
Circulation Reports  Vol.2,  January  2020

10 IWAKAMI N et al.
Circulation Reports
Circ Rep  2020; 2: 10 – 16
doi: 10.1253/circrep.CR-19-0111

statisticians, but also to clinicians.
What if the evidence-based predictors or prediction 

models are, in fact, useless for real-world patients? How do 
we know whether evidence-based prediction models are 
applicable to patients? For what condition are they appli-
cable? A plethora of prediction models have been proposed, 
especially in cardiovascular medicine,10 and some of them 
are recommended for use in clinical guidelines. It remains 
unclear, however, which model to use in which context, 
and to what extent these models are effective for the target 
patients.11–16

It is traditionally recommended to select models that 
have had successful replication in a variety of cohorts,17 
and follow expert opinions.1 Nevertheless, successful 
replication in other populations does not ensure that the 
model is also effective in the target patients until the ratio-
nale for the model performance is elucidated, because it 
may be that only those studies with successful results are 
reported.

Researchers have explored the determinants of model 
performance since the 1980s,18,19 but empirical evidence is 
still limited.20 Recent methodological advances in systematic 
reviews and meta-analysis have encouraged systematic 
evaluation and quantitative analysis of prediction models, 
which will facilitate studies to explore effective utilization 

T he aim of medicine is the prediction and prevention 
of occurrence or progression of a disease. Clinicians 
classify patients according to diagnosis and severity 

in order to provide best-evidence prevention to reduce risk. 
Accurate prediction is one of the eternal goals of medicine 
and medical research, and is explored by way of identifying 
effective predictors and their optimal combinations. 
Genomic information is currently utilized as predictors, and 
artificial intelligence has been used to optimize the combi-
nation of predictors.

A prediction model is a formal combination of multiple 
predictors from which the risk of a specific endpoint can be 
calculated.1 The endpoint can be either disease presence 
(diagnostic model) or future occurrence of health outcomes 
(prognostic model). The Framingham risk score,2 CHADS2 
score,3 TIMI risk score4,5 (the thrombolysis in myocardial 
infarction), and SYNTAX score6 (the synergy between 
percutaneous coronary intervention with Taxus and cardiac 
surgery) are familiar to every cardiologist. Risk classification 
tools such as the Killip and the Forrester classifications7,8 
are also prediction models in a broad sense. Moreover, all 
medical information collected from patients is meant to be 
predictors and is combined to predict outcomes in evidence-
based medicine, whether or not formulated.9 Therefore, 
prediction models are relevant not only to researchers or 
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the coefficient of predictor “Xi”.
A survival regression model, such as a Cox regression 

model of a time-to-event outcome, is expressed as:

h(t) = h0(t)exp(β1X1+β2X2+β3X3…)

where “h(t)” is the hazard rate of the outcome at time, and 
the intercept term “h0(t)” is the baseline hazard rate.

Scoring systems are often developed for the purpose of 
handy clinical use, using regression coefficients to assign 
weights, such as in the Framingham score.2

What Determines Model Performance?
The dataset on which a prediction model is developed is 
called the derivation set or the training set. Once a predic-
tion model is developed, its performance needs to be repli-
cated and tested in samples other than the original study.1,9 
Such external samples are called the validation set or the 
testing set. Examination of the model’s performance within 
the derivation set is called internal validation, whereas that 
in the validation set is called external validation. Empirical 
evidence has shown that model performance varies across 
validation studies beyond the range of random error.11–16

Model performance is directly determined by the compo-
nent variables (Xi) and their coefficients (βi). The selection 
and weighting of model predictors are affected by the char-

of prediction models in any medical field.
In this review article, we present a current methodological 

overview in order for all potential model users to be aware 
of appropriate utilization of prognostic prediction models, 
including patients and their families, health-care providers, 
administrators, researchers, guideline developers and policy 
makers.

What Is A Prediction Model?
A prediction model is a formal combination of multiple 
predictors from which risk of a specific endpoint can be 
calculated.1 Many modelling techniques are currently 
available such as neural networks, decision trees, genetic 
programing, and support vector machine learning models.12 
In the medical literature, regression approaches such as 
logistic regression and Cox regression modeling are still 
most commonly used.

Modelling is the use of mathematical or statistical models 
to simulate outcomes using available data. Logistic regres-
sion of a binary outcome consisting of predictor variables 
is expressed as:

ln(p/(1−p)) = α+β1X1+β2X2+β3X3+…

where “p” is the probability of having or developing the 
disease or outcome, “α” is the model intercept, and “βi” is 

Figure 1.    Schematic concept of the model performance gap between derivation and validation studies, and its determinants. 
CHARMS, checklist for critical appraisal and data extraction for systematic reviews of prediction modelling studies;24 PROBAST, 
prediction model risk of bias assessment tool.20,25
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of interest due to eligibility criteria or unreported reasons. 
Different populations will have a different predictor-
outcome relationship, and this affects the model perfor-
mance (so-called casemix or patient spectrum effect).14,15,22 
Apart from population similarity, the source of data, study 
design, sample size, outcomes to be predicted, modelling 
methods, and study quality of the original research may 
affect model performance.

For efficient model use, it is important to clarify which 
characteristics of the original derivation studies are critical 
to the model performance, under what circumstances the 
model performance remains adequate, and when the model 
might require further adjustment and improvement.11–13

How to Identify Determinants of  
Model Performance

Evidence synthesis of existing prediction models would be 
a unique opportunity to address this issue. Determinants 
of model performance have been sought since the 1980 s by 
Wasson et al18 and Charlson et al,19 but empirical evidence 
is still limited.20 Recent methodological advances in system-
atic reviews and meta-analysis of prediction models have 
developed infrastructures to facilitate research to explore 
determinants of model performance.

A systematic review is an attempt to collate all empirical 
evidence that fits pre-specified eligibility criteria in order to 
answer a specific research question.23 The general process 
of reviews includes defining review questions, identifying 
relevant studies from the literature, extracting data with 
critical appraisal, data synthesis and interpretation.11,23 
Guides for each review process have been developed for 
prediction model studies, and Moons et al have recently 
compiled a list of them.20 Among these, the so-called 
CHARMS checklist (check list for critical appraisal and 
data extraction for systematic review of prediction modelling 
studies)24 and PROBAST (prediction model risk of bias 
assessment tool)20,25 provide systematic assessment tools for 
prediction model studies in terms of frameworks and quality 

acteristics of the derivation studies, although it is unclear 
which characteristics are determinative. Empirically, 
prediction models have the best performance in the deriva-
tion cohort due to a phenomenon called overfitting or 
overtraining. Therefore, it has been widely recommended 
to select and apply models derived from samples similar to 
the population to which it will be applied.14,16,21 Perfect 
match, however, cannot be expected. Temporal and/or 
geographical differences between derivation and validation 
cohorts will always exist. Baseline risks such as disease 
prevalence and outcome incidence may be different with 
different standards of care. The population recruited in the 
derivation study may largely deviate from the population 

Figure 2.    Flow diagram of the selec-
tion of prediction model studies. *We 
identified only one model in one study 
in order to avoid a clustering effect. 
We prioritized mortality models rather 
than other modelling outcomes. HF, 
heart failure.

Figure 3.    C-statistics of prognostic models in the replication 
cohort.
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summary measures of model performance. Discrimination 
refers to a prediction model’s ability to distinguish between 
to distinguish between subjects developing and not devel-
oping the outcome of interest. The concordance (C) statistic 
is the most common measure of discrimination. Calibration 
refers to a model’s accuracy in the prediction of risk prob-
abilities to develop outcomes of interest. It is often reported 
as a graph, with expected outcome probabilities plotted 
against observed outcome frequencies (so-called calibration 
plots). The ratio of the total number of observed and 

of the studies. A guide for primary reports of prediction 
model studies is also provided (TRIPOD; Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis).9 The concept of the model 
performance gap between the derivation and the validation 
studies, and its determinants, is shown in Figure 1.

Meta-analysis is the statistical combination of results 
from two or more separate studies.23 In order to synthesize 
the results from overall studies, summary measures need to 
be defined. Discrimination and calibration are the two key 

Table.  Impact of Study Characteristics on Prediction Model External Validity

Characteristic of original derivation study Overall  
(n=44)

c-statistic or standard β  
coefficient (95% CI) P-value

Source of data

    Medical record 37 0.65±0.06
0.93

    Claim data   7 0.65±0.05

    Prospective 30 0.64±0.06
0.45

    Retrospective 14 0.66±0.03

Participants

    Diagnosis

        Acute heart failure   9 0.66±0.02 0.54

        Chronic heart failure 35 0.64±0.06

    Derivation sample size

        Large 11 0.67±0.04

0.04        Medium: n<5,000 16 0.66±0.06

        Small: n<1,000 17 0.62±0.05

    Participant age (years) 70±6   0.29 (−0.01 to 0.55) 0.06

    Male participants (%)   61±15 0.30 (0.01 to 0.57) 0.04

    Study dates: publication year  2010 (2005 to 2012) 0.46 (0.18 to 0.71)   0.002

Outcome to be predicted

    Death 39 0.65±0.05

    Death and hospitalization   3 0.65±0.08 0.94

    Hospitalization   2 0.63±0.04

    Time from prediction to outcome measurement (days) 365 (60 to 1,038) 0.08(−0.21 to 0.37) 0.56

Model development

    Modelling method

        Survival regression model 31 0.65±0.06
0.39

        Logistic regression model 13 0.64±0.05

Predictors in the final model

    No. predictors 8 (5 to 14) 0.39 (0.09 to 0.63) 0.01

    Inclusion of age 31 0.66±0.05
0.02

    Exclusion of age 13 0.62±0.06

    Inclusion of gender 16 0.68±0.04
  0.005

    Exclusion of gender 28 0.63±0.05

    Inclusion of weight, BMI 14 0.69±0.04
<0.001

    Exclusion of weight, BMI 30 0.63±0.05

    Inclusion of BP 26 0.65±0.06
0.78

    Exclusion of BP 18 0.64±0.05

    Inclusion of LVEF 17 0.66±0.06
0.39

    Exclusion of LVEF 27 0.64±0.05

    Inclusion of BUN 12 0.65±0.05
0.77

    Exclusion of BUN 32 0.65±0.06

    Inclusion of sodium 19 0.65±0.03
0.50

    Exclusion of sodium 25 0.64±0.07

    Inclusion of BNP 12 0.67±0.03
0.14

    Exclusion of BNP 32 0.64±0.06

Data given as mean ± SD, n (%) or median (IQR). BMI, body mass index; BNP, brain natriuretic peptide; BP, blood pressure; BUN, blood urea 
nitrogen; LVEF, left ventricular ejection fraction.
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minants of model performance seem to be explored by 
investigating the association between model performance 
and heterogeneity of the validation cohort. In a field where 
various competing prediction models are available, espe-
cially in cardiovascular medicine, another method to iden-
tify the determinants of model performance is to investigate 
the association between model performance and the char-
acteristics of original derivation studies. We compared the 
results of aggregate data meta-analysis and individual data 
analysis.

Determinants of Model Performance  
in Heart Failure

We first present two representative aggregate data meta-
analysis studies of heart failure (HF) prognostic models 
reported simultaneously in the same issue of a journal. Next, 
we apply the models used in the two reviews to real-world 
HF cohort data to compare the results.

Ouwerkerk et al conducted aggregate data meta-analysis 
using 117 systematically identified HF prognostic models 
reported in 55 papers.31 The mean c-statistic of the identified 
mortality models was 0.66±0.0005. They reported that the 
strongest predictors were blood urea nitrogen (BUN) and 
serum sodium, and that the number of predictors included 
in the final models was significantly related to the c-statistics. 
As for study characteristics, those models derived from 
studies with a prospective design, claims data and large 
sample size had higher c-statistics than those with a retro-
spective design and data based on medical records. Diag-
nosis of acute or chronic HF, age and male percentage of 
the derivation cohort were not significantly related to the 
model performance.31

Rahimi et al also conducted aggregate data meta-analysis 
reviewing 64 models in 48 studies.32 The c-statistics ranged 
from 0.60 to 0.89. They reported that mortality models 
had higher c-statistics than models with other modelling 
outcomes. The sample size (small <1,000, medium <5,000, 
or large) and source of data (trial data, primary data, patient 
records, or administrative data), and study design (prospec-
tive or retrospective) were not significantly associated with 
the model performance.32 Calibration measures were not 
evaluated in either review.

For comparison, we replicated HF prognostic models 
identified in the aforementioned two reviews using a cohort 
of HF. We extracted 44 prediction models from among 103 
pooled articles (Figure 2). As a validation cohort, we used 
data from a single-center prospective cohort of hospitalized 
HF patients under approval of the local ethics committee 
(M26-116-3). We have previously described the detailed 
information of this cohort.33,34 In brief, the cohort consisted 
of consecutive patients admitted during the study period 
January 2013–May 2016 in a tertiary hospital in Japan for 
the first episode of rapid onset or worsening symptoms 
and/or signs of HF. We utilized the data of all 834 patients 
(76±12 years, 60% male) discharged alive with a median 
follow-up of 720 days (IQR, 275–991 days), during which 
91 (11%) died in the 1 year since discharge. The identified 
models were used to predict 1-year mortality at the time of 
discharge and to calculate the c-statistics. We investigated 
the association between variables and model performance 
using unpaired t-test or analysis of variance for nominal 
and categorical variables, and simple linear regression 
analysis for continuous variables. For the evaluation items, 
we followed the definitions in the two reviews.31,32

expected outcome events (O:E ratio) gives an approximate 
indication of the overall model calibration.

There are two major types of meta-analysis related to 
how summary measures are obtained: aggregate data meta-
analysis; and individual participant data meta-analysis.

Aggregate data meta-analysis is the traditional form of 
meta-analysis developed in systematic reviews of interven-
tions. It uses summary measures extracted from journal 
publications. Guides have been provided by Debray et 
al.11,13 In general, determinants of model performance are 
explored by performing multivariable regression analysis 
(so-called meta-regression analysis) and/or subgroup 
analysis.

Individual participant data meta-analysis uses summary 
measures obtained by model replication in the individual 
participant data. Generally, “individual participant data” 
indicates a large amount of combined cohort data collected 
from multiple studies addressing the same research question 
or topic.26 Increasing numbers of reports using this meta-
analysis method for prediction model studies have been 
reported over the last decade12 and, accordingly, a number 
of guides have been provided,12,15,27 although most of the 
studies do not consider between-study heterogeneity and 
its source.28

We present two types of example studies investigating 
the determinants of model performance. The first case is an 
example of the application of a single model to multiple 
populations. Riley et al extended a previously reported 
validation study of QRISK2 (the second version of the 
cardiovascular disease risk score)29 using data from 364 
general practices, and found that the model performance 
(c-statistic) was related to the age and percentage of smokers 
of the population in each practice on meta-regression 
analysis.15 The second case is an example of the application 
of multiple models to a large diverse population. Kengne 
et al validated and compared 12 systematically identified 
incident diabetes models in a large international case–cohort 
sample.30 They performed subgroup analysis with perfor-
mance measures of discrimination and calibration, and 
found that model performance varied with country, age, 
sex and adiposity in the validation cohort.30

As shown in the aforementioned typical examples, deter-

Figure 4.    Performance of prediction models in replication 
cohort vs. publication year.
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Future Perspectives
In the aforementioned example study, the question of what 
produced the yearly increase in model performance remains 
an issue. It could be attributable to similarity of patients 
and medical circumstances, improvement of study quality 
or many other possible reasons. Systematic evaluation of 
derivation studies with identification of key determinants 
is necessary for further investigation. CHARMS and 
PROBAST are currently available for this purpose. These 
are tools to evaluate the characteristics of derivation studies 
in general. Disease-specific modification or addition will be 
effective in order to elucidate the keys to improve model 
performance in that medical field.

In terms of multivariable analysis to identify determi-
nants, an adequate number of existing prediction models 
is needed. If the purpose of analysis is to identify the deter-
minants in study characteristics, then including predictor-
finding studies (that identify the relevance of predictors and 
outcomes) in addition to prediction model studies (that 
develop, validate or update prediction models) may be one 
solution. Also, causal relationships needs to be carefully 
taken into account. For example, direct comparison of 
model components and study characteristics is not valid 
because the selection of variables to include in the model 
and the assignation of weight to them are determined by 
the study characteristics: that is, model components are 
intermediate factors in the causal pathways between model 
performance and study components.

Conclusions
Recent methodological developments in systematic reviews 
and meta-analysis of prediction models will encourage 
evidence-based utilization of prediction models and are 
relevant to all model users including patients and their 
families, health-care providers, administrators, researchers, 
guideline developers and policy makers.
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