
November 2015 | Volume 5 | Article 2451

Review
published: 02 November 2015
doi: 10.3389/fonc.2015.00245

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Ben Davidson,  

Oslo University Hospital, Norway

Reviewed by: 
Reuven Reich,  

Hebrew University of  
Jerusalem, Israel  

Bjørn Åke Risberg,  
Oslo University Hospital, Norway

*Correspondence:
Viive M. Howell  

viive.howell@sydney.edu.au

Specialty section: 
This article was submitted to 

Women's Cancer, a section of the 
journal Frontiers in Oncology

Received: 28 August 2015
Accepted: 15 October 2015

Published: 02 November 2015

Citation: 
Cho A, Howell VM and Colvin EK 
(2015) The extracellular matrix in 

epithelial ovarian cancer – a piece of 
a puzzle.  

Front. Oncol. 5:245.  
doi: 10.3389/fonc.2015.00245

The extracellular matrix in epithelial 
ovarian cancer – a piece of a puzzle
Angela Cho1,2 , Viive M. Howell2,3* and Emily K. Colvin2,3

1 School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia, 2 Bill Walsh 
Translational Cancer Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, 
Australia, 3 Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia

Epithelial ovarian cancer is the fifth leading cause of cancer-related deaths in women and 
the most lethal gynecological malignancy. Extracellular matrix (ECM) is an integral compo-
nent of both the normal and tumor microenvironment. ECM composition varies between 
tissues and is crucial for maintaining normal function and homeostasis. Dysregulation 
and aberrant deposition or loss of ECM components is implicated in ovarian cancer 
progression. The mechanisms by which tumor cells induce ECM remodeling to promote 
a malignant phenotype are yet to be elucidated. A thorough understanding of the role of 
the ECM in ovarian cancer is needed for the development of effective biomarkers and 
new therapies.
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iNTRODUCTiON

Epithelial ovarian cancer (EOC) is currently the most lethal gynecological malignancy affecting 
women and the fifth leading cause of cancer-related deaths in the United States (1). Early diagnosis 
of EOC grants a favorable prognosis and an average 5-year survival rate of 92%. However, due to the 
lack of available screening tests (2), diagnosis of patients is predominantly made at an advanced stage, 
reducing the average 5-year survival rate to only 27% (3). Standard treatment has not significantly 
improved for decades. The tumor microenvironment is gaining recognition in facilitating cancer 
progression, playing an essential role in mediating the growth, invasion, and metastasis of malignant 
tumors and therefore represents an attractive therapeutic target in solid tumors, including EOC. The 
tumor microenvironment consists of a variety of cell types including fibroblasts, immune cells, and 
endothelial cells, as well as non-cellular components such as the extracellular matrix (ECM), ECM 
remodeling enzymes [e.g., matrix metalloproteinases (MMPs), tissue inhibitors of metalloprotein-
ases (TIMPs), and lysyl oxidases (LOXs)], and growth factors (e.g., VEGF, TGF-β, and PDGF). All 
these components work to create a microenvironment permissive for tumor cell growth, migration, 
and invasion. This review will focus on our current understanding of the roles that the ECM and 
ECM remodeling enzymes play in EOC progression, with specific emphasis placed on the individual 
key factors in the ECM known to date.

eCM Remodeling Promotes Ovarian Cancer Progression
The ECM is constructed from cellular secretions and is a critical regulator of normal tissue develop-
ment and function (4). It is a dynamic, non-cellular structure existing within all tissues, which not 
only serves as a physical support for cells, but also has a unique role in tissue homeostasis (5). These 
diverse functions of the ECM are conferred through its complex organization, composition, and its 

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2015.00245&domain=pdf&date_stamp=2015-11-02
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00245
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:viive.howell@sydney.edu.au
http://dx.doi.org/10.3389/fonc.2015.00245
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00245/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00245/abstract
http://loop.frontiersin.org/people/268577/overview
http://loop.frontiersin.org/people/68979/overview
http://loop.frontiersin.org/people/92278/overview


November 2015 | Volume 5 | Article 2452

Cho et al. The extracellular matrix in ovarian cancer

Frontiers in Oncology | www.frontiersin.org

continuous remodeling. The constituents of the ECM in differ-
ent tissues vary, imparting a unique ability to accommodate the 
specific needs required by different tissues (6). This is facilitated 
by the chemical and physical interactions between the resident 
cells and the continuously changing microenvironment (7). The 
ECM is composed of two main types of macromolecules: fibrous 
proteins and proteoglycans (8).

An increasing number of studies have proposed an essential 
role for the ECM in tumor progression, with dysregulation of 
the ECM implicated in cancer and characterized by extensive 
modification of its structure and composition. The secretion and/
or inhibition of various ECM components and the subsequent 
remodeling by tumor cells creates a protumorigenic microen-
vironment which ultimately assists in tumor cell survival while 
disregarding the normal physiological function of the tissue (9). 
Stiffness and atypical ECM deposition are recognized in various 
cancers (10), with ECM alteration necessary for tumor initiation, 

progression, and intraperitoneal dissemination in EOC (11). 
Figure 1 provides a schematic representation of the ECM com-
ponents involved in EOC.

FiBROUS PROTeiNS

Fibrous proteins are major components of the ECM that provide 
tensile strength, elasticity, and structure to tissues. Many of these 
proteins become dysregulated in solid tumors and contribute 
to tumor growth and metastasis. Listed below are the fibrous 
proteins involved in EOC development and progression. Table 1 
provides a summary of the ECM fibrous proteins reviewed here 
and their potential roles in EOC.

Collagens
Collagens are the most abundant fibrous proteins of the ECM. 
They associate with other collagens and interact with extracellular 

FiGURe 1 | The eCM becomes dysregulated during ovarian tumorigenesis and contributes to tumor progression. The normal ovarian ECM consists of a 
highly ordered arrangement of collagen fibers, with hyaluronan interspersed throughout, regulating the distribution of the collagen in the ECM. Several 
proteoglycans, such as decorin and versican, are present to provide pressure and hydration to the tissue. In EOC, stromal fibroblasts are activated; collagen 
becomes progressively remodeled into short thick fibrils, randomly orientated into tracks at angles tending toward perpendicular rather than parallel to the epithelial 
boundary. In addition, versican, fibronectin, tenascin-C, and tenascin-X are upregulated with the loss of decorin. Reduced levels of HYALs lead to accumulation of 
hyaluronan; upregulation of LOXs leads to increased crosslinking of the ECM proteins resulting in increased stiffness of the ECM. MMPs are overexpressed in the 
EOC ECM, actively remodeling the ECM to promote tumor progression while TIMPs are unable to restrain these enzymes from dysregulating the ECM.
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TABLe 1 | Summary of the eCM proteins and their roles in eOC.

eCM protein Role in eOC Reference

Fibrous proteins Collagen I Preferential and strong adhesion of primary ovarian cancer cells and spheroids to collagen I (12, 13)
Promotes migration (14, 15)
Provides a steering cue for cell migration (16)

Collagen XI Expression levels correlate with tumor grade (17–19)
Associated with poor clinical outcome and overall survival (20, 21)
Predictor of recurrence (17)
Contributes to paclitaxel resistance by upregulating tau (22)

Fibronectin Expressed in the ECM and ascites (23, 24)
Indicator of poor prognosis (25)
Mediates migration, invasion, and metastasis (15, 23, 26, 27)
Fibronectin fragments enhances adhesion of EOC cells to the peritoneal surface (28)

Tenascin-C Promoted increased adhesion and migration (29)

Tenascin-X Levels associated with tumor grade (30)
Strong positive correlation with serum CA-125 levels (31)

Laminin Absent in microinvasive cells and low malignant tumors (32)
Significantly higher in EOC ascites than normal peritoneal fluid
No difference in serum levels between EOC and healthy control
Significantly higher serum levels in malignant EOC than in benign tumors and healthy controls (33)
Ascites levels >serum levels in malignant EOC
Serum levels significantly reduced after surgery (34)

Proteoglycans Decorin Cancer progression associated with reduced or loss of expression in EOC ECM (35–38)
Lumican Downregulation may have role in cancer aggression (39)
Versican Elevated levels in EOC ECM correlated with poor disease outcome (40–42)
Perlecan Expression lost in BM which facilitated invasion (43)
Hyaluronan Elevated HA levels correlated with tumor grade and metastasis (44)

Strong, independent prognostic factor (42)
Positive correlation with invasion and metastasis (42, 45)
Facilitates adhesion of tumor cells to the peritoneum (11, 46, 47)
Reduces efficacy of chemotherapy and induces chemoresistance in response to chemotherapy (48)
Conjugates with chemotherapy increased the efficacy of chemotherapy (49, 50)
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proteins, glycosaminoglycans and nucleic acids (7). Currently, 
there are 28 types of collagen identified which are divided into 
three major sub-groups: fibrillar, non-fibril forming, and fibril-
associated collagens (51–53). Fibrillar collagens are the predomi-
nant sub-group present in the ECM, and their unique functions 
are governed by their conformation and structure, allowing them 
to form highly organized fibrils (6, 51). Particular focus will be 
placed on this specific sub-family of collagens. Fibrillar collagens 
are comprised of three α chains which assemble intracellularly 
into a triple helix that is secreted into the ECM as a procollagen 
molecule. Cleavage by metalloproteinases present in the ECM 
convert procollagen into collagen (6).

Insight into collagen morphology and organization and the 
resultant fibril composition and structure in the ECM are crucial 
for understanding how structural modifications are associated 
not only with the normal physiology of healthy tissue, but also 
with malignant processes linked to cancer progression (54). In 
normal tissue including normal ovary, collagen is organized as 
thin, long wavy fibrils, parallel to the epithelial boundary and 
providing elasticity to the ECM (Figure 1). In contrast, collagen 
remodeling in tumor stroma results in thicker and shorter fibrils, 
bunched into tracts at angles tending toward perpendicular to 
the epithelial boundary (Figure 1). Collagen tracts perpendicular 
to the epithelial boundary (also known as Tumor-Associated 
Collagen Signature (TACS)-3) are found in EOC (55). TACS-3 

may facilitate entry into the stroma with invasive foci observed 
at these sites in mammary tumors (56). TACS-3 is also associated 
with a loss of elasticity and increase in stiffness of the ECM. These 
findings illustrate that ECM remodeling occurs in tumors and 
that fibrillar collagen contributes to this remodeling affecting the 
function of the resultant ECM.

Collagen-rich ECM was originally postulated to regulate 
normal tissue architecture and act as a physical barrier to tumor 
cell migration. However, it was shown that collagen-dense 
ECM induced by tumor cells essentially increased invasiveness 
and promoted tumor progression rather than inhibiting it (57). 
Increased risk of breast cancer has been associated with excessive 
collagen deposition and crosslinking (57, 58). Elevated collagen 
deposition and remodeling compromises drug delivery (59) and 
has been observed to be linked to cisplastin resistance in EOC 
(60–62). Collagen composition of the tumor ECM is crucial in 
mediating EOC progression and contributes to the poor response 
of ovarian cancer patients to chemotherapy, further emphasizing 
the importance of the ECM as an active participant in tumor 
progression.

Collagen I
Fibrillar type I collagen is the most abundant structural com-
ponent of the ovarian ECM. Several in vitro studies have estab-
lished the importance of type I collagen in EOC adhesion and 
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migration, successfully demonstrating that collagen I enhanced 
migration of multiple EOC cell lines (14, 15), and primary EOC 
cells and spheroids preferentially and strongly adhered to type I 
collagen (12, 13). Collagen I has been demonstrated to have a 
novel role in inducing chemoresistance by upregulating tau (22), 
a microtubule-associated protein, which has been associated 
with paclitaxel resistance in EOC (63, 64). Flate and Stalvey (16) 
presented a study which implicates type I collagen as a steering 
mechanism for selected EOC cell lines in  vitro and indicated 
that the migration of EOC cells induced by type I collagen was 
partially due to increased directionality. The promigratory cues 
which type I collagen confers on EOC cells highlight the multiple 
ways in which collagen can facilitate cancer cell migration. Thus, 
not only does collagen have a physical role in cancer progression, 
but it also has a potential role as a chemoattractant and may have 
an underlying role in chemoresistance. However, further studies 
are needed to consolidate these findings.

Collagen XI
Collagen XI is a minor fibrillary collagen predominantly found in 
cartilage with low or absent expression in most tissues (65–68). 
Hence stromal changes of collagen XI α-1 (COL11A1) expression 
are regarded as markers of cancer initiation and progression (20). 
High COL11A1 expression is associated with poor overall sur-
vival, poor clinical outcome and is a predictor of EOC recurrence 
correlating with the stage of disease (17, 20, 21). Increased gene 
expression of COL11A1 was observed in all EOC patients during 
tumor progression and was greatly increased in metastases (18). 
Varying mRNA and protein expression levels of COL11A1 at 
different stages and sites of the tumor suggests COL11A1 as a 
potential biomarker, with the highest COL11A1 levels detected 
in late stage disease (recurrent metastases) and lowest levels in 
earlier stage disease (primary ovarian tumors) (19). Though 
COL11A1 is clearly associated with cancer progression and 
metastasis, there are a limited number of studies detailing the role 
and mechanism of COL11A1 overexpression in metastasis. With 
limited biomarkers available for EOC, COL11A1 has potential as 
a clinical screening tool and prognostic marker.

Fibronectin
Fibronectin is implicated in cell growth, migration, and differen-
tiation in processes including wound healing, embryonic develop-
ment, and tumorigenesis (69, 70). Fibronectin plays a significant 
role in tumor progression, promoting metastasis, angiogenesis 
(71), and inhibiting apoptosis (72). Fibronectin expression is 
observed in the submesothelial basement membrane (BM) of 
metastatic omental tumors, ECM (23), and ascites (24). It is an 
indicator of poor prognosis in invasive EOC (25) and has been 
shown to mediate EOC cell migration and invasion (26) through 
the upregulation of the FAK/PI3K/Akt pathway (15). EOC cell 
motility and early metastatic competence is stimulated through 
the release of fibronectin from peritoneal mesothelial cells (23, 
27). The protumorigenic role of fibronectin is further illustrated 
by Kenny et al. (23), who showed a significant reduction in the 
invasive and metastatic ability of EOC cells when fibronectin was 
knocked out from the peritoneal microenvironment. Another 
study by Kenny et al. (28) demonstrated that adhesion of EOC 

cells to the peritoneal surface was enhanced by MMP2 cleavage of 
fibronectin into small fragments. These studies have established 
fibronectin as a critical promoter of EOC migration and invasion. 
With its strong correlation with EOC progression, fibronectin 
presents a favorable target in cancer treatment.

Tenascin
There are four large extracellular glycoproteins which constitute 
the tenascin family: –C, –X, –R, and –W (73). Tenascins have 
roles in cell adhesion and proliferation. In certain cell types, they 
act as antiproliferative agents, while in other cell types, they act 
to promote adhesion and migration (74).

Tenascin-C
Tenascin-C (TNC) is an important tissue remodeling glycoprotein 
which contributes to tumorigenesis and metastasis by promoting 
proliferation, invasion, and angiogenesis (29, 75). TNC is either 
absent or present in minute amounts in healthy, developed tis-
sues and significantly increased in pathological conditions, such 
as cancer (75). High TNC expression has been demonstrated 
in solid tumors, including breast, pancreas, prostate, brain, and 
ovary. High TNC expression correlated with poor survival in 
lung, glioma, breast, and colon cancers (76). In EOC, TNC levels 
were significantly higher than in non-cancer controls (75) and 
increased with increasing grade and stage, with malignant tumors 
displaying the highest expression (30). A subsequent study by the 
same investigators demonstrated a 100-fold increase in ovarian 
fibroblast media compared to media derived from EOC cell lines, 
suggesting that TNC is predominately secreted by fibroblasts 
(29). This study also indicated a potential role of TNC in invasion, 
demonstrating increased adhesion and migration in vitro.

The consistent finding of increasing TNC levels with increas-
ing tumor stage for several cancer types suggests a potential 
biomarker role for TNC. However, a study by Didem et al. (75) 
determined that serum TNC levels had no prognostic value 
in EOC, with no correlation between high serum TNC levels 
and any prognostic factors, including tumor stage and grade, 
response to chemotherapy or survival, although patients with 
high TNC levels were observed to have poorer overall survival 
(75). This study only investigated serum TNC levels as a prog-
nostic marker. It did not examine TNC levels in the immediate 
ECM of the ovarian tumor. There are limited studies available 
which examine TNC in EOC tumor tissue specifically, and 
further studies are required to establish its potential role in EOC 
progression.

Tenascin-X
Tenascin-X (TNX) is the largest member of the tenascin family, 
and during development TNX is widely expressed (77). TNX lev-
els are significantly elevated in EOC compared to healthy tissues, 
normal ovaries, and benign tumors (31). Levels in ascites from 
EOC patients correlated with serum CA-125, implying that TNX 
secretion may be coordinated with the release of CA-125 (31), 
and may prove useful as a potential biomarker to complement 
CA-125. However, like TNC, there are limited studies available 
implicating TNX in EOC development (30).
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elastin
Elastin is a strong and insoluble biopolymer which constitutes 
~90% of elastic fibers and is responsible for the resilience and 
elastic recoil of elastic vertebrate tissues (78). It has an extremely 
low turnover rate (79) and is formed through the crosslinking 
of its soluble precursor, tropoelastin, by LOX (80). Elastin has 
to some degree been associated with tumor growth and progres-
sion in other tumor types (81–83). Only one study is available 
to our knowledge which associates elastin with EOC. This study 
by Stewart et  al. (84) evaluated the value of elastin staining in 
grading peritoneal implants associated with borderline serous 
EOC and demonstrated potential value in confirming superficial 
distribution of non-invasive peritoneal implants. However, this 
study did not specifically look at elastin levels in primary EOC 
tumors, and no studies are available at present which detail the 
potential role of elastin in EOC development and progression.

Laminin
The laminin family of glycoproteins consists of 12 unique hetero-
trimers and is the major non-collagen structural component of 
the BM (85). In addition to its structural functions, laminin also 
regulates cell adhesion and migration, demonstrating a role in 
tissue homeostasis and morphogenesis (86–89). This is partially 
mediated by the interactions between laminin and other ECM 
molecules, such as collagen type IV, fibronectin, and heparin 
sulfate proteoglycans (90). The role of laminin in the BM of EOC 
has been well studied; however, its potential role in the ECM 
has not been thoroughly examined. Laminin was observed to 
be absent around microinvasive cells and also in tumors of low 
malignant potential in the early stages of invasion (32). Studies 
show elevated laminin levels in the ascites from EOC patients 
compared to normal peritoneal fluid; however, there are conflict-
ing results as to whether this corresponds to an increase in serum 
laminin levels (33, 34). Though there are strong indications of 
the possible tumor-promoting roles of laminin in EOC, further 
studies are needed to establish this association and its potential 
value as a biomarker or therapeutic target.

PROTeOGLYCANS

Proteoglycans are dispersed throughout ECM and act to provide 
compressive resistance and hydration to the tissue (6, 8). The two 
major ECM proteoglycan families consist of those containing 
leucine-rich repeats and hyalectans. Table 1 provides a summary 
of proteoglycans reviewed in this section and their potential roles 
in EOC.

Small Leucine-Rich Repeat Proteoglycans
Leucine-rich repeat (LRR) proteoglycans are the most abundant 
and also the largest class of proteoglycans in the ECM. They have 
various functions, combining roles as signaling molecules and 
structural components during tissue remodeling in cancer and 
inflammation. LRR proteoglycans are regulated by the TGF-β 
and Wnt signaling pathways and interact with a range of Toll-
like receptors, receptor tyrosine kinases, and growth factors to 
regulate homeostatic processes, such as apoptosis, migration, 

proliferation, angiogenesis, differentiation, and survival (91–96). 
They are also involved with regulating fibrillary collagen assembly, 
degradation, and organization (97–103). Of the LRR proteogly-
can family members, only decorin and lumican have to date been 
shown to play roles in the ovarian tumor ECM.

Decorin
Decorin, a fundamental component of the ECM, binds to collagen 
and facilitates tissue scaffolding (104). However, its expression 
in cancer, including EOC, is generally reduced or undetect-
able (35–38, 105–107). Decorin-induced growth suppression 
was observed in a study by Merle et al. (108), highlighting the 
importance of decorin in possibly inhibiting tumor growth. It was 
proposed that decorin was able to interfere with the interactions 
between the resident cells and the ECM, by inhibiting fibronectin 
binding and integrin interaction. Nash et al. (109) and Teicher 
et al. (110) demonstrated the synergistic effects of decorin with 
cisplastin and carboplatin in inhibiting the growth of breast and 
EOC. Decorin can inhibit tumor growth by suppressing TGF-β 
(105, 111) and directly interacting with the epidermal growth 
factor receptor and ERBB2 (112–115). The direct interaction 
with these receptors diminishes receptor-mediated intracellular 
signaling and induces apoptosis (116, 117). These studies suggest 
that decorin plays a major role in controlling tumor growth and 
its subsequent downregulation is associated with EOC develop-
ment, indicating that possible therapies involving the restoration 
of decorin expression in the tumor stroma, coupled with chemo-
therapy, could potentially retard the growth of EOC.

Lumican
Lumican, another LRR proteoglycan, is involved in the regulation 
of collagen fibrillogenesis, migration, invasion, angiogenesis, and 
apoptosis (104, 118–120). Varying levels have been reported in 
the stroma of different tumor types (121–126). In breast and 
pancreatic cancers, high stromal lumican was associated with 
advanced cancer stage, invasion, and poor survival (127, 128), 
whereas a negative correlation was found between tumor grade 
and expression in neuroendocrine tumors of the colon (129). 
In support of this, lumican has been shown to inhibit tumor 
growth and progression in lung cancer and melanoma (92). To 
date, a single study has examined lumican expression in EOC, 
demonstrating reduced stromal expression and suggesting a pos-
sible role in cancer aggression (39). Given the varying clinical 
associations with lumican in several cancer types, more research 
is needed to determine the precise role of lumican in EOC.

versican
In the healthy ovary, versican (VCAN) is tightly regulated and 
acts as an important ECM proteoglycan present in the granulosa 
cells of growing follicles, to aid in the expansion of the cumulus 
oophorus in the preovulatory stage (130). Normal processes, such 
as wound healing (131), follicle growth (130), and inflammation 
(132), induce VCAN expression. Many malignant tumors have 
elevated levels of VCAN (133–140). Elevated VCAN levels were 
also observed in the ECM of EOC and correlated with increased 
hyaluronan (HA) levels, suggesting that they may form a sup-
portive partnership to assist in EOC survival and spread (40, 41). 
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In vitro studies have demonstrated the production of VCAN by 
malignant cells; however, the source of VCAN in tumors remains 
to be elucidated, with no clear answer on the in vivo source of 
VCAN, which may also include stromal cells (137, 141–143). 
Upregulation of VCAN in EOC correlates with a poor disease 
outcome; however, the significance of VCAN as a prognostic 
marker is debatable, with HA, its binding partner, presenting 
greater value as a prognostic marker (42). The same study showed 
that despite a strong association with the apparent initiation and 
development of EOC, VCAN was not an independent indicator 
for patient survival.

Perlecan
Perlecan is a core heparan sulfate proteoglycan of the ECM and 
BMs of normal tissues and blood vessels (8, 144, 145). Perlecan is 
stored in abundant quantities in the BM. Degradation of the BM 
by MMPs during tumor invasion causes the release of perlecan 
into the ECM, and increased expression is reported in various 
cancer cell lines and tumors (146–148). Perlecan has been sug-
gested to have various roles in tumor progression, by regulating 
the cell’s response to mitogenic and angiogenic growth factors, 
and mediating adhesion and migration (149, 150). Its inhibition 
is reported to impede tumor growth and invasion (144, 151). 
A study by Davies et  al. (43) observed heterogeneous perlecan 
expression in ovarian tumors compared to normal ovary. 
Perlecan expression was observed in the BM, the stroma, the 
internal elastic lamina of blood vessels, and the submesothelial 
layer of the normal ovary. Perlecan was also present in the BM of 
benign and borderline tumors but absent in the BM of malignant 
tumors, enhancing invasive potential. Loss of perlecan was not 
observed in the stroma and BMs of blood vessels. Further studies 
are needed to determine its potential role in EOC progression.

Hyaluronan
Hyaluronan is strongly implicated in cell proliferation, migration, 
wound healing, and inflammation (152). HA binds and interacts 
closely with fibronectin during matrix construction (152–154) 
and regulates the distribution of collagen fibrils (155). HA can 
interact directly with cells by binding to cell surface receptors and 
constructing a protective coat (156–158). It also has a role in the 
distribution of proteoglycans in the ECM through non-covalent 
interactions (159–161). Changes in HA content and size are asso-
ciated with tissue remodeling and pathological processes, such as 
tumor progression (162–166). Studies from several cancer types 
have recognized the elevation of HA in serum (167–169), and 
recently a study by Wu et al. (170) demonstrated the novel use 
of serum HA in differentiating non-metastatic from metastatic 
breast cancer, which suggests HA as a potential biomarker. 
Elevated HA levels were observed in and associated with tumor 
aggression in breast, lung, prostate, colorectal, and bladder 
cancer (163).

Epithelial ovarian cancer grade and metastasis are correlated 
with increasing HA levels, with Hiltunen et al. (44) demonstrating 
a 100-fold increase in HA expression in grade three EOC. Many 
cancers, including ovarian, are enveloped in a HA rich ECM 
(11, 42, 44). HA upregulation has been implicated as a strong, 
independent prognostic factor for EOC (42) and is positively 

correlated with invasion and metastasis (42, 45). Adhesion of 
ovarian cancer cells to the peritoneum is facilitated by interac-
tions between HA and its major surface receptor CD44 (45–47, 
171). HA has been shown to reduce the ability of chemothera-
peutic drugs to induce cell death in several cancers (172–175). 
Ricciardelli et al. (48) demonstrated chemotherapy-induced HA 
production facilitates chemoresistance and EOC cell survival 
through a HA-CD44-mediated pathway. HA-chemotherapy 
conjugates were successful in increasing the efficacy of standard 
chemotherapy in EOC patients by CD44-mediated uptake of the 
chemotherapy (49, 50). Hence, HA is a promising therapeutic 
target, with HA inhibition potentially suppressing adhesion of 
EOC cells to the peritoneum, which is the preferential place for 
EOC metastasis. Conversely, HA can be utilized to enhance the 
cytotoxic effects of chemotherapy.

eNZYMeS

Abnormal expression and deposition of ECM components and 
alteration to its structure are implicated in malignancies such 
as EOC. Remodeling of the ECM in healthy tissues through 
chemical modification, synthesis, degradation, and reassembly 
are tightly controlled processes induced by cells in homeostasis 
(176). Crosstalk between the ECM and cancer cells causes the 
alteration of ECM structure and composition, resulting in the 
dysregulation of this tightly controlled system (5). Cleavage of 
ECM components by proteases and the subsequent remodeling 
of the ECM is implicated in EOC progression, where the deg-
radation of the BM and ECM is necessary for the invasion and 
metastasis of EOC cells (177, 178). Malignant cells produce a 
wide range of ECM-degrading proteases implicated in ECM dys-
regulation and cancer progression. Inhibiting their activity may 
be of potential therapeutic value. Table 2 provides a summary of 
the ECM remodeling enzymes reviewed here and their potential 
roles in EOC.

Matrix Metalloproteinases
Matrix metalloproteinases are a family of extracellular proteins 
comprising >20 zinc metalloproteases which play major roles 
in tissue repair and remodeling in response to injury (209). In 
normal conditions, the activity of MMPs is low. However, in 
response to cellular and matrix interactions, growth factors, 
hormones, and inflammatory cytokines released during remod-
eling or repair processes and in inflamed or diseased tissues, 
MMP activity increases (5, 210). MMPs remodel the ECM and 
contribute to the tumor microenvironment by promoting tumor 
growth, metastasis, and angiogenesis (211, 212). Through these 
activities, MMPs promote cancer progression and correlate with 
poor patient prognosis (213).

MMP2 and MMP9
Matrix metalloproteinase 2 and MMP9 have been implicated 
to contribute to the malignant potential of tumor cells, due to 
their ability to degrade a major component of the BM, collagen 
type IV (214). MMP2 and MMP9 activity varies between normal 
ovaries and malignant ovarian tumors. MMP2 was observed to 
be prevalent in normal ovaries, while MMP9 was predominant 
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TABLe 2 | Summary of the eCM remodeling enzymes and their roles in 
eOC.

enzyme Role in eOC References

MMP2/MMP9 Expression associated with EOC aggression (179–181)
Identified to be secreted by cancer cells and 
expression correlated with invasiveness

(182–185)

Higher total activity in the metastatic site
Promotes metastasis (180)
MMP9 – conflicting reports as a prognostic 
marker
High levels of epithelial MMP9 associated 
with a better DRS

(179, 188)

High stromal levels of MMP associated with 
worse DRS

(189–192)

High epithelial and stromal MMP9  
associated with poor DRS and metastasis

MMP7 Conflicting findings in promoting tumor 
progression
Overexpression promoted invasion (193)
Suppression of MMP7 inhibited migration 
and invasion

(194)

MMP7 expression lower in malignant tumors (181, 195)
Higher expression correlated with good 
clinical and survival parameters

(196)

LOX LOX G473A polymorphism correlated with 
advanced stages and increased susceptibility

(197, 198)

Overexpression correlated with metastasis 
and tumor stage

(199)

Promoted migration and tumor growth by 
repressing E-cadherin

(200)

LOXL2 Upregulated specifically in EOC endothelial 
cells. Inhibition of LOXL2 reduced endothelial 
cell concentration

(201)

LOXL2 inhibition suppressed tumor 
angiogenesis and induced normalization of 
tumor-associated vasculature

(202)

LOXL4 Tumor suppressive effect, however, LOXL4 
splice variants enhanced tumor progression 
and metastatic potential

(203)

Hyaluronan 
Synthases

Low HAS1 – independent predictor of 
ovarian cancer patient survival High HAS1 
correlated with high microvessel density in 
ovarian cancer 

(204)

HAS2 and HAS3 – no consistent increase
HAS1 – barely detectable in EOC (205)
HAS1, HAS2, and HAS3 – overexpressed 
in effusions, solid metastases, and primary 
EOC, respectively

(206)

High HAS1 expression in EOC effusion 
correlated with shorter survival

Hyaluronidases HYAL1–3 – chromosomal loss in tumor and 
stromal tissue

(207)

Reduced activity and expression in malignant 
EOC – also differentially expressed

(44, 206)

HYAL1 – absent in serous EOC (206, 208)
HYAL2-var2 and HYAL3 
variant – overexpressed in solid metastases 
and primary EOC tumors, respectively

(206)
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in malignant tissues (215). EOC aggressiveness has been linked 
to MMP2 and MMP9 expression (179–181). Several studies have 
demonstrated the secretion of MMP2 and MMP9 from EOC cell 
lines in vitro and in ascites from advanced EOC patients. In vitro 

expression of MMP2 and -9 also correlated with the invasiveness 
of the EOC cell lines (182–185, 216). Schmalfeldt et al. (180) con-
firmed these studies, by not only demonstrating elevated levels of 
MMP2 and -9, but also identified higher total MMP2 and MMP9 
activity in the metastatic site, compared to the primary site, sug-
gesting their likely role in the progression from a benign state 
to an advanced stage. MMP2 expression correlated with clinical 
stage (186) and promoted metastasis along with MMP9 (187).

Sillanpää et  al. (188) evaluated the prognostic significance 
of MMP9 in EOC, where high levels of epithelial MMP9 were 
associated with a better 10-year disease-related survival (DRS), 
while high stromal levels of MMP9 were associated with worse 
survival. This was supported by a study by Ozalp et  al. (179). 
This however, has been contradicted by several other studies 
(189–192) which associated high epithelial and stromal MMP9 
with shorter disease-specific survival and metastasis.

MMP7
Matrix metalloproteinase 7 is involved in the proteolysis of several 
ECM substrates, growth factors, and cellular receptors including 
collagens, proteoglycans, insulin-like growth factor-binding pro-
tein, heparin-binding epidermal growth factor, E-cadherin, and 
tumor necrosis factor-alpha precursor (193, 217). Overexpression 
of MMP7 in EOC has been demonstrated in several studies 
(193, 195, 196). Wang et al. (193) showed that overexpression of 
MMP7 promoted the invasion of EOC cells in vitro and likewise, 
suppression of MMP7 inhibited migration and invasion (194). 
These findings are in contrast to the study by Brun et al. (181) 
who showed that epithelial MMP7 expression was lower in 
malignant serous tumors, compared to its benign or borderline 
counterparts, while there was no difference observed among the 
mucinous tumors. Shigemasa et al. also supported this finding in 
mucinous ovarian tumors (195). MMP7 was observed to be an 
independent prognostic factor, with higher MMP7 expression in 
ovarian tumor cells correlating with good clinical and survival 
parameters (196). These discrepancies highlight the need to 
elucidate the functional role of MMP7 in EOC, where the grade 
and subtype of the tumor may result in these contrasting findings.

While MMP2, -7, and -9 have been implicated to play a role 
in EOC, there are discrepancies correlating the expression of 
these MMPs with the prognosis and certain clinicopathological 
features of EOC. This suggests that the functions of MMPs in 
EOC may be dependent on their epithelial or stromal associa-
tions in conjunction with the grade of the tumor and possibly 
the surrounding stroma. This highlights the complexity of MMPs 
and their roles in EOC progression and emphasizes the need for 
additional studies to provide an explanation for these differences. 
Nonetheless, MMPs have potential as therapeutic targets due to 
their indisputable activity during EOC progression. MMP2, -7, 
and -9 expression are elevated in EOC regardless of the grade; 
therefore, inhibition of MMPs may decrease the aggressiveness of 
EOC and aid in preventing invasion and metastasis.

Tissue inhibitors of Metalloproteinases
Tissue inhibitors of metalloproteinases are endogenous inhibitors 
of major ECM remodeling proteinases, such as MMPs, and sub-
sequently they play a crucial role in regulating ECM composition 
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and function. TIMPs also have multiple functions in regulating 
cell proliferation, migration, invasion, apoptosis, and angiogen-
esis (218). There are four TIMP paralogs: TIMP1–4 (219). TIMP1 
is the most widely distributed TIMP and has the ability to inhibit 
all active forms of MMP (220). TIMP2 is most selective for MMP2 
(221). Simultaneous increase of MMP2 and decrease of TIMP2 
levels were observed in malignant tumors compared to benign 
tumors and the normal ovary, with this imbalance indicative of 
the importance of MMP2–TIMP2 levels in promoting invasion 
(222). In contrast, TIMP1 levels were increased in malignant 
tumors compared to the normal ovary (222–224). Okamoto et al. 
(222) observed that despite the synchronous increase of MMP9 
and TIMP1 in malignant tumors, the degree of increase of MMP9 
was much greater than TIMP1, suggesting that TIMP1 has lim-
ited ability in compensating for an increase in MMP9. A study by 
Kikkawa et al. (225) also reported elevated TIMP1 and MMP9 
levels in EOC samples compared to normal ovary. Given their 
role as inhibitors of MMPs, the relative levels of each family of 
enzymes are important when considering their function in EOC. 
MMPs and TIMPs have a dynamic relationship not just in normal 
ovaries, but also in EOC, where the expression of TIMPs adjusts 
with the relative levels of MMPs present to ultimately promote 
tumor progression.

Lysyl Oxidase
The LOX family comprises five members: LOX and four LOX-
like isoenzymes LOXL1–4. LOX is a copper-dependent amine 
oxidase secreted by fibroblasts and, together with the other family 
members, has an important role in remodeling the ECM by regu-
lating collagen and elastin crosslinking and therefore contributes 
to the strength and structure of many tissues (226–228). LOX and 
LOXL2 are heavily implicated in cancer progression (229, 230).

Lysyl Oxidase
The importance of the LOX family in ECM remodeling during 
normal physiological processes has been established in a variety of 
tissues. In the ovary, LOX is activated during ovulation, following 
follicle rupture and is critical in collagen synthesis and reassembly 
in the ovarian follicle (231). Several studies have demonstrated 
the expression of LOX in granulosa cells (232–234), and its 
expression and activity is tightly controlled by follicle-stimulating 
hormone during follicle development (232, 234). Wang et  al. 
(197) initially showed that a single nucleotide polymorphism 
of the LOX gene, G473A, correlated with advanced stages and 
increased susceptibility to EOC in a Chinese population. This 
finding was supported by Wu et al. (198). In hypoxic conditions, 
hypoxia inducible factor-1α (HIF-1α) induced LOX expression 
and facilitated tumor migration, invasion, and metastasis in a 
range of cancers (229). LOX and HIF-1α overexpression were 
observed in hypoxic EOC cells, with expression levels correlat-
ing significantly with metastasis and tumor stage in EOC (199). 
HIF-1α upregulation induced LOX transcription through the 
accumulation of reactive oxygen species, subsequently repress-
ing E-cadherin. Loss of E-cadherin was observed to promote 
EOC cell migration in vitro and tumor growth in vivo, while also 
correlating with tumor stage, differentiation, metastasis, and a 
poorer 5-year survival rate (200).

LOXL2
LOXL2 plays a similar role to LOX in crosslinking collagen and 
elastin in the ECM, contributing to the stability and strength of 
the tissue (226). LOXL2 overexpression has been linked to the 
aggressiveness of breast (235), skin (236), and colon cancers 
(237). Specific upregulation of the LOXL2 protein is found in 
EOC endothelial cells, where inhibition of LOXL2 reduced 
endothelial cell concentration within the tumor (201). A study 
by Zaffryar-Eilot et al. (202) confirmed the direct role of LOXL2 
in angiogenesis, with LOXL2 inhibition decreasing microvessel 
density for the normalization of tumor-associated vasculature 
resulting in reduced tumor hypoxia with better response to 
therapy (238).

LOXL4
LOXL4 is expressed in head and neck squamous cell carcinoma 
and gastric cancer cell lines, and upregulation of LOXL4 sig-
nificantly correlates with tumor stage and lymph node metastases 
(239–241). LOXL4 promotes proliferation, migration, and inva-
sion in gastric cancer cell lines in vitro (241). A study by Sebban 
et  al. (203) demonstrated a tumor suppressive effect in EOC 
in vivo, while also indicating a contrasting role of LOXL4 splice 
variants in vitro, with the variants enhancing tumor progression 
and metastatic potential. This study demonstrates the paradoxi-
cal roles of LOXL4 and its alternatively spliced isoforms. Specific 
variants of LOXL4 could be promising as a prognostic marker and 
a potential therapeutic target.

To our knowledge, only LOX, LOXL2, and LOXL4 have been 
studied in EOC. Aberrant LOX, LOXL2, and LOXL4 expression 
are implicated in dysregulating the ECM and inducing a malig-
nant phenotype and promoting tumor progression in EOC. 
However, additional studies are needed to elucidate further 
potential roles of these LOX family members in EOC, where a 
wide range of studies have demonstrated a strong association 
between these enzymes and several tumorigenic pathways in 
a variety of other cancers (230). Due to the protumorigenic 
role of LOX, LOXL2, and LOXL4, inhibition of these LOX 
family members in conjunction with chemotherapy could 
potentially enhance its antitumorigenic effect and result in a 
better prognosis.

Hyaluronan Synthases
Hyaluronan synthases (HASs) are integral plasma membrane 
proteins which synthesize HA (242, 243). Three isoenzymes of 
HAS with differing enzymatic activities have been identified 
in humans: HAS1, HAS2, and HAS3 (244). Overexpression of 
HAS is implicated to promote growth and metastasis in a variety 
of cancers through excessive production of HA (245–249). In 
one study of ovarian cancer by Yabushita et al., HAS1-negative 
tumors were associated with increased overall survival and 
lower microvessel density relative to HAS1-positive tumors. 
No relationships were found between the levels of HAS2–3 and 
tumor stage, survival, chemotherapy, or microvessel density 
(204). Weiss et  al. (206) compared the expression of HAS1–3 
mRNA in serous EOC between effusions, primary carcinomas, 
and solid metastases, with differential HAS overexpression 
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observed in each region. HAS1, HAS2, and HAS3 were overex-
pressed in effusions, solid metastases, and primary carcinomas, 
respectively. High HAS1 expression in EOC effusions cor-
related with shorter survival in agreement with the results of 
Yabushita et al. (204). However, a study by Nykopp et al. (205) 
demonstrated barely detectable HAS1 in EOC and no consistent 
increase in the HAS2 and HAS3 expression. These result suggest 
unique roles for each HAS isoenzyme during different stages 
of EOC progression, although no clear associations have been 
identified to date.

Hyaluronidases
Hyaluronan synthesis by HASs is opposed by the enzymatic 
action of hyaluronidases (HYALs), which degrade HA. The fam-
ily of HYALs consists of six members (250), of which HYAL1 
and HYAL2 are particularly well characterized (205). HYAL1 
and HYAL2 are the main members responsible for HA turno-
ver, with these two enzymes bearing several physiological and 
pathological roles, such as wound healing and inflammation 
(250, 251). High molecular weight HA is antiangiogenic; HYALs 
cleave HA into low molecular weight HA fragments which may 
promote angiogenesis, subsequently enhancing tumor growth 
(252). While chromosomal loss at the locus encoding HYAL1–3 
(3p21.3) is common in both tumor and stromal tissue from EOC 
patients, this allelic loss is not associated with increased tissue 
HA levels (207). HYAL activity and expression were reported 
to be reduced and differentially expressed in malignant EOC 
compared to its benign and normal counterparts (44, 206). 
HYAL1 was absent in all serous EOC samples (206); however, 
expression of HYAL1 in EOC is subtype specific, with clear cell 
and mucinous EOC showing elevated levels of HYAL1 compared 
to serous and endometrioid EOC (208). Comparing transcript 
levels in serous EOC between primary tumors, solid metastases, 
and effusions, HYAL2 splice variant, HYAL2-var2, was signifi-
cantly overexpressed in solid metastases, and HYAL3 var1–3 was 
significantly underexpressed in solid metastases. A positive cor-
relation was identified between HYAL3 levels in effusions and 
paclitaxel treatment (206).

Regulation of HA synthesis and degradation is mediated 
by HASs and HYALs, respectively. As described above, HA 
accumulation is associated with the aggressiveness of EOC and 
has been demonstrated to promote EOC progression. The dis-
placement of this otherwise delicate equilibrium of controlled 
HA synthesis and degradation by HASs and HYALs in EOC has 
major implications on the subsequent structure and function 
of the ECM and therefore may represent promising targets for 
cancer treatment.

DiSCUSSiON

The ECM is a dynamic structure. It is crucial in regulating specific 
function, development, and homeostasis, achieved by organizing 
and regulating the plethora of ECM components unique to each 
differentiated tissue (4, 7, 176, 253). Remodeling of the ECM in 
EOC is thought to promote tumor progression. The interactions 
between the ECM and the resident cells are tightly regulated, and 
disruption of the ECM has severe consequences as described in 
this review. It is evident that the ECM in EOC remains relatively 
unexplored, with the mechanisms involved in tumor progression 
yet to be fully elucidated. To fully understand how alterations to 
the ECM influence tumorigenesis, it is essential to investigate not 
only how the ECM interacts with tumor cells, but also how the 
ECM components interact with each other.

The constituents of the ECM offer potential biomarkers and 
therapeutic targets, where the manipulation of the ECM com-
position may complement current chemotherapeutic treatment. 
Enzymes involved in ECM remodeling and elevated in EOC, 
such as MMPs and LOXs, which have been shown in preclinical 
models to promote tumor progression in other cancers, could 
also be a potential therapeutic targets in EOC. Though CA-125 
is clinically approved to be used as a serum tumor biomarker 
for ovarian cancer, Moss et  al. (254) demonstrated its poor 
sensitivity and specificity, with a high false positive rate. Other 
than CA-125, there are currently no reliable biomarkers for 
the staging and prognosis of ovarian cancer. With low overall 
survival rates for patients diagnosed with advanced disease, a 
sensitive and specific diagnostic biomarker of early stage EOC 
is needed. Tenascins have a limited presence in healthy tissues, 
hence could potentially serve as biomarkers for early diagnosis 
of EOC.

Though the identification of individual ECM components 
allows us to understand their basic functions in EOC, the ECM 
must be considered not just as its individual elements, but as a 
collective entity. EOC progression is multifactorial and influ-
enced by an altered ECM. The ECM constituents described in 
this review reflect the complexity of the EOC microenvironment 
which is an evolving area of research. Advances in understanding 
how the ECM contributes to EOC pathogenesis and progression 
will assist in the development of better treatments for EOC.
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