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ABSTRACT
An important feature of Mycobacterium tuberculosis pathogenesis is the ability to control cell death
in infected host cells, including inhibition of apoptosis and stimulation of necrosis. Recently an
alternative form of programmed cell death, necroptosis, has been described where necrotic cell
death is induced by apoptotic stimuli under conditions where apoptotic execution is inhibited. We
show for the first time that M. tuberculosis and TNFa synergise to induce necroptosis in murine
fibroblasts via RIPK1-dependent mechanisms and characterized by phosphorylation of Ser345 of
the MLKL necroptosis death effector. However, in murine macrophages M. tuberculosis and TNFa
induce non-necroptotic cell death that is RIPK1-dependent but independent of MLKL
phosphorylation. Instead, M. tuberculosis-infected macrophages undergo RIPK3-dependent cell
death which occurs both in the presence and absence of TNFa and involves the production of
mitochondrial ROS. Immunocytochemical staining for MLKL phosphorylation further demonstrated
the occurrence of necroptosis in vivo in murine M. tuberculosis granulomas. Phosphorylated-MLKL
immunoreactivity was observed associated with the cytoplasm and nucleus of fusiform cells in M.
tuberculosis lesions but not in proximal macrophages. Thus whereas pMLKL-driven necroptosis does
not appear to be a feature of M. tuberculosis-infected macrophage cell death, it may contribute to
TNFa-induced cytotoxicity of the lung stroma and therefore contribute to necrotic cavitation and
bacterial dissemination.
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Introduction

Mycobacterium tuberculosis is an intracellular pathogen
that resides predominantly in macrophages but also in
other cells including dendritic cells and non-professional
phagocytes such as fibroblasts, adipocytes and endothe-
lial cells.1,2,3 The bacterium has evolved sophisticated
and robust systems to control the biology of its host cell;
preserving its replicative niche, avoiding innate antimi-
crobial mechanisms and manipulating the generation of
adaptive immunity.4,5 The fine control of inflammation
is particularly important for M. tuberculosis because the
bacterium must avoid stimulation of immunity that will
limit its infection whilst maintaining the immune driven
generation of a necrotic pulmonary granuloma, cavita-
tion and subsequent respiratory transmission.

An important component of M. tuberculosis patho-
genesis is the complex control over the mode and timing
of host cell death. In general terms, macrophages
infected with M. tuberculosis may undergo cell death by

two mechanisms, apoptosis or necrosis, with drastically
different outcomes for the host and bacterium. Several
studies have demonstrated that apoptosis of infected
macrophages results in killing of mycobacteria,6–10 prob-
ably by efferocytosis of mycobacteria-containing apopto-
tic bodies and subsequent lysosomal digestion or
oxidative killing.11,12 Additionally, macrophage apoptosis
stimulates protective T cell responses through the
“detour” pathway of antigen presentation.13–15 In con-
trast, necrosis has been observed to facilitate release of
viable bacteria from infected macrophages8,16 which may
be taken up by phagocytes attracted by damage associ-
ated molecular patterns (DAMPs) released by the
necrotic macrophage.17,18 This would allow further intra-
cellular replication producing a cycle of host cell infec-
tion, necrosis and reinfection that may represent an
important part of the generation of necrotic granuloma.
Indeed, stimulation of necrosis is a hallmark of virulent
mycobacterial strains16,19,20 and as such stimulation of
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necrosis is considered a virulence mechanism of M.
tuberculosis.

In more specific terms, it has become apparent that
M. tuberculosis is able to exert an exquisitely complex
control over cell death of the host cell, by having the
capacity to both induce and inhibit apoptosis and induce
necrosis of the host cell. Apoptosis can be induced by the
extrinsic (death receptor) or intrinsic (mitochondrial)
pathways. M. tuberculosis is able to inhibit tumour
necrosis factor alpha (TNFa)-mediated extrinsic apopto-
sis via a number of mechanisms including secretion of
soluble TNF receptor 2 (sTNFR2),21 downregulation of
pro-caspase-8 transcription,22 suppression of caspase-8
expression,23 and upregulation of caspase-8-inhibiting
FLIP molecules transcription.22 However, inhibition of
the extrinsic pathway occurs in the context of activation
of the intrinsic mitochondrial pathway.23 During infec-
tion with avirulent mycobacterial strains such as H37Ra,
mitochondrial outer membrane permeablisation and
release of cytochrome C lead to host cell apoptosis.23

However virulent mycobacterial strains such as H37Rv
induce irreversible mitochondrial inner membrane per-
meablisation, leading to mitochondrial permeability
transition (MPT), causing further loss of mitochondrial
integrity and function.23 This, plus further mechanisms
inhibiting plasma membrane repair,24 leads to necrosis
of the macrophage. Thus a model of macrophage infec-
tion has emerged where mycobacteria preserve them-
selves and their macrophage hosts by inhibition of
apoptosis and then exit the cell to disseminate further
via necrosis.

Necrosis of cells can be induced by a variety of cellular
stresses and until recently was considered to be a disor-
dered mode of death that did not involve intracellular
signalling pathways. However, in the last decade, highly
coordinated modes of programmed necrotic cell death
have been described. Necroptosis is a pharmacologically
tractable necrosis,25 that can be induced by death recep-
tors including TNFR1,26,27 type I interferon,28 and recog-
nition of pathogen-associated molecular patterns
(PAMPS) by pattern recognition receptors including
toll-like receptors TLR3, TLR4, and the cytosolic DNA-
dependent activator or IFN regulatory factors DAI/
ZBP1.29 Necroptosis occurs when cell death is induced
by apoptotic stimuli under conditions where apoptotic
execution is inhibited. In the case of TNFa-stimulated
necroptosis, when TNFa signalling occurs in the pres-
ence of caspase inhibition (such as the pan caspase inhib-
itor zVAD.fmk30), the receptor interacting kinases
RIPK1 and RIPK3 associate and become phosphorylated
and the pseudokinase mixed lineage kinase domain-like
protein (MLKL) is recruited and phosphorylated by
pRIPK3.27,31,32 The resulting complex translocates to the

nucleus and then to the cell membrane where oligomer-
ized pMLKL has pore forming activity and causes
necrotic cell lysis.33 Necroptosis can be inhibited using
the RIPK1 inhibitor necrostatin-1 (Nec-1).34,35 RIPK1
also plays a role in cell survival by limiting capsase-8 and
TNFR-induced apoptosis,36 as demonstrated by perinatal
lethality in ripk1¡/¡ mice.37 Additionally, RIPK1 in com-
plex with RIPK3, FADD and caspase-8 can mediate apo-
ptosis; as such RIPK1 dependence of cell death (such as
cell death that can be inhibited by Nec-1) does not in
itself confirm necroptosis as a mechanism.25

Necroptosis has been described in a number of patho-
logical conditions with overt inflammatory signatures
including Crohn’s disease,38 and acts as a defence mecha-
nism against some viral pathogens such as Vaccinia virus
and murine cytomegalovirus.26,39,40 Accordingly, viruses
have evolved mechanisms to inhibit necroptosis to
counter this mechanism.40,41 Necroptosis has also been
observed in bacterial infections including Salmonella and
Listeria, where its induction was associated with loss of
immune control and increased pathogen replication.28,42

More recently, programmed necrosis was reported in
Mycobacterium marinum infection of leukotriene A4
hydrolase (LTA4H) mutant zebrafish, which express
high levels of TNFa.43

TNFa is a pivotal cytokine in tuberculosis, being
essential for protection but, paradoxically, at high levels
also responsible for the generation of tissue necrosis,
increased tissue pathology and enhanced bacterial
growth.43–46 Given that M. tuberculosis is able to inhibit
extrinsic apoptosis pathways in the context of high circu-
lating levels of TNFa, our focus was drawn to the poten-
tial role of TNFa stimulated necroptosis in M.
tuberculosis infection.

Much of what we know aboutM. tuberculosis host cell
death has been gained from studies of macrophage infec-
tion. However, it has long been established that infection
with M. tuberculosis sensitises fibroblasts to TNFa toxic-
ity.47,48 Of further intrigue, infected fibroblasts are seen
in the lungs of cadavers with latent M. tuberculosis infec-
tion but are not seen during active M. tuberculosis infec-
tion.2 An enhanced sensitivity of infected fibroblasts to
TNFa has been postulated to account for this but no
mechanistic detail of the mode of cell death has been
elucidated.48

Given the prominent role of TNFa in tuberculosis and
the capacity of M. tuberculosis to inhibit apoptosis in
macrophages and sensitize fibroblasts the toxic effects of
TNFa, we hypothesised that necroptosis may occur dur-
ing M. tuberculosis infection and may represent an
important mode of necrotic cell death. Thus, we investi-
gated the occurrence of necroptosis in infected murine
macrophage and fibroblast cells in the presence of
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TNFa. To definitively demonstrate the presence or
absence of necroptosis, we determined the occurrence of
phosphorylated MLKL in cells exposed to TNFa, and in
vivo in murine granulomatousM. tuberculosis lesions.

Results

In order to investigate the presence of necroptosis in
response to M. tuberculosis infection, we first compared
the capability of murine fibroblasts and human and
murine macrophages to undergo necroptosis induced by
TNFa C zVAD treatment, as this capacity is not univer-
sal in eukaryotic cells.27 Monolayers of cells (plus control
wells) were treated with TNFa (plus DMSO control),
TNFaCzVAD, or TNFaCzVADCNec-1. After 20 hours,
cell survival was determined by crystal violet assay. As
seen in Fig. 1a-b, primary human monocyte-derived
macrophages and U937 macrophages underwent cell
death in response to TNFaCzVAD treatment, and this
could be inhibited by the RIPK1 inhibitor Nec-1. How-
ever, THP-1 macrophages (Fig. 1c) were not sensitive to
TNFaCzVAD treatment. In the murine system, L929
fibroblasts (a cell type well characterised in its ability to
undergo necroptosis),27 and J774A.1 macrophages
underwent cell death in response to TNFaCzVAD treat-
ment, and cell death could be inhibited by Nec-1
(Fig. 1d-e). However, RAW 264.7 macrophages did not
share the capacity to undergo cell death stimulated by
TNFaCzVAD treatment (Fig. 1f).

We focussed on characterising cell death in murine
L929 fibroblasts and murine J774A.1 macrophages. As
seen in Fig. 1g, cell death induced by TNFaCzVAD
treatment in both L929 fibroblasts and J774A.1 macro-
phages was confirmed to be necroptosis by detection by
Western blot of phosphorylation of MLKL at Ser345,
which represents an essential step in the canonical effec-
tor mechanism of necroptotic death.49 We further sought
to characterise the cell death characteristics of J774A.1
macrophages undergoing necroptosis. J774A.1 cells were
induced to undergo apoptosis (by treatment with cyclo-
hexamide), necrosis (by H2O2-treatment) and necropto-
sis (by TNFaCzVAD treatment) and examined by
confocal microscopy. As seen in Fig. 1h, cells undergoing
necroptosis undergo necrotic cell death that lacks the
apoptotic hallmarks of nuclear condensation and
fragmentation.

Having demonstrated that L929 fibroblasts and
J774A.1 macrophages are able to undergo necroptosis,
we next investigated the presence of necroptosis in M.
tuberculosis infection of these cell types. L929 fibroblasts
and J774A.1 macrophages were infected with M. tuber-
culosis in the presence and absence of TNFa and the
RIPK1 inhibitor Nec-1. Cell survival was determined

using a crystal violet assay. As seen in Fig. 2a and Fig. 2c,
M. tuberculosis induced cell death in both L929 fibro-
blasts and J774A.1 macrophages in a dose-dependent
manner. In the absence of TNFa this cell death was not
inhibited by Nec-1 and thus was not dependent on
RIPK1. Addition of TNFa to the cultures following
infection induced an additional proportion of cell death
that was inhibited by Nec-1, demonstrating RIPK1-
dependent cell death in both cell lines in the combined
presence of TNFa and M. tuberculosis infection. We
next investigated the ability of M. tuberculosis and TNFa
to induce phosphorylation of MLKL at Ser345 (pMLKL).
The Western blot in Fig. 2b shows M. tuberculosis and
TNFa synergise to induce necroptosis via phosphoryla-
tion of Ser345 of MLKL in L929 fibroblast cells. How-
ever, despite the capability of J774A.1 to undergo
necroptosis, and the occurrence of RIPK1-dependent cell
death in M. tuberculosis and TNFa treated macrophages,
these dying cells did not undergo phosphorylation of
MLKL (Fig. 2d). Thus, we conclude that M. tuberculosis
does not induce classical necroptosis in this macrophage
cell type.

We further sought to characterise the involvement of
other effector molecules of the necroptotic pathway in
macrophage cell death in response to M. tuberculosis
infection in the presence and absence of TNFa. In the
M. marinum/zebrafish model of tuberculosis, TNFa
excess leads to RIPK1-RIPK3 dependent cell death medi-
ated through phosphoglycerate mutase family member
5 (PGAM5) and mitochondrial reactive oxygen species
(ROS) production.43 We therefore investigated the role
of RIPK3 in J774A.1 macrophages by silencing the
RIPK3 gene using sh-RNA (Fig. 3a-b). As seen in Fig. 3c,
RIPK3-deficient macrophages were protected from cell
death induced byM. tuberculosis, however this effect was
independent of TNFa signalling. Furthermore, addition
of the mitochondrial ROS inhibitor Necrox-2 (Fig. 3d)
was similarly able to rescue a proportion of cell death in
M. tuberculosis infected macrophages, and this effect was
similarly independent of TNFa signalling. Thus although
pMLKL-driven necroptosis through TNFa-signalling
does not occur in murine macrophages, pharmacologi-
cally tractable programmed necrosis driven by RIPK3
and mitochondrial ROS does occur in this cell type in
response toM. tuberculosis infection.

We finally sought to investigate the presence of
pMLKL-driven necroptosis in vivo in mice infected with
M. tuberculosis. Granulomatous TB lesions were immu-
nostained for pMLKL. As seen in Fig. 4a, granulomatous
regions were heavily consolidated with abundant acid
fast bacilli (Fig. 4a inset), morphologically identifiable
foamy macrophages and areas of necrosis. pMLKL
immunohistochemistry of the M. tuberculosis infected
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Figure 1. (For figure legend, see page 1824.)
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lungs demonstrated necroptosis specifically in cells in
granulomatous regions with necrotic debris (Fig. 4c-d).
Both nuclear and cytoplasmic staining was observed in
these cells, consistent with the scenario that upon
activation, pMLKL translocates first to the nucleus and
then to the cytoplasm.33 It is not possible in our study to
definitively determine the identity of pMLKL-positive
cells but it was notable that obvious foamy macrophages
were pMLKL negative even in areas where proximal cells
were pMLKL-positive (Fig. 4d, white arrow). Addition-
ally, pMLKL-positivity tended to occur in cells with a
fusiform nuclear and cell body morphology which is
consistent with non-professional phagocytes such as
fibroblasts of the lung stroma.2

Discussion

There is compelling evidence that M. tuberculosis exerts
a finely balanced control over the mode of death of its
parasitized host cell.19,50 A number of studies show that
following a period of apoptosis inhibition, infected mac-
rophages undergo a form of death that resembles necro-
sis. This is supported by the experimental observations
that low multiplicities of infection with virulent
M. tuberculosis inhibit macrophage apoptosis,51 whereas
high multiplicities of infection result in necrosis.19,52,53

The association of this phenomenon with virulent myco-
bacterial strains19,20,23,54,55 has led to a postulated sce-
nario that necrosis is a virulence mechanism which
enables bacterial escape to infect new phagocytes or into
the extracellular milieu, concurrent with the generation
of inflammation to drive the development of a necrotic
granuloma which is essential for transmission. As is the
case for many virulence features of M. tuberculosis, there
appears to be a plethora of mechanisms that contribute
to the regulation/inhibition of apoptosis. These may

include ligation of TLR2 receptors by bacterial ligands
such as lipoarabinomannan (LAM) and the 19KDa lipo-
protein,56,57 the activities of bacterial NuoG58 and
SecA2,59 and upregulation of host anti-apoptotic pro-
teins Mcl-160 and the Bcl-2 family member bfl-1/A1.61

However, there is a paucity of information regarding the
mechanisms by which M. tuberculosis infected cells
undergo necrosis, although individual molecular players
are being discovered such as Rv2626c and PPE68; these
genes contribute to induction of mitochondria-driven
necrosis and enhance bacterial escape from the
macrophage.62

There are likely a number of ways thatM. tuberculosis
causes cellular necrosis, but here we demonstrate for the
first time that in a microenvironment of excess TNFa,
M. tuberculosis-infected murine fibroblasts undergo nec-
roptosis via RIP1K- and pMLKL-dependent mecha-
nisms. Murine macrophages undergo RIPK1-dependent
necrosis-like cell death, but do not undergo necroptosis
because the scenario was not associated with phosphory-
lation of the MLKL death effector. We additionally dem-
onstrate that necroptosis occurs in vivo in murine lung
granulomas, where foamy macrophages lack pMLKL yet
were spatially close to pMLKL-expressing cells including
those with fusiform nuclei resembling fibroblasts.2

Necroptosis has been implicated as a mechanism of
cell death in response to a range of micro-organisms
including murine cytomegalovirus, Vaccinia virus,
Salmonella typhimurium, and Mycobacterium mari-
num.43,63 However, direct comparison between these
studies is complicated by varying definitions of “necrop-
tosis”, as not all studies demonstrate definitive phosphor-
ylation of MLKL. In the M. marinum/zebrafish model of
tuberculosis, TNFa excess leads to RIPK1-RIPK3 depen-
dent cell death, involving PGAM5 and mitochondrial
ROS production.43 Although use of the MLKL inhibitor

Figure 1. (see previous page.) Necroptosis of macrophage cell lines, human MDMs and murine fibroblasts treated with TNFaCzVAD. (a)
Human monocyte-derived macrophages (HMDM’) were treated for 20 hours with 50ng/mL TNFCDMSO, TNFC30 mM zVAD and
TNFC30 mM zVAD C 30 mM Nec-1, before measuring cell survival using a crystal violet assay (normalised to TNFaCDMSO treated con-
trol cells). Results are mean C/- SEM n D 4, and are representative of 3 independent experiments. (b) U937 macrophages were treated
for 20 hours with 50ng/mL TNF, TNFC30 mM zVAD and TNFC30 mM zVAD C 30 mM Nec-1, before measuring cell survival using a crys-
tal violet assay (normalised to untreated control cells). Results are mean C/- SEM n D 10, and are representative of at least 2 indepen-
dent experiments. (c) THP-1 were treated for 20 hours with 50ng/mL TNFCDMSO, TNFC30 mM zVAD, and TNF C 30 mM zVAD C
30 mM Nec-1, before measuring cell survival using a crystal violet assay (normalised to DMSO treated control cells). Results are mean
C/- SEM n D 10. (d) L929 fibroblasts, (e) J774A.1 macrophages and (f) RAW macrophages were treated for 20 hours with 10ng/ml
TNFC DMSO, TNF C 30 mM zVAD, and TNF C 30 mM zVAD C 30 mM Nec-1. Results are mean C/- SEM n D 10, are expressed as a per-
centage of DMSO treated controls, and representative of 2–3 independent experiments. Statistics are one way ANOVA with Tukey’s
post-test. ����p<0.0001. (g) Western blot of lysates of L929 fibroblasts and J774A.1 macrophages that had been treated with 10ng/ml
TNFa and 25ng/ml TNFa respectively in the presence of 30 mM zVAD.fmk for 18 hours, developed with antibodies against MLKL phos-
phorylated at Ser345, or bIII tubulin as a loading control. Results are representative of 2–3 independent experiments. (h) J774A.1 macro-
phages were seeded on glass slide flasks and untreated or treated with cyclohexamide 2.5 mg/ml, 0.5mM H2O2, TNFa 25ng/ml, TNF C
30 mM zVAD, and TNF C 30 mM zVAD C 30 mM Nec-1. After 20 hours, cells were stained with Alexa-568-phalloidin (displayed as red)
and counterstained with DRAQ5 (displayed as blue) before viewing by confocal microscopy. Results are representative of 2 independent
experiments.
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Figure 2. M. tuberculosis induces RIPK1-dependent cell death in the presence of excess TNFa in fibroblasts and macrophages, but only
induces MLKL phosphorylation in fibroblasts. (a) L929 murine fibroblasts were infected with M. tuberculosis for 24 hours, then treated
with DMSO or 30 mM Nec-1 in the presence or absence of 10ng/ml TNFa for 18 hours, before measuring cell survival using a crystal vio-
let assay. Results are mean C/- SEM of n D 6 samples, and are expressed as a percentage of the uninfected control of each treatment.
Statistics are two way ANOVA with Sidak post-test. Ns not significant; ��p<0.01; ����p<0.0001. (b) Western blot of L929 fibroblasts
infected with MOI 20 M. tuberculosis for 24 hours, then treated with TNFa for 24 hours, or with TNFa C 3 mM zVAD for 18 hours, devel-
oped with anti-pMLKL antibody and anti beta-III tubulin antibody. (c) J774A.1 murine macrophages were infected with M. tuberculosis
for 3 hours, then treated with DMSO or 30 mM Nec-1 in the presence or absence of 25ng/ml TNFa for 48 hours. Results are mean C/-
SEM of n D 10 samples, and are expressed as a percentage of the uninfected control of each treatment. Statistics are two way ANOVA
with Sidak post-test. Ns not significant; ����p<0.0001. (d) Western blot of J774A.1 cells infected with MOI 10 M. tuberculosis for 3 hours
and subsequently treated with 25ng/ml TNFa for 24 hours, or with TNF C 30 mM zVAD for 18 hours, developed with anti-pMLKL anti-
body and anti beta-III tubulin antibody. (a-d) All results are representative of at least 2 similar experiments.
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Figure 3. RIPK3 and mitochondrial ROS mediate M. tuberculosis-induced cell death both in the presence and absence of TNFa. (a) WT
J774A.1 macrophages, RIP3K shRNA knockdown J774A.1 macrophages, and control shRNA J774A.1 macrophages were treated for
20 hours with DMSO control or 30 mM zVAD.fmk in the presence of 25ng/mL TNF, before measuring cell survival using a crystal violet
assay. Results are mean C/- SEM of n D 10 samples and are expressed as a percentage of the TNFaCDMSO-treated control for each
condition. Statistics are two way ANOVA with Sidak post-test. ��p<0.01; ����p<0.0001. Results are representative of 3 independent
experiments. (b) Knockdown of RIP3K mRNA was confirmed by RT-PCR, using murine RIP-3 and beta-actin primers (sc-61483-PR and sc-
29192-PR, Santa Cruz). (c) RIP3K hRNA knockdown J774A.1 macrophages, and control shRNA J774A.1 macrophages were infected with
M. tuberculosis for 3 hours, and subsequently incubated in the absence or presence of 25ng/ml TNF for 48 hours, before measuring cell
survival using a crystal violet assay. Results are mean C/- SEM of n D 10 samples, and are expressed as a percentage of the uninfected
control of each treatment. Statistics are two way ANOVA with Sidak post-test. �p>0.05; ���p<0.001; ����p<0.0001. Results are represen-
tative of 2 independent experiments (d) J774A.1 macrophages were infected with M. tuberculosis for 3 hours and incubated with Nec-
rox-2 in the presence and absence of TNFa for 24 hours, before measuring cell survival using a crystal violet assay. Results are mean
C/- SEM of n D 10 samples, and are expressed as a percentage of the uninfected control of each treatment. Statistics are one way
ANOVA with Tukey’s post-test. �p>0.05; ���p<0.001; ����p<0.0001.
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necrosulfonamide suggested a role for MLKL in pro-
grammed cell death in this scenario, definitive phosphor-
ylation of MLKL was not demonstrated. Furthermore,
recent phylogenetic analysis has shown that the members
of the necroptotic signalling pathway are not well con-
served through the animal kingdom; notably, MLKL is
not present in zebrafish, suggesting that the M. mari-
num/zebrafish model does not fully replicate the pro-
grammed necrosis pathways of M. tuberculosis/
macrophage infections when investigating pMLKL-
driven necroptosis.64 Of further importance, not all cell
lines are susceptible to necroptosis induced by TNFa
and zVAD, which has been shown in some cell types to
correlate with RIPK3 expression.27 In our hands, human
primary macrophages, human U937 cells, murine
J774A.1 cells and murine L929 cells were sensitive to
TNFaCzVAD treatment, whereas THP-1 macrophages
and RAW macrophages were not. Furthermore, the abil-
ity of J774A.1 macrophages and L929 fibroblasts to
undergo pMLKL- dependent necroptosis was confirmed
by Western blot, demonstrating their suitability for
studying necroptosis. As necrotic pathways were the
focus of this study, high MOIs (10-40) were used to

infect macrophages and fibroblasts; cell death was
observed to occur in a dose-dependent manner. Infection
of macrophages with low MOI (MOI 3) was not able to
stimulate RIPK1-dependent cell death in the presence of
TNFa. It would be interesting to determine whether nec-
roptosis occurs at low multiplicities of infection (when
inhibition of apoptosis occurs) or whether it is a necrotic
death phenotype that is exclusively dependent on a high
multiplicity of infection.

During the preparation of this manuscript, Zhao et. al.
published an elegant study demonstrating a key role of
RIPK3 in inducing necrosis in M. tuberculosis-infected
macrophages.65 They demonstrate that during infection of
macrophages with virulent M. tuberculosis, a complex of
RIPK1/RIPK3/pro-caspase-8 translocates to the mitochon-
dria. Due to the presence of RIPK3 and Bcl-xL at the
mitochondrial membrane, pro-caspase-8 remains in its
inactive zymogen form; BAK/BAX activation is not initi-
ated and this results in an inhibition of intrinsic apoptosis.
However, RIPK3 is able to stimulate ROS-dependent
necrosis by enhancing the binding of hexokinase II to the
voltage dependent anion channel (VDAC) on the mito-
chondrial membrane, and by triggering cyclophilin-D

Figure 4. Murine tuberculosis granulomas contain non-macrophage cells undergoing pMLKL driven necroptosis. Mice were infected
with M. tuberculosis by intranasal challenge and lung pathology analysed at 21d.p.i. (A) H&E stain. Granulomatous inflammation within
the lung with abundant foamy macrophages and small areas of necrosis (asterisk). Original magnification: 100X. Inset shows Ziehl-Neel-
sen staining revealing numerous acid fast bodies (AFBs) present within the lesion. Original magnification: 400X. (B) Non-immune 1 ͦ anti-
body isotype control staining for immunohistochemistry. Original magnification: 400X. (C) pMLKL immunohistochemistry. Positive
staining within the cytoplasm of elongated cells within the granulomatous inflammation and necrosis. Original magnification: 400X. (D)
pMLKL immunohistochemistry. Positive staining is observed predominantly in cells with fusiform-nuclei (black arrow) adjacent to non-
immunoreactive foamy macrophages (white arrow) and necrotic cell debris. Original magnification: 400X.
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(CypD)-dependent formation of the MPT pore via inter-
action of VDAC and mitochondrial adenine nucleotide
translocator (ANT). Both mechanisms are required for
increased ROS formation and necrosis, and deficiency in
RIPK3 resulted in enhanced survival of macrophages
infected with M. tuberculosis. Interestingly, although
MLKL-expression is increased in macrophages by M.
tuberculosis infection, and MLKL-knockdown inhibited
cell death in M. tuberculosis-infected macrophages, evi-
dence of MLKL phosphorylation was not directly pro-
vided by this study. Our data complement and extend
these findings. We demonstrate RIPK3 and mitochondrial
ROS-dependent cell death occurs in macrophages both in
the presence and absence of TNFa, but that de facto
phosphorylation of MLKL does not occur in this cell type
in response to M. tuberculosis infection, either in vitro or
in vivo in murine tuberculosis granulomas. Furthermore,
RIPK3-deficiency protected macrophages against M.
tuberculosis-induced cell death. However, we demonstrate
that pMLKL-driven necroptosis does occur in fibroblasts
in vitro in the presence of TNFa, and that pMLKL-driven
necroptosis can be detected in vivo in murine TB lung
granulomas, predominantly in non-macrophage cell types
resembling fibroblasts.

M. tuberculosis infection of fibroblasts presents a par-
ticularly intriguing conundrum. Fibroblasts are recruited
to TB granulomas where they are involved in tissue
remodelling, and M. tuberculosis is able to replicate in
fibroblasts in vitro.47,48 In situ PCR has demonstrated M.
tuberculosis-infected fibroblasts in latently infected indi-
viduals, suggesting that fibroblasts and other non-profes-
sional APCs could contain a reservoir of bacteria.2

However, infected fibroblasts are not seen in active M.
tuberculosis infection. This has previously been attrib-
uted to the toxic effects of TNFa in activeM. tuberculosis
infection, where immune competent patients have high
levels of circulating TNFa and pyresis.47,48 Our data
demonstrate that the synergistic effects ofM. tuberculosis
infection and TNFa can cause necroptosis in fibroblasts,
implicating necroptosis as the mechanism for enhanced
toxicity of TNFa in M. tuberculosis-infected fibroblasts
and potentially as the reason why M. tuberculosis
infected fibroblasts are not frequently observed in active
tuberculosis. Furthermore, as proliferation of fibroblasts
and a fibrotic response has been shown to be critical to
the encapsulation of the granuloma and control of tuber-
culosis infection, this raises the possibility that the induc-
tion of necroptosis in fibroblasts by M. tuberculosis and
TNFa may provide an escape route for the pathogen
from the encapsulated granuloma and therefore aid bac-
terial dissemination and transmission.66

Our data support a strategy to pharmacologically tar-
get programmed necrosis in active M. tuberculosis

lesions.25 Active tuberculosis is characterised by necrotic
lung damage, which is both detrimental to the host and
aids release of viable bacteria and their transmission.
Targeting programmed necrosis in macrophages or the
necroptosis pathway in fibroblasts may protect these cells
from the toxic effects of M. tuberculosis and TNFa, pre-
venting necrotic tissue damage, inhibiting cavitation and
augmenting participation in tissue remodelling.

Materials and methods

Bacterial culture

M. tuberculosis GC1237 and H37Rv was grown at 37�C
in Middlebrook 7H9 broth containing 10% albumin/dex-
trose/catalase (ADC) plus 0.1% Tween-80 or on Middle-
brook 7H11 medium containing 0.2% glycerol and 10%
oleic acid/ADC (OADC) enrichment (Becton Dickin-
son). For macrophage infections, bacteria were grown to
late log phase (an OD600nm of 0.8-1.2) in 7H9 broth as
described above, washed 1x in PBS-Tween-80 0.05% and
once in PBS before resuspension in RPMI 1640 complete
medium. OD600nm was used to estimate bacterial num-
bers, with OD600nm D 1 D 1 £ 108 cfu/ml.

Macrophage and fibroblast cell culture

J774A.1 murine macrophage-like cells, L929 murine
fibroblasts, THP-1 human monocytic cells and U937
human monocytic cells were cultured in RPMI 1640
complete medium containing 10% heat inactivated fetal
calf serum (FCS) and 5 mM L-glutamine. RAW264.7
murine macrophage-like cells were grown in DMEM
complete medium containing 10% FCS and 5 mM L-glu-
tamine. J774A.1, L929 and RAW264.7 cells were seeded
in 96-well plates and grown overnight at 37�C in 5%
CO2 before mycobacterial infections and treatments to
induce cell death. THP-1 and U937 monocytes were dif-
ferentiated to macrophages using 25ng/ml PMA for
72 hours, then washed and rested for 24 hours before
treatments to induce cell death.

Human PBMCs were isolated from component dona-
tion blood cones (NHS Blood and Transplant Service) by
density centrifugation using Ficoll-Histopaque. The
PBMC fraction was harvested and monocytes isolated
with CD14 MicroBeads (Miltenyi Biotec). Monocytes
were differentiated to macrophages in complete RPMI
supplemented with 1% sodium pyruvate and 1% penicil-
lin/streptomycin in 24 or 96 well plates with 20ng/mL of
macrophage colony-stimulating factor (M-CSF; Miltenyi
Biotec). Fresh medium with cytokines was added at day
3 and macrophages were used for further experiments
after 6 days.
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Cell Survival Assays

Cells in 96 well plates were treated with TNFa (0-
25ng/ml; Miltentyi Biotec), zVAD-fmk (30 mM, Prom-
ega), necrostatin (30 mM, Enzo) or Necrox-2 (30 mM
Enzo) as indicated. For mycobacterial infections, cells
were infected with GC1237 for the times indicated in
figure legends, and the bacteria removed by gently
washing once with warm PBS-1% FCS before replacing
with complete medium containing the treatments as
indicated. Plates were then washed 2x with PBS, fixed
for 24 hours with 4% paraformaldehyde, washed with
PBS and stained with crystal violet as previously
described.19

Confocal microscopy for cell morphology

J774A.1 cells were seeded in slide flasks, and the follow-
ing day treated with TNF 25ng/ml, zVAD 30mM, Nec-1
30mM, 0.5mM H2O2, and 2.5mg/ml cyclohexamide.
After 20h, cells were washed twice with PBS and fixed
with 4% paraformaldehyde. Cells were washed and per-
meablised with 0.1% Triton-X100 for 3–5 minutes at
room temperature, before staining with Alexa568-phal-
loidin (Molecular Probes) and DRAQ5 (Biostatus),
mounting and viewing with a Zeiss LSM510META con-
focal microscope.

Western blot

Following induction of cell death or mycobacterial
infection, cells were lysed with RIPA buffer containing
protease inhibitor cocktail, 2mM PMSF and 1mM
sodium orthovanadate. M. tuberculosis-infected lysates
were passed twice through 0.22 mm spin filters (Corn-
ing Costar Spin X) before processing under biosafety
level 1 conditions. Protein concentration was measured
using a BCA kit (Pierce) and 20 mg protein was sub-
jected to reducing SDS-PAGE on 10% Bis-Tris gels
(Novex, Invitrogen) and transferred to a 0.2 mm pore
PVDF membrane. Membranes were blocked with 10%
BSA in tris-buffered saline (TBS) for 1 hour at room
temperature, rinsed with 0.1% Tween-20 (TBST), and
incubated overnight at 4�C with primary antibodies
specific for MLKL phosphorylated at Ser345 (EPR9515
(2)) at a dilution of 1:2000, or anti beta III tubulin
antibody (EP1331Y; Abcam) at a dilution of 1:10,000.
Blots were rinsed thrice with TBST for 10 minutes,
and incubated with the secondary reagent goat anti-
rabbit IgG-peroxidase at a dilution of 1:6000 for 90
minutes at room temperature. Membranes were devel-
oped using Clarity ECL Western Blot Substrate (Bio-
Rad) and exposure to autoradiography film.

RIPK3 shRNA knockdown cell lines

J774A.1 macrophages were transduced with lentiviral
particles expressing shRNA of RIP3K (sc-61483-V) or
control shRNA particles (sc-108080) according to the
manufacturer’s instructions (Santa Cruz). Transduced
cells were selected with 1.25 mg/mL puromycin, and
single cell colonies obtained by limiting dilution.
Macrophages were washed and plated without puro-
mycin selection for 24 hours prior to their use in
assays for necroptosis or infection with M. tuberculo-
sis. Knockdown of RIP3K mRNA was confirmed by
RT-PCR, using murine RIP-3 and beta-actin primers
(sc-61483-PR and sc-29192-PR, Santa Cruz).

Mouse infections and immunohistochemistry

Animal experiments were performed in accordance
with the Animals (Scientific Procedures) Act 1986.
Female Balb/c mice were infected intranasally with
approximately 2 £ 102 cfu of M. tuberculosis H37Rv
(sample mean 2.13 £ 102), and sacrificed 21 days
post infection. Excised lung tissue was fixed with 4%
paraformaldehyde for 24 hours and embedded in par-
affin wax. 4 mm tissue sections were dewaxed, rehy-
drated, endogenous peroxidase activity blocked by
incubation with 3% H2O2 in methanol and epitopes
demasked with proteinase K. Samples were incubated
with 1:50 pMLKL antibody in TBS; sequential sec-
tions were run with rabbit IgG as an isotype control.
Samples were incubated with biotinylated horse anti-
rabbit IgG and antibody binding was amplified using
avidin-biotin-peroxidase conjugate. Samples were
developed with NovaRed substrate (Vector Laborato-
ries), and counter stained with Mayer’s haematoxylin.
Acid fast bacilli in lung sections were visualised using
Ziehl-Neelsen staining.

Statistical analysis

One way ANOVA with Tukey’s post-hoc tests, and two
way ANOVA with Sidak post hoc test were performed
using GraphPad Prism v6 software.
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