H4 at lysine 20 during
the cell cycle. Mol. Cell. Biol., 28, 468–486.

http://www.R-project.org/

