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Introduction

Precise coordination of cellular processes requires prompt specification of protein function in

response to various stimuli. This specification includes regulating protein abundance, localiza-

tion, catalysis, and binding. Post-translational modifications (PTMs) provide cells the plasticity

for dynamic and reversible control of protein function. Viral infections provide an exciting

lens through which to study PTMs, since PTMs contribute to both cellular responses to infec-

tion and viral hijacking of the host. PTMs enhance the already multifunctional nature of viral

proteins and offer another level of functional diversity within limited genetic space. Influenza

virus protein functions are fine-tuned by diverse types of PTMs, including phosphorylation,

ubiquitination, SUMOylation, neddylation, ISGylation, glycosylation, ADP-ribosylation, pal-

mitoylation, and acetylation. All of the major viral proteins are subject to at least one type of

PTM. Additionally, as influenza viruses encode no known protein-modifying enzymes, all of

these PTMs are mediated by host machinery. Here, we use influenza virus and its proteins as

exemplars for how PTMs impact virus replication (Fig 1).

Do PTMs regulate the function of the influenza ribonucleoprotein

complex?

Influenza virus transcribes and replicates its negative single-stranded RNA genome via a

virally encoded RNA-dependent RNA polymerase (RdRp). This is performed by the viral ribo-

nucleoprotein complex (RNP), containing genomic RNA encapsidated by the viral nucleopro-

tein (NP) and bound at both termini by a single heterotrimeric RdRp. While all components

of the RNP are post-translationally modified, mechanistic consequences of NP PTMs have

been particularly well described. During infection, newly made NP traffics from the cytoplasm

into the nucleus and then back to the cytoplasm as either free NP or assembled RNPs. NP traf-

ficking is regulated by both phosphorylation and SUMOylation [1,2]. Phosphorylation of NP

at its N-terminal nuclear localization signal inhibits interaction with nuclear import factors,

whereas internal NP phosphorylation inhibits interactions with nuclear export factors [1].

SUMOylation appears to be important for nuclear retention, as mutant NPs lacking SUMOy-

lation sites are prematurely exported to the cytoplasm [2]. Viruses encoding NP SUMO-site

mutants exhibit profound defects in replication and rapidly revert to wild type.

Nuclear NP oligomerizes along the length of newly synthesized genomic RNA. This process

is negatively regulated for both influenza A and B viruses by NP phosphorylation at conserved

sites on apposing sides of the homotypic interface [3,4]. Preventing phosphorylation by
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mutagenesis results in hyperoligomerization of NP, and deleting the responsible host kinase

causes severe defects in RNP assembly, function, and viral replication; these data suggest that

phosphorylation at these positions is critical for incorporation of NP into nascent RNPs [5].

NP oligomerization during influenza B virus infection is also inhibited by ISGylation, but in

this case, the PTM is a possible antiviral response [6].

Fig 1. Post-translation control of key steps during the influenza virus replication cycle. Simplified diagram of key steps during the influenza virus life cycle

highlighting events that are regulated by PTMs to viral or host proteins. The specific modifications, target proteins, and references are listed for each step. Two

processes are highlighted in depth; these examples were chosen because the PTMs and causative host enzymes are known and the modifications have discrete effects

on replication. In addition, a large number of PTMs have been identified on viral proteins, but no discrete function has yet been assigned [14]. Ac, acetylation;

ADPr, ADP-ribosylation; cRNA, plus-sense genomic RNA; dsRNA, double-stranded RNA; Glycos., N-linked glycosylation; ISG15, ISGylation; Nedd8, neddylation;

NP, nucleoprotein; NS1, nonstructural protein 1; PO4, phosphorylation; PTM, post-translational modification; RNP, ribonucleoprotein complex; SA, sialic acid;

SUMO, SUMOylation; Ub, ubiquitin and ubiquitination; vRNA, minus-sense genomic RNA.

https://doi.org/10.1371/journal.ppat.1007205.g001
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All RNP components are ubiquitinated, and perturbing global ubiquitination impairs RNP

function [7]. In certain contexts, ubiquitination results in protein turnover, especially when

polyubiquitin chains are appended [8–11] (Fig 1). However, ubiquitination also plays a regula-

tory role during infection. NP is dynamically monoubiquitinated and deubiquitinated at lysine

184 (K184) [12,13]. This modification may regulate interaction of NP with genomic RNA to

facilitate genome replication. Thus, ubiquitination of RNP proteins plays dual roles, both

inhibiting and promoting replication.

Functions of additional RNP PTMs are less well defined. Phosphorylation of the three poly-

merase subunits—PB1, PB2, and PA—has unknown consequences [14]. PB1, PA, and NP

undergo N-terminal acetylation with no specific assigned functions [14]. NP is also acetylated

on internal lysine residues [15,16]. Mimicking NP acetylation disrupts the ability of NP to sta-

bilize replication intermediates. Notably, NP is acetylated on K184, the same residue that is

monoubiquitinated, suggesting potential cross-talk between different PTMs. The polymerase

subunits PB2 and PA are ADP-ribosylated [8]. ADP-ribosylation promotes their ubiquitina-

tion and subsequent degradation, providing another example of PTM cross-talk. In an appar-

ent paradox, neddylation of PB2 blocks viral replication [17], yet inhibition of the neddylation

pathway also results in poor replication [18]. In sum, RNP PTMs serve both as tunable ways to

regulate polymerase function and as antiviral responses that attempt to block replication.

What do PTMs do for other influenza virus proteins?

In addition to regulating RNPs, PTMs impact genome trafficking and evasion of antiviral

responses. RNPs assemble in the nucleus and are exported to the cytoplasm, where they traffic

to sites of assembly and budding. Export requires the viral matrix protein (M1) and the nuclear

export protein (NEP). Current data support a daisy-chain model in which the RNP interacts

with M1, M1 interacts with NEP, and NEP interacts with the cellular export machinery. Phos-

phorylation of M1 enhances import [19]. M1 phosphoablative mutants remain in the cyto-

plasm, whereas M1 phosphomimetic mutants or a temperature-sensitive phosphorylation

hypermorph are retained in the nucleus [19,20]. All of these mutants exhibit replication

defects. Formation of the RNP-M1-NEP daisy chain and its export are affected by M1

SUMOylation and possibly phosphorylation on NEP [14,21]. M1 SUMO-site mutants exhibit

decreased interaction with RNPs, resulting in vRNA nuclear export defects and reduced viral

titers. Phosphorylation of NEP at several conserved residues adjacent to its nuclear export sig-

nal may also control export, although functional analyses indicate that these sites are not essen-

tial regulators of NEP function [22]. Whether M1 phosphorylation is reversed concomitant

with SUMOylation and nuclear export remains to be determined, but it could represent a sys-

tem for dynamic control of M1 localization throughout infection. Once exported, RNPs are

trafficked to the plasma membrane, where ubiquitination of the viral membrane protein M2

plays a key role in particle assembly and release [23].

PTMs are important for the two main viral proteins that engage the host immune response:

the nonstructural protein 1 (NS1) and hemagglutinin (HA). NS1 is the canonical antagonist of

innate immune responses. NS1 sequesters dsRNA to avoid detection by host sensors and also

antagonizes and directly binds these sensors, including RIG-I and TRIM25. Phosphorylation

and ISGylation of NS1 disrupt protein–RNA interactions, while phosphorylation also disrupts

protein–protein interactions [24–27]. In this case, the host utilizes PTMs to disarm viral coun-

termeasures. PTMs on the viral glycoprotein HA, however, are exploited by influenza virus to

evade immune detection and increase viral spread. The viral glycoprotein HA mediates attach-

ment and entry. HA is the immunodominant viral protein that elicits most of the humoral

response from infection. Glycosylation of viral envelope proteins is a well-described mode of
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immune evasion, and gain or loss of specific N-linked glycosylation sites helps shield influenza

HA from antibody recognition and neutralization [28]. HA glycosylation has more recently

been shown to increase virulence and fitness after immune escape [29,30]. PTMs of influenza

virus proteins vary by host species as well, with potential impacts on replication and pathoge-

nicity. For example, recent data indicate that lower vaccine efficacy results in part from differ-

ential HA glycosylation that occurs when viruses are grown in mammalian or avian hosts [31].

Does influenza virus exploit PTMs to modulate host protein function?

Host cell reprograming during infection often focuses on wholesale changes in gene transcrip-

tion, such as the induction of interferon-stimulated genes. Remodeling of the host cell might

be more broadly considered to also include changes in protein degradation, subcellular locali-

zation, and differential activation of cell signaling cascades. Cellular proteins and their PTMs

regulate reprogramming events, a feature exploited by influenza virus. Influenza infection

results in global changes in PTMs of the host proteome, including triggering kinase cascades

[32], reprogramming of cellular SUMOylation [33], stimulation of ADP-ribosylation [34], and

activation of the neddylation pathway [18]. PTMs themselves can also be modified. The viral

neuraminidase (NA) mediates release of new viral particles by cleaving sialic acid from host

glycans. Interestingly, NA removes sialic acid moieties from viral and cellular proteins, includ-

ing the host cytokine TGF-β, leading to its activation as part of a protective response to infec-

tion [35,36].

Influenza viruses indirectly utilize PTMs to co-opt cellular machinery. The ubiquitin

machinery plays key roles at multiple steps during entry (Fig 1). Infection-triggered cascades

promote ubiquitination of M1 to facilitate release of the incoming virion [37]. Influenza virus

entry also relies on the cellular E3 ligase NEDD4 to ubiquitinate and reduce levels of the entry

inhibitor IFITM3 [38]. Influenza virions contain nonconjugated ubiquitin chains, which upon

entry direct incoming viral cores to the cellular aggresome, where they are efficiently uncoated

and associated with the microtubule network for nuclear import of released RNPs [39]. There-

fore, the host’s PTM machinery modifies both viral and host proteins, creating a cellular milieu

conducive for replication.

Given what we know about PTMs and influenza virus, what don’t we yet

know?

Studies of PTMs have shed light on our understanding of the influenza replication cycle while

also raising exciting new questions. Whereas PTMs have been mapped to all viral proteins—

with most being modified at multiple sites by diverse PTMs—the host effectors and functional

outcomes of most PTMs remain unknown. While some of the PTMs have clearly defined

activities (see above), perhaps the largest question is whether all of the modifications discov-

ered so far have functional impacts during infection. Even if all of the PTMs are functionally

important, it is possible that some modifications are required only under discrete circum-

stances but dispensable at other times, making this a more complicated question to address.

We also have little appreciation for how these modifications change temporally during infec-

tion. It has been proposed that dynamic PTMs could dictate progression of the replication

cycle. Indeed, it is the reversible nature of these PTMs that make them attractive mechanisms

for dynamic regulation. Yet, how specific PTMs are orchestrated during influenza virus infec-

tion and whether this serves to temporally order viral processes has only begun to be explored.

Viral proteins are notoriously multifunctional, and understanding how the varied tasks are

separated remains elusive. An exciting possibility is that PTMs parse these different functions

by establishing distinct populations of the same viral protein. For example, the separation of
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viral transcription from genome replication during influenza virus infection is incompletely

understood. Viral proteins, small viral RNAs, and various host proteins have all been impli-

cated in biasing polymerase output. The proteins of the viral RNP are modified by multiple

PTMs, and PTMs could provide additional mechanisms to establish discrete populations of

transcribing versus replicating RNPs.

The roles of PTMs have generally been characterized in isolation, raising the question of

how these modifications work in concert. Moreover, since certain amino acid residues can be

subject to many different PTMs, a single residue may be competitively or differentially modi-

fied over time. Several examples of PTM cross-talk on influenza virus proteins have already

been identified [8,12,16], suggesting additional levels of regulatory complexity. Additionally,

continuing advances in detection and characterization of PTMs will undoubtedly uncover new

facets of influenza virus biology [40]. In summary, influenza viruses utilize PTMs to modulate

multiple steps throughout the viral replication cycle. Infection induces global changes in PTMs

as well as targeted modifications on specific viral proteins. While many PTMs support viral

infection, others are part of antiviral responses. How PTMs change across infection for both

host and viral proteins, how PTMs work in concert during replication, and how they impact

pathogenicity and host range are exciting and open questions.
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