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Abstract: Developing crop varieties with combined salinity and waterlogging tolerance is
essential for sustainable agriculture and food security in regions affected by these stresses.
This process requires an efficient method to rapidly and accurately assess the tolerance
of multiple genotypes to these stresses. Our study examined the use of a pot trial in
combination with the assessment of multiple traits to assess the tolerance of 100 wheat
(Triticum aestivum L.) genotypes sourced from around the world to these combined stresses.
The stresses were imposed on the plants using 100 mM NaCl and by submerging the
root systems of the plants in their bathing solutions. The data gathered were subjected
to principal component analysis (PCA), and an integrated score (IS) for each genotype
was calculated based on multiple morpho-physiological traits; the score was used to
rank the genotypes with respect to tolerance or susceptibility. There were significant
differences among the 100 wheat genotypes in terms of the relative reductions in their
growth parameters and chlorophyll contents, suggesting a rich, genetic diversity. To
assess the accuracy of this methodology and to gain insight into the causes of tolerance or
susceptibility, the five most tolerant (Misr4 (W85), Corack (W41), Kzyl-Sark (W94), Hofed
(W57), BAW-1157 (W14)), and two least tolerant (Livingstong (W60) and Sunvale (W73))
genotypes were selected based on their IS and PCA analysis. These genotypes were then
grown hydroponically with and without salinity stress. The data from this second trial
were again subjected to PCA, and their IS were calculated; there was reasonable agreement
in the ranking of the genotypes between the two trials. The most tolerant genotype (W85;
Misr4 from Egypt) and most susceptible genotype (W73; Sunvale from Australia) were then
examined in further detail in a third trial. Plants of Misr4 (W85) had lower Na+/K+ ratios,
higher superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase activities,
and higher glutathione concentrations. As a result, plants of Misr4 (W85) had lower
concentrations of reactive oxygen species (H2O2 and O2

•−) and malondialdehyde than
those of Sunvale (W73). This study offers an efficient methodology for the assessment
of multiple sources of germplasm for stress tolerance. It has also identified germplasm
that can be used for future breeding work and for further research on the mechanisms of
tolerance and susceptibility to combined salinity and waterlogging stresses.
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1. Introduction
The simultaneous occurrence of stresses due to salinity and waterlogging is more

detrimental to crop growth and development than these stresses applied singly [1,2], and
increased salinity and waterlogging in coastal areas is occurring due to rises in sea levels as
a result of climate change [3]. Globally, salt-affected areas cover around one billion hectares,
which is approximately 25–30% of all irrigated lands [4], and more than 77 million ha of
land is at risk from soil salinization [5]. Waterlogging also affects a large portion of the
world, negatively impacting approximately 10–12% of the global land area [6], and has
been reported worldwide in regions such as Egypt and Saudi Arabia [7], in the mid-lower
reaches of the Yangtze River in China [8], and in the Indo-Gangetic Plain in India [9].
Waterlogging is an issue, as it decreases the air available in the soil, resulting in hypoxia,
which reduces plant growth [10]. Together, salinity and waterlogging are estimated to
affect over 80 million ha [11]. These two stresses are often interrelated, as waterlogging
can lead to land salinization by bringing salts to the surface [12]. In many regions of
the world, such as Egypt, Australia, the USA, Pakistan, India, Iran, and Thailand, these
two environmental stresses coexist [12]. Consequently, various plant species experience
greater reductions in growth in saline-waterlogged environments compared with saline or
waterlogged conditions alone [1,12,13]. While the physiological and molecular mechanisms
of plant responses to individual environmental restrictions have been extensively studied,
there is a paucity of research addressing the putative mechanisms that confer tolerance to
combined stresses in plants [14].

Salinity stress can hinder the ability of plant root cells to absorb water from the soil
and also induces oxidative stress due to the production of excess reactive oxygen species
(ROS) [15], ion toxicities [16], water scarcity [17], nutritional imbalances, and alterations
in metabolic processes that slow the rate of photosynthesis [18]. In addition, salinity
causes the oxidation of proteins, alterations in DNA sequences [19], and strand breaks
and crosslinks [20]. These stresses cause cell death, thereby impairing growth and plant
development [21,22]. Reactive oxygen species consist of superoxide ions (O2

•−), hydrogen
peroxide (H2O2), hydroxyl radicals (OH•), and singlet oxygen (1O2) [7]. Plants alter their
enzymatic and non-enzymatic antioxidant systems to fight oxidative stresses and have
developed internal resistance mechanisms to mitigate the harmful effects of ROS and
are highly redox-buffered due to water-soluble antioxidants such as glutathione [23] and
ascorbate [24]. Salt-tolerant plants activate several enzymes to reduce ROS concentrations.
Among these, superoxide dismutase (SOD) [25], peroxidase (POD) [24], catalase (CAT) [26],
and ascorbate peroxidase (APX) [27] are the most important. Malondialdehyde (MDA) is
widely recognized as a byproduct of membrane lipid peroxidation caused by ROS [28,29],
and numerous studies have utilized MDA levels together with antioxidant enzyme activities
as physiological indicators of stress tolerance [28,30,31]. In addition, saline-waterlogged
environments disrupt energy-dependent ion discrimination at the root surface, leading to
either reduced exclusion or increased uptake of Na+ [32], which affects Na+-to-K+ ratios;
these ratios have also been used as indicators of stress tolerance.

Salt stress is responsible for about 60% of crop production losses [33]. Annually, an es-
timated 10 to 15 million ha of wheat cultivation is affected by heavy rainfall and consequent
waterlogging worldwide that results in yield losses of around 20–50% [34]. Wheat (Triticum
aestivum L.) is the most commonly cultivated cereal crop [35] but is well known for its
sensitivity to salinity and waterlogging [36,37]. Providing salt- and waterlogging-tolerant
varieties that are better adapted to regionally prevailing abiotic stresses is an excellent
way to ensure successful crop growth to meet the grain production needs of the increasing
human population [38]. Unfortunately, the complexity of these conditions and a lack of
appropriate genetic resources have impeded the development of tolerant cultivars.
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Finding the best genetic donors that can be used in the development of cultivars tolerant
of combined salt and waterlogging stresses is the first and most important step in developing
new cultivars, and many morphological and physiological traits have been assessed to identify
tolerant genotypes [28]. Several studies have successfully evaluated the ability of wheat to
withstand salt stress using multivariate analysis despite the fact that many agronomic traits
have low heritability [39,40]. The use of an integrated score (IS) consisting of multiple
combined traits together with principal component analysis (PCA) can improve the effective
evaluation of potentially tolerant genotypes. Previous studies have shown that crop cultivars
have significant genetic variability in their ability to withstand stresses, with features exhibited
by both seedling shoots and roots [40–42]. Testing genotypes for salt and waterlogging
tolerance early in growth has the potential to save time and resources because most crops are
susceptible to combined stresses during this phase. Considering the above, our study aimed to
evaluate the ability of 100 wheat genotypes to tolerate combined salt and waterlogging stresses
during their seedling stage in order to find novel germplasm resources that are tolerant of
these combined stresses. The study also sought to use genotypes selected using IS to gain
a better understanding of their physio-biochemical characteristics, including Na+ and K+

accumulation, chlorophyll contents, cell membrane stability, and antioxidant enzyme activities
that contribute to tolerance and susceptibility to these combined stresses. This knowledge will
facilitate wheat breeding programs leading to the development of cultivars with enhanced
resilience to combined stresses.

2. Results
2.1. Genotypic Differences in Response to Combined Salinity and Waterlogging Stresses

The impact of the combined salinity (100 mM NaCl) and waterlogging (S + W) treatment
on the growth of the 100 wheat genotypes and CM72 is shown in Table 1 and Figure 1A. Sig-
nificant differences due to treatment were found among the genotypes in chlorophyll contents,
leaf numbers (LN), plant heights (PH), and shoot fresh weights (SFW) and dry weights (SDW).
These traits were reduced by 14.5%, 7.4%, 4.9%, 21.7%, and 23.1%, respectively, compared with
the controls. For each trait, CM72 was placed at the high end of the distributions, and for SFW
and integrated score (IS), it was higher than any of the wheat accessions; for the other traits,
there were wheat accessions that exceeded the values for CM72. With respect to variation
between genotypes, the coefficient of variation (CV) was highest for LN and PH, intermediate
for the two measures of mass accumulation, and lowest for the IS and chlorophyll contents.
The Shannon-Weaver diversity index was similar for chlorophyll contents, PH, SDW, and IS
(2.06–2.04) but was lower (1.93–1.94) for LN and SFW.

Table 1. Relative effects of combined salt and waterlogging stresses on the agronomic traits of the
100 wheat genotypes and CM72 used in the preliminary screen after 15 days of treatment; relative
values expressed as percentages of controls.

Reduction
Percentage SPAD Value Leaves per Plant Plant Height Shoot FW Shoot DW Integrated Score a

Maximum −2.21 4.12 7.49 1.40 6.74 −0.22
Minimum −32.95 −18.87 −18.24 −43.82 −49.89 −26.32
Mean −14.45 −7.35 −4.93 −21.65 −23.08 −14.30
CM72 −10.87 −1.75 2.82 8.33 4.89 1.28
CV 24.31 42.15 44.52 36.27 33.98 24.94
Diversity index 2.05 1.93 2.06 1.94 2.04 2.05
Between
genotypes ** ** ** ** ** **

a Integrated score = [(SPAD value × 0.2) + (LN × 0.2) + (PH × 0.2) + (SFW × 0.2) + (SDW × 0.2)]. The coefficient
of variation (CV) and diversity index values were calculated after arcsine transformation of percentage data.
** = significance at p ≤ 0.01. For each genotype, three replicates were used (each replicate contained
four seedlings).
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Figure 1. Differences in growth traits and integrated scores among 100 wheat varieties and CM72
(comparator barley genotype) subjected to combined 100 mM NaCl and waterlogging stresses.
(A) Means of the relative differences (treatment/control) in various growth parameters (a–f) of
five salinity/waterlogging-associated traits and their integrated score for each of the wheat genotypes
and CM72 subjected to combined salt and waterlogging stresses. The orange symbol represents CM72.
The vertical bars (“|”) represent LSD0.05 values between varieties. (B) Biplot of principal component
analysis of individuals and explanatory variables based on data from the morpho-physiological
traits of the 100 wheat genotypes and CM72 grown under combined salt and waterlogging stresses
expressed as the percentage of control (%). The data are from the preliminary pot selection experi-
ment and were measured 15 days after treatment. Data are presented as means of three biological
replicates (each replicate contained four seedlings). Abbreviations: SPAD value, chlorophyll content;
LN, number of leaves per plant; PH, plant height; SFW, shoot fresh weight; SDW, shoot dry weight;
IS, integrated score. Green, red, and orange symbols relate the selected tolerant and sensitive wheat
genotypes and CM72, respectively, based on their integrated scores.

2.2. Ranking of Wheat Genotypes for Combined Salt and Waterlogging Tolerance

Based on their IS rank, the following seven wheat genotypes were selected for further
evaluation. The five most tolerant genotypes (highest IS) were Kzyl-Sark (W94), Misr4
(W85), Hofed (W57), BAW-1157 (W14), and Corack (W41), with IS values of −0.22, −2.66,



Plants 2025, 14, 1268 5 of 19

−2.86, −3.88, and −4.65%, respectively. The most sensitive genotypes (lowest IS) were
Livingstong (W73) and Sunvale (W60), with IS values of −26.32 and −25.58, respectively
(Table S1). Principal component analysis (PCA) was used to aid the characterization
and evaluation of these seven selected genotypes (Figure 1B). The first (PC1) and second
(PC2) principal components explained 55.5% and 16.1% of the total variation among the
genotypes, and the eigenvalues for all principal components are presented in Table S2.
The five tolerant genotypes and CM72 are on the right of this ordination, and the two
susceptible genotypes are on the left; the separation along the abscissa was mainly driven
by PC1, and the explanatory variables, IS, SFW, SDW, and PH, contributed most to the
separation along the abscissa. This separation confirms the ranking of the genotypes using
the IS alone, and the seven selected wheat genotypes were used for further evaluation of
their salt tolerance.

2.3. Hydroponic Salinity Validation Experiment

In this experiment, the two sensitive and five tolerant wheat genotypes and CM72
were used to validate the accuracy of the screening under saline, hydroponic conditions;
in this experiment, 10 morpho-physiological traits were measured 10 days after treatment
(DAT). The impact of 100 mM NaCl on the measured traits is presented in Figures 2A and S1
and Table S3. For the data as a whole, there were no significant differences among the eight
genotypes due to the salinity treatment in RL and in shoot and root relative water contents
(RWC); significant differences were found for all other traits. The IS of the tolerant wheat
varieties were all larger than those of the sensitive ones, with CM72 being intermediate.
Between the two sensitive genotypes, Sunvale (W73) was more affected by the salinity
treatment than Livingstong (W60), displayed more severe symptoms (wilting and lodging),
and had greater reductions in all traits except RL, root fresh weight (RFW), and root dry
weight (RDW). The IS of the tolerant types ranked them as follows: Misr4 (W85) > Corack
(W41) > Kzyl-Sark (W94) > Hofed (W57) > BAW-1157 (W14); the ranking is reflected in
the magnitude of individual components of the IS. For most traits, the salinity treatment
reduced the magnitude of the trait. However, for many of the tolerant wheat genotypes,
RFW, RDW, and root RWC were increased in some tolerant genotypes due to salinity.
For Misr4 (W85), there was also an increase in SDW in the salt-treated plants compared
with the controls. For this genotype, no visual symptoms of salt stress appeared in the
salt-treated plants.

The morpho-physiological characteristics of the seedlings were analyzed using PCA.
The data from plants grown under control conditions showed little clustering with respect
to salt tolerance; genotypes Corack (W41) and Hofed (W57) were categorized among the
sensitive genotypes (Figure 2B). In contrast, the ordination of the data obtained under
salt stress conditions clearly shows the separation of the genotypes with respect to tol-
erance/sensitivity (Figure 2C). The sensitive types are located to the extreme left of the
ordination, close to the abscissa. The tolerant types are located close to the ordinate or
to the right of the ordinate and, with the exception of Kzyl-Sark (W94), are above the
abscissa. CM72 is towards the bottom of the lower right quadrant. Cluster analysis of the
explanatory variables (Figure 2D) showed that chlorophyll content and RL were distinct
from the other characters; shoot and root RWC were located close together, as were the
two measures of biomass production; the remaining five variables all formed another group.
Hierarchical cluster analysis performed on the experimental data categorized the chosen
genotypes into three clusters (Figure 2E). The five wheat genotypes exhibiting tolerance
clearly grouped into Cluster 1, CM72 formed Cluster 2, and the two sensitive genotypes
constituted Cluster 3.
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Figure 2. Phenotypes, principal component analysis, and hierarchical cluster analysis of the seedling
in the hydroponic validation experiment of the five tolerant and two sensitive wheat genotypes and
CM72 treated with and without the addition of 100 mM NaCl assessed 10 DAT. (A) Phenotypes
of the seedlings of the five tolerant and two sensitive wheat genotypes and CM72. (B,C) Principal
component analysis of data from plants grown under control (B) and salt stress (C) conditions. Green,
red, and orange symbols represent tolerant and sensitive wheat genotypes and CM72, respectively.
(D) Hierarchical cluster analysis of eight explanatory variables derived using the relative values
of the morpho-physiological traits of the accessions. (E) Hierarchical cluster analysis of the seven
selected genotypes and CM72. Three replicates were used (each replicate contained five seedlings).
Abbreviations: SPAD, chlorophyll contents; LN, number of leaves per plant; PH, plant heights;
RL, root lengths; SFW, shoot fresh weights; RFW, root fresh weights; SDW, shoot dry weights; RDW,
root dry weights; RWC, relative water contents; IS, integrated scores.

2.4. Further Evaluation of Misr4 (W85) and Sunvale (W73)

The results of the hydroponic selection experiment identified Sunvale (W73) as the
most salt-sensitive wheat genotype and Misr4 (W85) as the most tolerant; the data relating
to the effects of salt stress on their morpho-physiological characters are presented in Figure 3
and Table S4. Most surprising were the effects on chlorophyll contents, root and shoot
FW, and root RWC (Figure 3B,G,I,K). For these characteristics, salt treatment tended to
increase their magnitude in Misr4 (W85), reduce them in Sunvale (W73), and have little
effect on CM72. The effects of the salt treatment on PH, RL, SFW, SDW and shoot RWC
(Figure 3D–H,J) all had a similar pattern. The magnitudes of these characters tended to be
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lower due to the salt treatment in both the wheat genotypes, with the effects of salt being
greater in Sunvale (W73) than in Misr4 (W85); the salt treatment also tended to reduce the
magnitude of these characters in CM72, although to a lesser extent than for Sunvale (W73).
Leaf numbers were little affected by salt treatment in any of the three genotypes.
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Figure 3. Morpho-physiological characteristics of the wheat genotypes Misr4 (W85)-tolerant, Sunvale
(W73)-sensitive, and CM72. (A) seedlings phenotypes; (B–K) chlorophyll contents (SPAD values),
leaves per plant, plant height, root length, shoot fresh weight, root fresh weight, shoot dry weight,
root dry weight, shoot RWC and root RWC, respectively. The data were collected eight days after
treatment with and without 100 mM NaCl. Values are means of three replicates (each replicate
contained 10 seedlings), and the error bars are standard errors. Means annotated with the same letter
are not statistically significantly different from each other according to least significant difference
tests at p ≤ 0.05.

2.4.1. Accumulation of Na+ and K+

The contents of Na+ in both leaves and roots are shown in Figure 4. Salt treatment
increased Na+ concentrations in both organs, with the increases being greater in Sunvale
(W73) than in Misr4 (W85) and in the roots compared with the shoots. With respect to
K+, under control conditions, concentrations were slightly higher in Misr4 (W85) than
in Sunvale (W73). Following treatment with NaCl, however, the K+ concentration was
reduced in both genotypes and in both tissues. These changes in concentrations resulted in
substantially higher Na+/K+ in the roots compared with the shoots and in Sunvale (W73)
compared with Misr4 (W85).
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Figure 4. Leaf (A–C) and root (D–F) concentrations of Na+, K+, and the Na+/K+ ratio under control
and salinity stress in Misr4 (W85; tolerant) and Sunvale (W73; sensitive) eight days after treatment
with and without 100 mM NaCl. The data are means of three replicates, and the error bars are
standard errors. Means annotated with the same letter are not significantly different from each other
according to LSD tests at p ≤ 0.05.

2.4.2. Photosynthetic Pigments

All assessments of photosynthetic pigments showed the same patterns in their concen-
trations (Figure 5), irrespective of genotype. Under control conditions, the concentrations
of all pigments were higher in Misr4 (W85) than in Sunvale (W73). Salt treatment reduced
the concentrations of all pigments, with the reductions being greater in Sunvale (W73) than
in Misr4 (W85).
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Figure 5. Effect of salinity stress on the leaf pigment contents of Misr4 (W85) and Sunvale (W73)
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three replicates, and the error bars are standard errors. Means annotated with the same letter are not
significantly different from each other according to LSD tests at p ≤ 0.05.
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2.4.3. Reactive Oxygen Species, Malondialdehyde and Glutathione Concentrations, and
Antioxidant Enzyme Activities

As with the photosynthetic pigments, the concentrations or activities of ROS-associated
compounds and enzymes (Figure 6) each showed similar patterns with respect to genotype
and treatment. Under control conditions, all concentrations and activities were similar in
the two genotypes or marginally higher in Sunvale (W73) than in Misr4 (W85). However,
under treatment conditions, there were increases in all ROS-associated compounds and
enzymes. Notably, concentrations of H2O2 and O2

•− in Sunvale (W73) were more than
double those in Misr4 (W85). The activities of all the enzymes measured were higher
in Misr4 (W85) than in Sunvale (W73), particularly for SOD and CAT. In addition, GSH
concentrations approximately doubled in Misr4 (W85), whereas those in Sunvale (W73)
were little affected by the treatment.
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(CAT), (G) ascorbate peroxidase (APX), and (H) glutathione (GSH). The data are means of three
replicates, and the error bars are standard errors. Means annotated with the same letter are not
significantly different from each other according to LSD tests at p ≤ 0.05.

3. Discussion
The combination of salinity and waterlogging has severe adverse effects on the growth

and survival of wheat [43–45], and the combined effects of these stresses are more detrimen-
tal than either stress imposed alone [1,2]. It is common for two or more abiotic stresses to
have a greater negative effect on plants than when the stresses are applied individually [46].
Breeding for increased tolerance to these combined stresses is a key strategy to overcome
these problems, and to facilitate breeding, a method for screening large numbers of geno-
types is needed. Cereal crops are considered to be most sensitive to salt stress during both
the vegetative and early stages of reproduction [47], and Ali et al. [48] showed that the
tolerance of early-stage wheat seedlings correlates well with adult plant tolerance. Hence,
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the early growth stage is apposite for selecting salt- and waterlogging-tolerant genotypes.
As a result, it is possible to quickly and efficiently evaluate large numbers of genotypes at
this growth stage in the laboratory, thereby reducing the amount of work required in the
field and the costs associated with this process [48]. Hence, in the preliminary screen of our
study, young seedlings were used to quickly assess the tolerance of 100 wheat genotypes;
this was combined with the measurement of multiple morpho-physiological characters to
assess and rank the genotypes with regard to tolerance.

The large coefficients of variation of each of the traits measured in the preliminary
screen suggest a rich genetic diversity exists among these 100 genotypes, and the distri-
butions of these traits show their polygenic nature [49,50]. There was good agreement
between the two techniques (ranking by IS and PCA) used in our study to evaluate the
degree of tolerance or susceptibility of each genotype, and using these techniques, the five
most tolerant and two most susceptible genotypes were chosen. The validation experiment
and, to some extent, the final assessment of Misr4 (W85) and Sunvale (W73) confirmed the
rankings obtained from the preliminary screen.

PCA is a multivariate method of assessment for inspecting large and complex datasets,
and a biplot of the results may be used to determine variables that can partition data, based
on their homogeneity and uniqueness, into groups and subgroups; hence, PCA can be used
to aid the selection of parental material for breeding programs [48]. Our study’s PCA, based
on relative values, identified distinct groups of germplasm accessions that were associated
with either tolerance or sensitivity to the combined stresses. PCA has been utilized by
numerous studies to identify grouping and diversity in wheat, both in the field [51] and at
the seedling stage [52,53]. In addition, PCA can be used to aid the preservation of a wide
range of genetic variability for future wheat breeding and production.

In the preliminary screen, the wheat genotypes differed greatly in growth traits when
exposed to the combined stress, indicating the existence of useful genetic variation among
genotypes. These differences in response are likely attributed to reduced stomatal conduc-
tance, suppression of metabolic processes, and heightened ROS production, which leads to
oxygen-induced cellular damage [54]. However, some genotypes responded positively to
the stress conditions, displaying greater plant heights, leaf growth, and biomass accumula-
tion than the control group. Many studies, including those on important crop species, have
also found similar increases in biomass production at certain Na+ concentrations [55,56],
and increases have been reported for wheat [42,57,58]. The growth stimulation by Na+ in
specific genotypes reported here and in other studies may be due to different genotypes
having different Na+ to K+ ratios at which growth stimulation occurs. Sodium is classified
as a functional nutrient [59] and, to some extent, is able to replace K, act as an osmoticium
for cellular expansion, accompany cations during long-distance transport [59] and has a
role in the regeneration of phosphoenolpyruvate [60]. The differences among the genotypes
in their reaction to Na+ warrant further investigation.

The wheat genotypes assessed in the preliminary trial all had lower chlorophyll con-
tents in the stress treatment than under control conditions, and they differed greatly in
chlorophyll contents; many had relative chlorophyll contents greater than CM72. Reduc-
tions in Chl a, Chl b, and total chlorophylls were also found in the third trial, comparing
Misr4 (W85) with Sunvale (W73). These changes are likely attributed to reduced chloro-
phyll biosynthesis and increased chlorophyll degradation; this topic is thoroughly reviewed
by Li et al. [61]. Reduced chlorophyll contents are reported in wheat due to both water-
logging [62,63] and salinity [64,65]. Carotenoid contents were also markedly reduced in
Sunvale (W73) and to a lesser extent in Misr4 (W85), and the reductions in carotenoids
may also be due to lower carotenoid synthesis [66] and increased breakdown [67]. How-
ever, in the second validation trial, chlorophyll contents in four of the selected tolerant
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genotypes, including Misr4 (W85) and one of the two sensitive genotypes, Livingstong
(W60), were increased. A meta-study by Agathokleous et al. [68] comprising 33 species and
20 stress-inducing agents found increases in chlorophyll contents but only at low-stress
levels, and the authors suggest that this hormetic stimulation may pre-condition plants to
future, larger environmental stresses. However, in our study, the reason for the increase in
chlorophyll content in the validation trial but a reduction in the other two trials is unclear,
as the same methodology was employed in trials 2 and 3, the same batches of seed were
used throughout this study, and the plants were grown in the same growth chamber and
are unlikely to be the effect of hormesis.

The inhibition of plant growth due to salinity and waterlogging may result from the
adverse effects of increased Na+ and Cl− levels alongside reduced K+ concentrations [69].
Kotula et al. [70] showed that oxygen shortages due to waterlogging disrupt the energy-
dependent homeostasis of K+ and Na+ ions in barley roots, as energy-dependent ion
discrimination at the root surface is harmed because energy production is lower. This means
that less Na+ is excluded or more salt is absorbed [32,44]; this causes photosynthesis and
shoot growth to slow significantly. The greater reduction in shoot growth compared with
the reduction in the photosynthetic rate in the sensitive genotypes indicates a constraint on
the utilization of photosynthates under combined stresses (Table S2). This could be due to
lower water potentials and/or ionic toxicities that hinder the growth of root cells and, in
turn, decrease overall plant biomass [71]. In the comparison of Misr4 (W85) with Sunvale
(W73), Misr4 (W85) maintained a more normal Na+/K+ ratio than Sunvale (W73). Several
studies have reported links between an ability to maintain, at least to some extent, a good
ionic balance and tolerance to salinity and waterlogging [13,72,73], as found in our study.
The maintenance of shoot Na+/K+ ratios is an important mechanism by which plants cope
with stresses such as salinity and waterlogging [74–76]. When subjected to these stresses,
reductions in growth occur due to increases in the accumulation of Na+ and decreases in the
uptake and translocation of K+, resulting in perturbed Na+/K+ ratios [77–79]. Under the
combination of saline and waterlogged conditions, the control of ion accumulation in the
shoot can be further compromised [32,80]. This leads to additional, significant decreases in
shoot growth [13,44], as energy-dependent ion discrimination at the root surface is reduced
because of lower energy production [32,81]. In addition, Misr4 (W85) might use osmotic
adjustment as an adaptive mechanism to maintain turgor pressure under stress conditions.
An investigation of the association between this mechanism and the tolerance of wheat
genotypes used in our study to the combined stresses may provide markers for use in
breeding programs.

Cellular enzymatic and non-enzymatic antioxidant defense systems play a crucial
role in protecting biological systems from the adverse effects of ROS. In the comparison
of Misr4 (W85) with Sunvale (W73), Misr4 (W85) had higher SOD, POD, CAT, and APX
activities and greater GSH concentrations than Sunvale (W73). As a result, Misr4 (W85) had
lower concentrations of H2O2, O2

•−, and MDA. These results are in agreement with the
studies by Temel and Gozukirmizi [82], Feki et al. [83], Zeeshan et al. [31], and Kononenko
et al. [53], who found that under salt stress, there were progressive increases in all the
above enzymes in wheat plants. SOD catalytically converts O2

•− into H2O2, which is
further catabolized by CAT to prevent oxidative damage. GSH also functions as a crucial
component of the ascorbate-glutathione cycle. This cycle maintains reducing conditions by
keeping the cellular concentration of reduced GSH high and the oxidized form, GSSG, low.
The ease with which these activities and compounds can be measured makes them ideal
candidates for inclusion in multifactorial assays of stress tolerance.
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4. Materials and Methods
4.1. Preliminary Combined Salt and Waterlogging Screen

A pot experiment was conducted in a greenhouse at the Zijingang Campus, Zhejiang
University, Hangzhou, China. A total of 100 wheat genotypes collected from different areas in
the world (Table S5), including five from Egypt, seven from China, 36 from Bangladesh, and
52 from Australia, were used in this preliminary screen. In addition, the barley (Hordeum
vulgare L.) cv. CM72 was grown because it is a salt- and waterlogging-tolerant cultivar [12]; we
used CM72 because there are wheat varieties that are resistant to salinity or waterlogging stress
but not to combined stresses. The soil used in this screen was collected from the university’s
farm (depth 0–300 mm), air-dried, and sieved, and then 450 g aliquots were placed into plastic
pots (height 120 mm, width 80 mm). Each pot was fertilized with 1 L of basal nutrient solution
(BNS) [84]. Seeds were sown directly into each pot one week after the application of the BNS.
Ten days post-emergence, the seedlings were thinned to five uniform plants per pot. Combined
salinity and waterlogging treatments were applied to the seedlings at the 4-leaf stage to form
two treatments: (1) control (non-salinized/waterlogged), in which soils in the pots were kept
moist (60–80% water holding capacity) throughout, and (2) combined NaCl (100 mM) and
waterlogging stress (S + W), in which the pots were placed into large plastic tanks (600 mm
length × 400 mm width × 150 mm height), 24 pots per tank, and the solution levels in the
tanks kept 20 mm above the soil surface to induce waterlogging for 15 days. Salt solutions were
replaced every five days. The experiment was arranged in a randomized complete block design
(RCBD) with three replications.

The chlorophyll contents of the seedlings were measured as SPAD values using a
chlorophyll meter (Minolta Corporation, Ltd., Osaka, Japan) 15 days after treatment (DAT),
according to Wu et al. [85]. Four seedlings were sampled 15 DAT for measurement of the
following parameters: plant height (PH), shoot fresh weight (SFW) and shoot dry weight
(SDW). Subsequently, the seedlings were gently uprooted and thoroughly rinsed with
running tap water. After measuring numbers of leaves per plant (LN), the plants were
separated into roots and shoots; shoot fresh weights (SFW) were measured immediately.
The shoots were then dried at 75 ◦C for ~72 h until they reached constant weights, and
shoot dry weights (SDW) were determined. From these data, an integrated score (IS) was
calculated as follows:

The IS was calculated based on the percentage reduction in growth parameters relative to
controls according to Foysal et al. [86] with some modifications using the following formula:

IS = [(SPAD value × 0.2) + (LN × 0.2) + (PH × 0.2) + (SFW × 0.2) + (SDW × 0.2)]

A less negative IS indicates a smaller negative impact of combined salinity and water-
logging stress and greater tolerance, whereas a more negative IS reflects a stronger negative
impact from combined S + W stress and greater sensitivity. IS was used to determine the
five most tolerant and two most sensitive wheat genotypes. A Shannon-Weaver diversity
index (H’) was determined for each trait using the equation H’ = −Σ(pi × lnpi), where pi
is the relative abundance of individual group of each accession examined and lnpi is the
natural logarithm of the proportion value within each category [87].

4.2. Hydroponic Validation Experiment

Seven wheat genotypes were selected from the preliminary screen and used in a
second experiment, along with CM72. Seeds from each genotype were germinated on filter
papers within Petri dishes and placed in a plant growth chamber maintained at 23/18 ◦C
(day/night) in the darkness for three days, followed by exposure to light for an additional
four days. After this seven-day period, uniform seedlings from each genotype were selected
and placed into foam plates with 105 uniformly distributed holes, one seedling per hole.
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Plastic containers (25 L) were then filled with BNS, on which the trays were floated. The
experiment used three replicates per genotype (each replicate contained seven seedlings).
The solution was continuously aerated and was renewed every five days. The pH of the
solution was adjusted to 5.8 ± 0.2 with HCl or NaOH as required.

At the fourth leaf stage, seedlings were subjected to two treatments: BNS with the
addition of 0 or 100 mM NaCl. Ten days after treatment, chlorophyll content, LN, PH, and
RL were measured from five seedlings. The seedlings were then separated into shoots and
roots to measure shoot and root FW, following which shoot and root DW were measured
as described above. The relative water content (RWC) of both the shoots and roots was
calculated utilizing the formula RWC = (FW − DW)/FW × 100 [88]. To assess and rank the
salt tolerance of the wheat genotypes, an integrated score (IS) was used according to Foysal
et al. [86] with some modifications as follows:

IS = [(SPAD value × 0.1) + (LN × 0.1) + (PH × 0.1) + (RL × 0.1) + (SFW × 0.1) + (RFW × 0.1) +
(SDW × 0.1) + (RDW × 0.1) + (shoot RWC × 0.1) + (root RWC × 0.1)].

Based on IS rank, the genotypes exhibiting the highest tolerance and the greatest
sensitivity to salt were selected and used for the work detailed in Section 4.3.

4.3. Evaluation of Misr4 (W85) and Sunvale (W73)

Wheat genotypes Misr4 (W85) and Sunvale (W73) were subjected to a further hy-
droponic study in a plant growth chamber. The growth and treatments condition were
as in Section 2.2, except that there were three plants per hole. Five days after treatment,
samples of the second leaves were frozen in liquid nitrogen and preserved at −80 ◦C
to measure H2O2, O2

•−, and MDA contents and the activities of SOD, POD, APX, CAT,
and concentrations of GSH. Eight days after treatment, plants were sampled to determine
morphological traits. Ten seedlings from each replicate were harvested and washed with
pure water and dried using tissue paper; chlorophyll contents, LN, PH, RL, SFW, RFW,
SDW, RDW, shoot RWC, and root RWC were measured as described above.

4.3.1. Estimation of Na+ and K+ Concentrations

To measure Na+ and K+ concentrations, eight days after treatment, the dried leaf and
root samples were ground to a powder and digested in 3 mL of nitric acid. The digestion
process involved heating the samples in an aluminum block (Dry ThermoUnit DTU-2CN;
TAITEC, Tokyo, Japan) at 100 ◦C for 2 h, followed by 120 ◦C for 3 h, and finally at 140 ◦C
for 1 h. After digestion, the digests were diluted with deionized water. The concentrations
of Na+ and K+ were determined using inductively coupled plasma-mass spectrometry
(ICP-MS), according to Saeed et al. [89].

4.3.2. Estimation of Photosynthetic Pigments

Samples (0.5 g) of wheat leaves taken five DAT were ground in 8 mL of 80% acetone
(v/v). The homogenates were passed through filter paper, and then the absorbances of
the resulting solutions were measured in a microplate reader at wavelengths of 645 nm
and 663 nm for chlorophyll a and b and at 470 nm for carotenoids [90]. The calculations to
determine concentrations of chlorophyll a, chlorophyll b, and carotenoids were performed
using the formulas provided by [91]:

Chl a (mg g−1 FW) = [(13.95(OD665) − 6.88(OD649)] V/200 × W;

Chl b (mg g−1 FW) = [(24.96(OD649) − 7.32(OD663)] V/200 × W;

and
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Car (mg g−1 FW) = [(1000(OD470) − (2.05(Chl a) − (114.80(Chl b)] V × 245/200 × W.

where Chl a = chlorophyll a, Chl b = chlorophyll b, Car = carotenoids, W refers to shoot
weights (0.5 g), and V refers to acetone volumes (8 mL).

4.3.3. Determination of Reactive Oxygen Species (H2O2 and O2
•−), Lipid Peroxidation,

Antioxidant Enzyme Activities, and Reduced Glutathione

Five days after treatment, fresh, fully expanded second leaves were collected, imme-
diately frozen in liquid nitrogen, and preserved at −80 ◦C. The concentrations of H2O2

and O2
•− were measured according to Elstner and Heupel [92] and Yu et al. [93], respec-

tively. The activities of SOD, POD, APX, CAT, and concentrations of GSH and MDA were
measured with detection kits (Nanjing Jincheng Bioengineering Institute, Nanjing, China)
according to the manufacturer’s instructions.

4.4. Statistical Analysis

Initial processing and analysis of the experimental data were conducted utilizing Excel
2023, following which statistical analyses were performed using Statistix v. 8.1 (Analytical
Software, Tallahassee, FL, USA). The data from the preliminary screen was analyzed using
one-way ANOVA. The least significant differences (LSD) at a significance level of 0.05
were employed to compare the mean values of each characteristic within each genotype.
The data from the remaining experiments were analyzed by 2-way ANOVA. The software
package Origin (Origin Lab 2021, version 9.1) was utilized to graph the results.

5. Conclusions
This study has shown that substantial variation exists in the expression of tolerance

of the combined salinity and waterlogging stress among the genotypes of wheat exam-
ined. The relative tolerance of these genotypes was easily assessed through the use of a
multifactorial, integrated scoring system based on morpho-physiological traits; the use
of seedlings permitted multiple genotypes to be simultaneously evaluated. The applica-
tion of PCA and hierarchical cluster analysis to examine wheat seedlings revealed strong
correlations among many characteristics. These correlations may function as criteria for
identifying wheat germplasm with salt and waterlogging tolerance. By combining the
IS and PCA results, it was determined that the wheat genotypes Kzyl-Sark (W94), Misr4
(W85), Hofed (W57), BAW-1157 (W14), and Corack (W41), exhibited the highest levels of
combined stress tolerance. The most tolerant genotype (W85; Misr4 from Egypt) and most
susceptible genotype (W73; Sunvale from Australia) were assessed in depth. The higher
tolerance of Misr4 (W85) was expressed through better ionic and redox homeostasis that
resulted in higher contents of photosynthetic pigments. The tolerant genotypes identified
can be used directly in breeding programs and for the assessment of further genotypes.
The genotypes identified in our study provide ideal material for further physiological and
molecular studies to determine any unique nature of the response to combined salinity and
waterlogging stresses and how tolerance to this combination is controlled.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants14091268/s1, Figure S1: Effects of salinity stress on the
five tolerant Kzyl-Sark (W94), Misr4 (W85), Hofed (W57), BAW-1157 (W14), and Corack (W41);
two sensitive Livingstong (W60) and Sunvale (W73) genotypes; and CM72 in the hydroponic val-
idation experiment with and without treatment with 100 mM NaCl. The plants were assessed
10 days after treatment, and the data are means ± SE (n = 3). Bars annotated with different let-
ters indicate significant differences between means at p ≤ 0.05 according to least significance tests;
Table S1: Chlorophyll contents (SPAD values), leaves per plant (LN), plant height (PH), shoot fresh
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weight (SFW) and dry weight (SDW), and the integrated score (IS) of CM72 (comparator genotype)
and the selected tolerant (TG) and sensitive (SG) wheat genotypes after 15 days of combined salinity
and waterlogging stresses (S+W) during the preliminary screen; Table S2: Eigenvalues of the correla-
tion matrix of 100 wheat genotypes and CM72 (check genotype) after 15 days of exposure to 100 mM
NaCl during the preliminary pot selection experiment based on relative values expressed as percent-
ages of controls; Table S3: Relative (treatment/control) effects of combined salt and waterlogging
stresses on the agronomic traits of CM72 and the five tolerant (TG) and two susceptible (SG) wheat
genotypes in the hydroponic validation experiment; Table S4: Effect of salinity stress on chlorophyll
contents (SPAD value), leaves per plant, plant height, root length, shoot fresh weight, root fresh
weight, shoot and root biomass, and shoot and root relative water content and the integrated score
of tolerant-genotype Misr4 (W85), sensitive-genotype Sunvale (W73), and CM72 (check genotype)
in the validation experiment after 8 days of 100 mM NaCl expressed as the percentage of control;
Table S5: Serial number, name, and country of origin of the 100 wheat genotypes used in the prelimi-
nary screen.
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