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Abstract

Background: The healthcare sector is an interesting target for fraudsters. The availability of a great amount of data
makes it possible to tackle this issue with the adoption of data mining techniques, making the auditing process more
efficient and effective. This research has the objective of developing a novel data mining model devoted to fraud
detection among hospitals using Hospital Discharge Charts (HDC) in Administrative Databases. In particular, it is
focused on the DRG upcoding practice, i.e., the tendency of registering codes for provided services and inpatients
health status so to make the hospitalization fall within a more remunerative DRG class.

Methods: We propose a two-step algorithm: the first step entails kmeans clustering of providers to identify locally
consistent and locally similar groups of hospitals, according to their characteristics and behavior treating a specific
disease, in order to spot outliers within this groups of peers. An initial grid search for the best number of features to be
selected (through Principal Feature Analysis) and the best number of local groups makes the algorithm extremely
flexible. In the second step, we propose a human-decision support system that helps auditors cross-validating the
identified outliers, analyzing them w.rt. fraud-related variables, and the complexity of patients’ casemix they treated.
The proposed algorithm was tested on a database relative to HDC collected by Regione Lombardia (ltaly) in a time
period of three years (2013-2015), focusing on the treatment of Heart Failure.

Results: The model identified 6 clusters of hospitals and 10 outliers among the 183 units. Out of those providers, we
report the in depth the application of Step Two on three Hospitals (two private and one public). Cross-validating with
the patients’ population and the hospitals’ characteristics, the public hospital seemed justified in its outlierness, while
the two private providers were deemed interesting for a further investigation by auditors.
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(Continued from previous page)

Conclusions: The proposed model is promising in identifying anomalous DRG coding behavior and it is easily
transferrable to all diseases and contexts of interest. Our proposal contributes to the limited literature regarding
behavioral models for fraud detection, identifying the most ‘cautious’ fraudsters. The results of the first and the second
Steps together represent a valuable set of information for auditors in their preliminary investigation.

Keywords: Data mining, Fraud, Upcoding, Administrative database, DRG

Background

Being Healthcare the target of large public and private
investments, this sector is appetible for frauds. A 2017
OECD report lists some of the major worldwide frauds
related to Healthcare [1]. Among fraudulent behaviors,
the upcoding practice has a paramount economic impact
on Healthcare [2-5]. It consists in the classification of
a patient within a Diagnosis Related Group (DRG), that
produces higher reimbursements [6]. When a patient is
hospitalized by a provider, such provider registers all diag-
nosis and interventions within the Hospital Discharge
Chart (HDC), that affects the final DRG of the single hos-
pitalization once elaborated by the grouper!. The provider
may therefore have the incentive to alter the registrations,
to make the hospitalization fall into a more remunerative
DRG. While this practice is more likely due to unin-
tentional errors by coders in public hospitals, in private
hospitals or private medical practices it might be actu-
ally due to profit maximization purposes [7, 8]. Given the
ever-growing availability of digital data, the adoption of
data mining techniques might support the manual audit
process for fraud detection in an efficient and effective
way.

A small number of studies tried to tackle fraud detection
by adopting supervised techniques [9-12], which despite
their undeniable potential and predictive power, exhibit
the risk of focusing on old patterns and losing predic-
tive capability as new records are evaluated over time
[13]. Due to these considerations, most of the available lit-
erature in the field focuses on unsupervised techniques
[3, 5, 14-23], with the limitation of spotting providers
with very high claiming episodes, which distinguish them-
selves as evident outliers [23]. However, types of fraud
are growing increasingly sophisticated. Patterns detected
from fraudulent and nonfraudulent behaviors become
rapidly obsolete, while fraudulent providers are becoming
smarter in finding more cautious approaches to prevent
investigation [19], as they do not appear within the evi-
dent outliers’ groups [24]. The unsupervised behavioral

LA program based on ICD (International Classification of Diseases) diagnoses,
procedures, age, sex, discharge status, and the presence of complications or
comorbidities. The DRG-Grouper is used to calculate payments to cover
operating costs for inpatient hospital stays. Under the inpatient prospective
payment system (IPPS) payment weights are assigned to each DRG based on
average resources used to treat patients in that DRG.

models suggested in [17] and [19] try indeed to respond
to this limitation. As mentioned in [17], There are two
major reasons why fraud investigation within unsuper-
vised databases does not usually involve these type of
models. First, even though there is no formal compar-
ison, it is likely that behavioral models flag more false
positives than methods based on searching for extreme
outliers, and this increases costs to the healthcare sys-
tem. Secondly, the monetary amounts recovered by the
agencies might be smaller when dealing with cautious
fraudsters. However, the utilization of both types of model
together would provide great value to the healthcare sys-
tem, and literature should devote the proper attention
to the cost of false negatives and the dynamic nature
of fraud.

This study indeed lies in the small group of meth-
ods tailored to support the identification of those less
evident fraudulent providers, while taking into consider-
ation the risk of false positives. Specifically, it aims at
proposing a novel methodology to support auditors in
the preliminary phases of screening providers to spot
suspects eligible for investigation. We adopted an unsu-
pervised behavioral approach, to spot even the most
cautious fraudsters, and built a robust, scalable and user-
friendly algorithm. The overall method (Fig. 1) entails
both a semi-automated funneling step that identifies a
list of potential fraudsters, followed by a human-decision
support system that specifically aim at helping audi-
tors in discriminating between actual and false positives.
Because of the larger and larger use of Administrative
Databases by auditors, we decided to leverage on these
data as source of information. Our algorithm is coded
using Python and the code is available by the authors upon
request.

Methods

The idea behind our methodology is that cautious fraud-
sters cannot be found searching for outliers among the
entire population of providers together. Providers indeed
differ significantly among one another, due to size, tech-
nological endowment, resources, specialization etc. How-
ever, fraudsters might be hard to spot among groups simi-
lar on those dimensions only. Therefore, we are interested
in isolating suspects among groups of hospitals expected
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Fig. 1 Process Flow. Schematic representation of the algorithm'’s process flow. The first three grey boxes on the left represent the data sources.
From HDC Dataset we derived the two additional datasets (Patients and Hospitals). Only Hospital Dataset enters Step 1, while all three of them are

to behave similarly (Step Omne). Then, we add an addi-
tional step (Step Two), that has the objective of help-
ing auditors in the validation of results, by checking
some fraud-related measures, and the complexity of the
patients treated by the outliers, understanding whether
their outlyingness might be justifiable in that sense. This
reduces the risk of false positives being investigated
even deeper.

Data

Our model was developed and tuned on Administrative
Data (originated from HDC) about hospitalizations
for Heart Failure (HF) happened in the Lombardy
Region within the timespan 2013-2015. The extraction
procedure is reported in the pseudo-code in Algo-
rithm 1 in Table 1. Data were already anonymized
and both patients’ and hospitals’ confidentiality
were preserved. Note that the methodology here
applied to HF can be easily transferred to any other
disease.

Datasets Preprocessing

Data contain 396,246 events (hospitalizations) related to
132,254 patients, experiencing at least one HF episode
in the timespan 2013-2015. Once extracted, the informa-
tion had to be reshaped and aggregated in the following
datasets.

HDC Dataset. This dataset has one row per event (hos-
pitalization, multiple events per patient are allowed),
reporting information about the patient and the treat-
ments or diagnosis he/she encountered. Each record was
subsequently associated with the Comorbidity Index (CI)
of the patient for that hospitalization, adopting the Com-
bined Comorbidity Score in [25].

Patients Dataset. This aggregates all available informa-
tion within the HDC Dataset at patient level. Each row
represents one patients who experienced an HF episode
in the timespan of interest. The aforementioned CIs per
HDC were here summed together to estimate the general
health status of the subject [25]. For those variables where
more than a value was available (e.g. each HDC reports the
‘age’ information), we decided to summarize the informa-
tion into a single value (e.g. the age at first hospitalization).
In Appendix A.1 the whole list of variables in the dataset
is provided [see Additional file 1].

Hospitals Dataset. This reports information with the
single hospital as statistical unit. The dataset contained
183 facilities visited by at least one patient. It required
a procedure aimed at including relevant information to
identify a fraudulent behavior by the providers. Using the
variables found within literature as a reference, all infor-
mation available within the HDC Dataset was aggregated
for each hospital (e.g. cost per hospitalization [4, 15—
17, 23], average Length Of Stay (LOS) [26], number of
episodes in a given period of time [23], etc.). Then, a set of
additional indexes were estimated. The behavioral aspect
of our representation of each provider was inspired by the
work of Ekin et al. [27]. On the basis of how often each
HE-DRG (i) was registered by each provider (%), we esti-
mated a set of variables for each provider (r;;), that could
represent a good proxy of how hospitals behaved in the
treatment of HF. Details about the variables of the Hospi-
tal Dataset are provided in Appendix A.2 [see Additional
file 1].

Model Proposal

Given the outcome of the data preprocessing, we are
now able to propose a two-step algorithm for screening
hospital behavior and detecting potential upcoding fraud.
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Step One. The first step aims at grouping providers on
the basis of how they behaved in the treatment of HF-
affected patients, and isolating potential fraudsters that
separate themselves from the performances of their ref-
erence peers. Note that, in a totally unsupervised setting,
it is not possible to make any prior assumption about
whether any actual clusters of providers exists within the
available observations. In the attempt to spot cautious
fraudsters that might be hidden within the whole group
of hospitals, we seek for providers that behave differently
from the peers they are supposed to be aligned with. This
translates into seeking for the most extreme points (i.e.
outliers) within locally consistent groups of observations.
In other words, in looking for points that are possibly
closer to the points belonging to their group, w.r.t. how
close they are to other groups. This concept is based on
the same assumption of the Silhouette Score of the K-
means algorithm [28]. For this reason, this step entails
the application of a K-means on the Hospitals Dataset. K-
means indeed allows us to define these locally consistent
subgroups by automatically subsetting data via Euclidean
Distance into K hypershperical groups with potentially
different size and density, while trying to maximize the
Silhouette of the identified local groups.

Since this algorithm may be applied to contexts where
the number of observations (hospitals) could be similar
to or smaller than the number of variables to be used
for clustering, we include in this step a robust feature
selection method. Considering the unsupervised setting,
for this task we chose an unsupervised feature selection
method, specifically the Principal Feature Analysis (PFA)
proposed in [29] and run it B = 200 times. At each
run the algorithm selects a subset of # most relevant fea-
tures. Because of the greedy nature of this procedure,
we counted how many times each variable appeared in
200PFA iterations, and we kept as the final selected vari-
ables the top # most appearing features. The clustering of
hospitals’ data in our model will therefore be influenced by
the choice of the number of features to be selected (#), and
the number of clusters (k) imposed to the k-means algo-
rithm. We addressed this matter by including a grid search
of the best couple of parameters. Our algorithm iterates
over features selection and clustering for all possible com-
binations of k and »n, among a list of reasonable values,
and selects the two parameters that maximize the average
silhouette width of the resulting clusters. It has to be men-
tioned that the feature selection passage is not mandatory,
in case the number of observations is sufficiently higher
than the number of features, and/or the user is not famil-
iar with such kind of procedure. This first part of Step 1 is
described in Algorithm 2 in Table 2.

Once defined the best model and performed the clus-
tering, the algorithm identifies the outlying providers
w.r.t. their similar peers, i.e. the clusters they belong to.
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Specifically, the Euclidean distance between each hospital
and the centroid of its corresponding cluster is computed,
and the hospitals with a distance above a specified thresh-
old are selected and flagged as outliers. Here we chose
the 95th percentile of the distances’ distribution, a trade-
off choice to keep the number of outliers manageable by
controllers. This second passage of Step 1 is described in
Algorithm 3 in Table 3.

Step Two. The second step focuses on the deeper inves-
tigation of suspects labeled as outliers. Since behavioral
methods demonstrate to have high false positive rates [17]
- even though stronger in identifying cautious fraudsters
- a further validation of results is recommended. This
validation step aims at supporting auditors in veryfing
whether the outlyingness of the aforementioned hospitals
(mainly based on features which are proxies of hospitals
behavior, like the ry; values), might be also explained by
specific features useful to evaluate a fraudulent behavior
in the healthcare domain.

Specifically, we recommend to use 4 variables to ver-
ify their suspiciousness w.r.t. upcoding fraud: degree
of specialization (HF-related hospitalizations among all
HDCs, proxy of attractiveness for a HF patients), per-
centage of DRGs with complications (CC), Upcoding
Index (Appendix A.2, Additional file 1 - Formula F.A.1),
and average cost per patient. In addition, we decided to
include in the analysis the Number of Visits each provider
received, as it helped in giving better interpretations to
the other fraud-related measures. All these variables can
be found within the Hospital Dataset, as detailed in Addi-
tional file 1: Appendix A.2. We propose here a visual
dashboard displaying the distribution of each dimension

Table 1 Pseudo-code for the HDCs extraction process
Algorithm 1: Initial HDCs extraction

Input :Whole HDC Dataset
if HF-code in DIAGX_ID // Hospitalizations with HF
codes any position, i.e. primary diagnosis,
secondary, etc.
then
| Heart_Failure = 1;
else
| delete;

Output: HF Dataset // Filtering data keeping only
HF-related HDCs

Input :Whole HDC Dataset

if ANONYM_ID in HF Dataset // Extracting all HDCs
(with or without HF-code) of patients
facing at least one HF-related case

then

|  keep

else

L delete

Output: Final HDC Dataset // Complete HDC data of
patients treated at least once for an
HF-related case
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Table 3 Pseudo-code for the second part of Step 1 Algorithm

Algorithm 2: Step 1: Part I, Feature Selection and Grid
Search

Algorithm 3: Step 1: Part II, Distances calculation and
Outliers’ identification

Data: Hospital Dataset
input : N_Features: list of possible n - number of features to be
selected;
Ks: list of possible k values - number of clusters in k-means

clustering

initialize Datasets_List;

for n in N_Features do

initialize Resulting_Features = [J;

fori=1,.,200 do
Selected_features <— PFA(N_Features = n, HospitalDataset);
Append Selected_Features to Resulting_Features;

end

for Feature € Resulting_Features do

\ Features_Count < Count Frequency of each Feature;

end

Final_Selected_Features < top_n(Features_Count);

Selected_Dataset < Extract Final_Selected_Features from

HospitalDataset;

Datasets_List[ n] <— Selected_Dataset;

for k in Ks do
Apply KMeans to Selected_Dataset with n_clusters = k;
Calculate Silhouette_Score of the resulting clusters;
Grid_Results[ n, k] <— Silhouette_Score for n_features = n and
n_clusters = k

end

end

BestModel <— max(Grid_Results[n, K] );

n* < n from BestModel:

k* < k from BestModel,

Final_Hospital_Dataset <— Datasets_List[ n*];

Apply KMeans to Final_Hospital_Dataset with n_clusters = k*;
Centroid < k* Centroids resulting from clustering;

output: k* clusters with k* Centroids (C)

for the whole population of providers, highlighting the
outliers’ position w.r.t. the others in terms of percentiles.

A further validation of the suspects identified in Step
One derives from analyzing the patients’ population
treated by the hospital, using the Patients Dataset and the
HDC Dataset. The idea behind is to verify whether the
anomalous behavior may be justified by the different com-
plexity of the treated population. To perform this passage
we use the variables in Table 4. We built another set of
visualizations to provide auditors with an easy and under-
standable tool to support their decisions. In this case,
plotting the distribution of the variables in Table 4 for the
outliers under scrutiny and the entire population, allows
for the comparison of one specific hospital’s patients’ case
mix and the costs it faced, w.r.t. the others.

Step 2 can be considered as a visual support tool pro-
vided to human decision-makers (i.e. auditors), in the
phase of scrutinizing the results of the previous phase.
The reshaped information it provides serves as a powerful
tool to help them actively mitigating the risk of investigat-
ing deeper some potential false positives arising from the
previous automated step.

Data: Hospital Dataset
input :Kmeans centroids (Centroid), k* clusters (Clusters), i hospitals
initialize Distances;
foreach c in Clusters do
foreach /€ cdo
\ Distances[ i] < dist(i, Centroid[ c] );
end

end
Threshold < 95t percentile of Distances;
foreach i do
if Distances[ /] > Threshold then
| Outliers_List < i;
end

end
output: Outliers_List

In Fig. 1 we represented a schematic version of the
whole process flow, including data preprocessing, fol-
lowed by the two steps.

Results

The grid search for the best model parameters was per-
formed for a number 7 of possible features equal to 20,
30, and 40 (nearly 1/3, a half and 2/3 of the original vari-
ables), and a number k of possible number of clusters
equal to 5, 6, 7 and 8. The best option based on silhou-
ette index indicates k=6 and n=20. We then selected the
20 most representative features in the Hospital Dataset,
and we grouped them into the 6 clusters indicated by
the k-means. The distribution function of the local dis-
tances (Fig. 2) being so skewed demonstrates how most
of the data points lie close to the center of their cluster,
thus sustaining the goodness of the obtained clustering. 10
hospitals resulted as outliers adopting the 95th percentile
threshold (dashed line in Fig. 2).

Additionally, to test the robustness of our algorithm,
we applied it on the entire dataset skipping the feature
selection step, obtaining an average silhouette width of
0.23, and an optimal number of clusters equal to 6. The
resulting outliers were 10 hospitals, among which the 6

Table 4 Variables of interest for cross validation

Variable Dataset Notes

Age Patients Indicator of patients’ complexity
length of Stay Patients, HDC  Indicator of patients’ complexity
Comorbidity Patients, HDC  Indicator of patients’ complexity
Total Costs Patients, HDC Patients’ expensiveness

Cost / length of Stay HDC Expenses in relation with intensity
of care
Cost/ Comorbidity  Hospital Expenses in relation with intensity

of care
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most distant from their respective centroids belonged to
the group identified after feature selection. This coher-
ence testifies for the robustness of our method. Moreover,
we include a deeper robustness analysis of our results
with different parameters’ settings in the supplementary
material (Appendix A.3, Additional file 1).

Three hospitals were selected for an exemplificative
application of the second step (H31/public, H51/private,
H11/private).

These three hospitals have been analyzed by eval-
uating the dimensions defined by the second step
of the model. In Fig. 3 the distributions among the
whole population of each Hospital variable mentioned in
“Model Proposal” section are displayed, and the three
hospitals of interest are represented by the vertical lines.
Together with the visual representation, in Table 5 we pro-
vided the values of the percentile the outliers fall into for
each of the analyzed dimensions.

As for the cross-validation with the patients’ population,
each of the dimensions listed in Table 4 was evaluated,
but we decided to report just some exemplificative visu-
alizations. Figure 4 reports the distribution of the average
LOS for all patients (in red) - considered as a proxy of
complexity of the patient — together with the distribution
of LOS for patients treated by the outlying providers (in
blue): the more the distribution is right skewed, the more
the outlier faced a complex casemix. The vertical lines
represent the means of the two distributions. Figures 5
and 6 show the distribution of costs of each registered
HDC, w.r.t. the level of complexity of the case: the com-
plexity is represented by the LOS in Fig. 5, and by the
comorbidity value in Fig. 6.

Hospital H31. This public provider has a lies over the
815 percentile of specialization (Table 5), but the mean
appears closer to the population’s mean compared to H11.
However, this provider receives a much higher number of
visits (99th percentile, over ten thousand in three years),
suggesting a high perceived value of provided care. Aver-
age costs and the percentage of complications are high as
well, but the upcoding index falls below the mean (Fig. 3)
and almost on the median (Table 5). All together this may
suggest that this hospital’s results have been largely driven
by its strong specialization and attractiveness. Once per-
formed the cross-validation with the patients’ population,

Table 5 Percentile of Variables Distributions each analyzed
outlier falls into

Variable H11 H31 H51
Avg Cost 0.994 0.937 0.734
Percent CC 0.399 0.899 0.981
Specialization 0.994 0.816 0
Number of Visits (patients) 0.532 0.994 0.032
Upcoding Index 0513 0.506 0.890
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this assumption seems to hold. The patients treated by
this provider are on average more complex, according to
the LOS distribution in Fig. 4. Moreover, considering the
ratios of the reimbursements received for each complex-
ity level (Figs. 5 and 6), this provider does not demon-
strate any particular earning above the overall group of
providers. For these reasons, this hospital might be eligible
for being cleared with no further in-depth investigation.

Hospital H11 and H51. These two private providers
exhibit much different results compared to the pre-
viously mentioned public provider. H51 presents very
low levels of specialization (it is the least specialized
provider within the population, as shown in Table 5),
and it receives a very low number of visits in the con-
sidered period. Additionally, both upcoding index and
percentage of cases with complications are suspiciously
high for a hospital with no clear specialization in the
treatment of HF. H11 on the contrary seems to be
much more specialized (99th percentile) and presents a
low percentage of complications together with an aver-
age upcoding index. However, when cross-validated with
their patients’ population, both private providers sug-
gest some suspect behavior. They both show lower levels
of LOS compared to the population (Fig. 4), but their
reimbursements associated with the complexity of their
patients appear higher than the average (w.r.t. both LOS
and comorbidity for H11, and w.r.t. LOS only for H51
- Figs. 5 and 6). Even though the two cases are dif-
ferent and may be grounded on different causes, both
providers seem to be worthy of a deeper investigation,
by someone who may add its domain specific exper-
tise to decide whether an actual fraudulent behavior
is in place.

The three cases were selected for illustrative purposes.
It is important to underline that none of the conclusion
drawn from this last passage of the model are in any way a
definitive judgment of the existence or not of a fraudulent
behavior. The aim of this last step is to provide auditors
with a useful set of information to ease their appraisal pro-
cess, and reduce the risk of wasting their effort on false
positive cases.

Discussion

The objective of this study was proposing a novel method-
ology to support the preliminary screening phases per-
formed by auditors in the fight against upcoding fraud.
Our aim was that of building an easy-to-use and robust
tool. The procedure is indeed automated for most part
(Step 1 entails a semi-automated algorithm to create a
list of suspects), requiring very little statistical knowl-
edge and manipulation on the user’s side. We chose to
exploit a simple clustering algorithm (i.e. k-means) to
identify providers that lie distant from their peers, by
automatically searching for K (with K optimized via grid
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search) locally consistent groups of neighboring hospi-
tals that supposedly behave similarly, so that those lying
more distant from such reference groups can be flagged as
suspects.

There are several clustering algorithms that may be
considered as alternatives to the k-means. Among oth-
ers, several different hierarchical clustering methods
(both agglomerative and divisive) [28, 30], together with
more recent efficient and effective approaches such as
DBSCAN [31], spectral methods [32], or the modern
Deep Learning-based approaches [33]. All these algo-
rithms present peculiarities that allow them to separate
at best the clusters intrinsically available in data, up to a
different extent of complexity in the shape of the afore-
mentioned clusters. However, at the same time, most of
them require some specific assumptions on cluster shapes
or need specific interventions from the user side. For

instance, DBSCAN is quite efficient as a method and
has the pro of not requiring the number of clusters to
be defined in advance, but it fails to identify clusters if
density varies; another example could be SLINK [30], an
optimally efficient single-linkage clustering, that tends to
produce long thin clusters in which nearby elements of the
same cluster have small distances, but elements at oppo-
site ends of a cluster may be much farther from each other
than two elements of other clusters; regarding tailored
interventions we might mention the dendrogram analysis
for agglomerative/divisive clustering to define clusters, or
the hyperparameter choice and training tailoring for deep
learning-based approaches.

However, as we explained in the “Methods” section
(under Model Proposal), our proposition lies in a com-
pletely unsupervised setting, where (i) no prior assump-
tion can be made, (ii) we are not interested in classifying
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providers in any specific group, and (iii) our objective
is to keep complexity on the user-side to the minimum,
while (iv) efficiently providing a scalable and reliable algo-
rithm that searches for groups that need to be consistent
only on a local basis. All this considered, the simple
k-means algorithm results the faster in terms of com-
putational time, the most robust to varying densities of
clusters and high dimensionality of data, and the simplest
to be included within a wider algorithm that automati-
cally selects the best features subsets and the best number
of clusters (as in the grid search passage described in
the following), to define groups of neighboring providers
that are supposedly similar on most dimensions of the
multidimensional space they lie into.

The grid search step before the application of the
clustering technique makes the algorithm flexible to the
different settings (where sample size might be smaller,
comparable or bigger than dimensionality), identifying
programmatically the model obtaining the best cluster-
ing of observations. Since the computational intensity of
the search grows together with the number of hospitals
and the number of possible combinations to be evaluated,
the user is suggested to choose a subset of parameters
(i.e. the dimension of the grid). However, it has to be
noted that the number of variables collected in the Hos-
pital Dataset is bounded by the limited number of DRGs
within each disease category, while the number of hos-
pitals analyzed might grow indefinitely. This reduces the
need for a feature selection passage, in case its applica-
tion would be too computationally expensive, or the user
would not feel confident in listing the parameters to be
evaluated. We empirically demonstrated that even skip-
ping the feature selection our proposed algorithm remains
a valid support. For what concerns Step 2, the provided

results should be considered a demo application, deep
diving into the analysis of three exemplificative outliers,
taking the role of the auditors and showcasing the pro-
cess they would follow. Moreover, the provided results
seem reasonable, supporting the usefulness of the over-
all process in supporting the auditing process, and of the
dashboards in supporting the auditors’ decisions. Indeed,
the methodology here proposed was tested on real data
concerning a complex chronic disease like Heart Failure,
to verify whether significant insights might be inferred
by the obtained results. The analysis on the three out-
lying healthcare providers provided clear suggestions to
a potential third party user concerning whether the sus-
pects should be studied deeper in order to unveil an actual
fraud. The main novelty of our approach regards the def-
inition of several fraud related indexes and an array of
variables that represent the coding behavior of providers,
together with a simple yet effective method to identify
suspicious behaviors that do not stand out by exceeding
on any specific dimension. It is indeed the ensemble of
searching for cluster-specific outliers (where clusters have
to be intended as locally consistent and locally similar
groups of providers) and using these derived variables to
spot them, the real novelty and value introduced by our
methodology. Moreover, an additional aspect of novelty
w.r.t. other behavioral methods, such as the work in [17],
is the inclusion of a follow-up step (Step 2) that is mostly
human-decision based, and directly controls for the risk
of false positives derived by the search for less evident
fraudsters.

Although the proposed algorithm is promising, there
a few limitations that open avenues for further research.
First, our raw data cover a time span of three years.
Although this time span is enough for the proof of concept
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of our methodology, further studies should gather raw
data about a longer period in order to verify the capabil-
ity of better profiling patients and hospital misbehaviours.
Second, our results have not been validated by domain
experts, being the validation step out of our research
protocol. This situation is frequent when raw data are
owned by public organizations and/or private companies
that want to keep full control of the actual identifica-
tion of fraudulent behaviours, being this information very
sensitive. Thus researchers are often allowed to access
to unlabelled data and obliged to develop unsupervised
models, limiting their studies to proof of concepts. Further
studies should try to go beyond this limitation by includ-
ing the validation step within the research protocol and by
persuading the owners of raw data of the many advantages
of including researchers also in the validation step. Third,
our study relies on hospital discharge charts. Although
these administrative data are rich enough to provide audi-
tors with suggestions about potential upcoding frauds,
further studies should consider to include other knowl-
edge sources — e.g., Electronic Medical Records (EMRs) —
that offer more clinical data that might help better profil-
ing patients in terms of their health status and of what care
are they receiving.

Conclusions

Despite the limitations, our proposed methodology con-
tributes to the still limited literature about behavioral
modelling for fraud detection, with an attention to cau-
tious fraudsters lying in between more evident cases.
In fact, our algorithm is novel (as described in the
“Discussion” section), scalable and interpretable. The
clear interpretability (and understandability) of both the
algorithm and its results, supported by visualizations of
easily recognizable features, makes up for the potential
lack of precision (and proper evaluation metrics, such as
“accuracy’, “Fl-score” etc.) that only a supervised clas-
sifier could obtain. Indeed, we are providing a powerful
and flexible data-miner, whose aim is to make educated
guesses (smarter with respect to the actual random selec-
tion of providers to be audited, as it currently happens
where our Case Study data originates) on cases to be
further and deeply investigated. We leave the judgement
completely in the hand of auditors and users, basically
providing them with better-shaped information to sup-
port their decision, on a highly interesting subset of a
huge amount of data. Despite the proof of concept of our
method was developed in the Italian context, studying
the behavior of hospitals adopting regional administrative
data, it is generally adaptive to any kind of system and
any disease of interest. Additionally, the model is based on
an existing and widely adopted coding mechanism (DRG):
as such, it can be easily applied to a large number of
databases. Moreover, our methodology is easy-to-use as it
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does not need extensive interventions or statistical knowl-
edge on the user’s side. Finally, the proposed algorithm can
help auditors by reducing (i) the amount of time needed
for the initial screening and (ii) the unwanted variation
of results due to skills of different auditors (as for any
operator-dependent tasks).
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