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ARTICLE INFO ABSTRACT

Keywords: Objective: The topoisomerase inhibitor CPT-11 has been applied in treatment of multiple cancer
CPT-11 o types. Here, we probed into the possible mechanism of CPT-11 in affecting growth and metastasis
ngé’;somerase inhibitor of lung cancer (LC) cells, with involvement of the EGFR/MAPK pathway.

Methods: The target protein of CPT-11 was screened through bioinformatics analysis, and the LC-
Lung cancer related microarray datasets GSE29249, GSE32863 and GSE44077 were obtained for differential
Subcutaneous xenograft tumor model analysis for identifying the target protein. A subcutaneous xenograft tumor model and a meta-
Metastatic tumor model static tumor model were constructed in nude mice for in vivo mechanism verification of the
regulatory role of CPT-11 in LC through modulation of EGRF/MAPK pathway.

Results: Bioinformatics analysis showed that EGFR was the target protein of CPT-11. In vivo
animal experiments confirmed that CPT-11 enhanced LC cell growth and metastasis in nude mice.
CPT-11 could inhibit activation of EGFR/MAPK pathway. EGFR promoted LC cell growth and
metastasis in nude mice through activation of the MAPK pathway.

Conclusion: The topoisomerase inhibitor CPT-11 may prevent LC growth and metastasis by
inhibiting activation of EGFR/MAPK pathway.

MAPK pathway

1. Introduction

Lung cancer (LC) is regarded as a complicated malignancy consisting of a diversity of histological and molecular types [1]. In spite
of improved understanding of LC in many aspects such as the risk and treatment options, this malignancy remains to be a leading
contributor to cancer-related death [2]. Lung cancer is featured by rapid proliferation as well as metastatic potential [3]. Metastasis in
LC is accountable for the high mortality of the cancer and involves enhanced motility and capacity to form new tumors [4]. In this
context, it is of importance to curb the rapid cell growth and metastasis in LC.
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The topoisomerase enzymes are believed to exert crucial functions on DNA metabolism, their inhibitors are of potential for
developing novel anticancer drugs [5]. Since clinically introduced in 1998, the topoisomerase I inhibitor irinotecan (CPT-11) has been
widely applied for treating solid tumors including LC [6]. At present, CPT-11 has been suggested as one of the mainstay first-line
treatments for metastatic small-cell LC (SCLC) [7]. Of note, our bioinformatics analysis discovered EGFR as the target protein of
CPT-11. Intriguingly, the active metabolite of CPT-11 (SN-38) in combination with gefitinib possesses great potentials in modulation of
LC cell lines expressing wild-type EGFR [8]. EGFR, a transmembrane glycoprotein, is aberrantly activated by diverse mechanisms and
links to the progression of different human cancers [9]. As previously documented, EGFR has served as a crucial therapeutic target for
managing non-small cell LC (NSCLC) [10]. EGFR has also been highlighted as an oncogenic gene of NSCLC and its inhibition can
produce dramatic tumor responses [11]. Previous research has indicated that EGFR activation might bring about activated MAPK
pathway in LC cells [12]. Activation of the MAPK pathway by IncRNA TUC338 contributes to the promotion of the invasion of LC [13].
Interestingly, the activated EGFR/MAPK pathway by STAM binding protein (STAMBP) is capable of accelerating the metastasis of lung
adenocarcinoma [14]. Considering the aforementioned reports, we might hypothesize that CPT-11 could inhibit LC cell growth and
metastasis by disrupting the EGFR/MAPK pathway. Such hypothesis was validated utilizing the established subcutaneous xenograft
tumor model and metastatic tumor model.

2. Materials and methods
2.1. Ethical approval

The Medical Animal Care & Welfare Committee of Shantou University Medical College (No. SUMC2022-230) approved the study.
All procedures in the animal experiment were carried out obeying the guidelines for the care and use of laboratory animals.

2.2. Data download

Using the GEO database, LC-related microarray datasets were obtained, including GSE29249, GSE32863 and GSE44077. Six 6
adjacent tissue samples and 6 LC tissue samples were included in GSE29249, 58 LC and 58 adjacent tissue samples were included in
GSE32863, and 55 LC and 66 normal lung tissue samples were included in GSE44077.

2.3. Differential gene screening

Differential analysis was performed on the microarray datasets GSE29249, GSE32863 and GSE44077. Differentially Expressed
Genes (DEGs) were screened using R “limma” package, with the threshold set as p < 0.05.

2.4. Drug-target protein prediction

Through the STITCH online website, the target proteins of CPT-11 were predicted, and the top 15 target proteins were displayed in
the corresponding figure.

2.5. Experimental animals

Eighty BALB/c nude mice (6 weeks, No.401, Vitalriver; Beijing, China) were fed in separated cages in a SPF laboratory, with
60-65% humidity at 22-25 °C for 1 week before experiment.

2.6. Construction of lentiviral vectors

The lentiviral overexpression vector pCDH-CMV-MCS-EF1-copGFP (System Biosciences, CD511B-1) was purchased. A lentivirus-
based EGFR overexpression vector was constructed, and lentiviral particles carrying oe-EGFR or NC were packaged into HEK-293 T
cells (iCell Bioscience Inc., Shanghai, China, iCell-h237). After 48 h, cell supernatants were harvested as lentivirus at a titer of 1 x 108
TU/mL.

2.7. Establishment of a xenograft model in nude mice

For establishment of a xenograft model, A549 cells (iCell Bioscience Inc., iCell-h011) in logarithmic growth period were made into
suspension (5 x 10”/mL). Then, 0.2 mL cell suspension was taken with a 1 mL syringe and inoculated in the left axilla of mice sub-
cutaneously. When the tumor grew up to 25 mm® (about one week), nude mice were randomly injected with DMSO, CPT-11, DMSO +
oe-NC, CPT-11 + oe-NC, CPT-11 + oe-EGFR, oe-NC + DMSO, oe-EGFR + DMSO or oe-EGFR -+ sesamolin (each n = 3).

Oe-EGFR (0.1 mL) and its NC (0.1 mL) were intratumorally injected into nude mice with a titer of 1 x 108 TU/mL. CPT-11 (30 mg/
kg) (HY-16562, MedChemExpress, Monmouth Junction, NJ) and MAPK pathway inhibitor sesamolin (5 mg/kg) (HY-N0809, Med-
ChemExpress) were intraperitoneally injected into mice twice a week, lasting 4 weeks.

After inoculation, on days 7, 14, 21, 28 and 35, tumor growth was observed. Then, mice were sacrificed on day 36 by means of
cervical dislocation. The tumor tissue was removed, and tumor was weighed.
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Fig. 1. CPT-11 can effectively inhibit LC cell growth and metastasis in mice. A, Number of pulmonary nodules in lung tissue in the metastatic tumor
mouse model upon CPT-11. B, The lung metastasis in nude mice upon CPT-11 as observed using HE staining. The black arrows indicate metastatic
sites. C, Expression of MMP7 and HMGBI1 in lung tumor tissues of mice upon CPT-11 as detected by ELISA. D, Diagram of the tumor body of
subcutaneous xenograft tumor models upon CPT-11. E, Statistical chart of subcutaneous xenograft tumor volume upon CPT-11. F, Weight statistics
of subcutaneous xenograft tumor upon CPT-11. G, The positive expression of PCNA and Ki67 upon CPT-11 as detected by immunohistochemistry.
There were 5 mice in each group. *p < 0.05. Measurement data, which were expressed as mean + SD, were compared with unpaired t-test.

2.8. Establishment of metastatic tumor model in nude mice

Nude mice (each n = 3) were grouped into DMSO, CPT-11, DMSO + oe-NC, CPT-11 + oe-NC, CPT-11 + oe-EGFR, oe-NC + DMSO,
0e-EGFR + DMSO or oe-EGFR -+ sesamolin groups. The stably transfected LC cell line A549 was made into 5 x 107 /mL cell suspension,
0.2 mL of which was injected through tail vein into mice. Intraperitoneal injection of 30 mg/kg CPT-11 and 5 mg/kg sesamolin was
performed twice a week, lasting 5 weeks. After 36 days, mice were sacrificed as above with the lung tissue removed.

2.9. IHC

Tumor tissues were subjected to antigen retrieval for 20 min and probed at 4 °C overnight with primary antibodies including rabbit
anti-PCNA (ab92552, 1:200, Abcam, Cambridge, MA) and rabbit anti-Ki67 (ab15580, 1:200, Abcam). After that, biotinylated sec-
ondary antibody (goat anti-rabbit, ab150077, 1:500, Abcam) was added for further incubation for 30 min. Then, DAB (Solarbio,
Beijing, China, DA1015) was added for development and hematoxylin (Solarbio, G1080) was used for counterstaining. The sections
were dehydrated, cleared, and sealed before microscopic observation in five representative fields.

2.10. HE staining

The lung tumor tissues in nude mice were dewaxed to water, and HE staining was performed according to the HE staining kit
(Bogoo Biological Technology Co., Ltd., Shanghai, China, PT001). First, hematoxylin was applied for 10-min staining at room tem-
perature. Then, the tissue sections were differentiated with 1% alcohol hydrochloride for 30 s, and stained with eosin for 1 min. After
dehydration, clear, and sealing, the morphological changes of lung tumor tissue in each group were observed with an Olympus mi-
croscope (BX50).

2.11. ELISA

The tumor tissue from each group of nude mice was made into tissue homogenate. By following the ELISA kit instructions, the
expression of Matrix Metallopeptidase 7 (MMP7) and High-Mobility Group Box 1 (HMGB1), and the phosphorylation levels of JNK and
p38 in tumor tissues were detected. ELISA kits used in the experiment were MMP7 (No: JL29243, Shanghai Jianglai Industrial Co., Ltd.,
Shanghai, China), HMGB1 (JL51819, Shanghai Jianglai Industrial Co., Ltd.), JNK and p-JNK (ab176662, Abcam), p38 and p-p38
(ab221013, Abcam) Kits.
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Fig. 2. Prediction of action target proteins of the topoisomerase inhibitor CPT-11 in LC. A, The STITCH online website predicted the target protein
of CPT-11 (Irinotecan). The rectangle represents CPT-11. The circles represent the target proteins. Each green line refers to relationship between
drug and the target protein. Each purple line refers to relationship between the target proteins, and the line thickness represents the tightness of the
relationship. B-D, Volcano map of differential genes in the microarray datasets GSE29249 (B), GSE32863 (C) and GSE44077 (D). Black dots
represent non-differentially expressed genes, green dots represent down-regulated DEGs and red dots represent up-regulated DEGs. The microarray
GSE29249 included 6 cancer and 6 adjacent cancer tissue samples. The microarray GSE32863 included 58 cancer and 58 adjacent cancer tissue
samples. The microarray GSE44077 included 55 cancer and 66 normal lung tissue samples. E, Venn plot of intersections of drug target (green) and
DEGs in microarray datasets GSE29249 (blue), GSE32863 (red), and GSE44077 (yellow). F, The expression of CASP3, CES1, EGFR and TOP1MT as
determined by RT-qPCR. There were 5 mice in each group. *p < 0.05. Measurement data, which were expressed as mean =+ SD, were compared with
unpaired t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

2.12. RT-qPCR

Total RNA from tissues was extracted by TRIzol (15,596,026, Thermo Fisher Scientific, Rockford, IL). The mRNA was reversely
transcribed to cDNA following the instruction of PrimeScript RT reagent Kit (Takara, Otsu, Shiga, Japan, RR047A). TaKaRa designed
and synthesized the primers for Epidermal Growth Factor Receptor (EGFR), Caspase 3 (CASP3), Carboxylesterase 1 (CES1), and
Topoisomerase I, Mitochondrial (TOP1MT) (Supplementary Table 1). RT-qPCR was performed using a 7500 Fast RT-qPCR system
(4,351,106, Thermo Fisher Scientific). Relative transcription level of target genes was determined with Z'AACT, normalized to
GAPDH.

2.13. Statistical analysis

The statistical analysis of data, which were expressed as mean + SD, was performed using SPSS 21.0. Measurement data were.
Comparison on two-group data was performed by unpaired t-test. One-way ANOVA with Tukey’s tests or repeated measures ANOVA
was adopted for multi-group data comparison.
3. Results

3.1. CPT-11 could effectively inhibit LC cell growth and metastasis in vivo

For exploration purpose, we constructed the subcutaneous xenograft model and metastatic tumor model using A549 cells in nude
mice, followed by treatment of CPT-11. As shown in Fig. 1A and B, injection of CPT-11 led to reduced lung metastases. The ELISA
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Fig. 3. The topoisomerase inhibitor CPT-11 inhibits LC cell growth and metastasis in mice mainly by down-regulating EGFR. A, Expression of EGFR
in lung tissue in the metastatic tumor model in response to CPT-11 or oe-EGFR as detected by RT-qPCR. B, Number of pulmonary nodules in lung
tissue in the metastatic tumor model in response to CPT-11 or oe-EGFR overexpression. C, The lung metastasis in nude mice in response to CPT-11 or
oe-EGFR overexpression as observed using HE staining. The black arrows indicate metastatic sites. D, MMP7 and HMGB1 protein expression in lung
tumor tissues in response to CPT-11 or oe-EGFR as detected by ELISA. E, The expression of EGFR in lung tissue in the metastatic tumor model in
response to CPT-11 or oe-EGFR. F, Diagram of the tumor body of subcutaneous xenograft tumor in response to CPT-11 or oe-EGFR. G, Statistical
chart of subcutaneous xenograft tumor volume in response to CPT-11 or oe-EGFR. H, Weight statistics of subcutaneous xenograft tumor in response
to CPT-11 or oe-EGFR. I, Ki67 and PCNA positive expression in response to CPT-11 or oe-EGFR as detected by immunohistochemistry. There were 5

mice in each group. *p < 0.05. Measurement data, which were expressed as mean + SD, were compared with one-way ANOVA, combined with
Tukey’s tests.

results showed (Fig. 1C) decreased protein expression of MMP7 and HMGB1 in the nude mice injected with CPT-11. The above results
showed that CPT-11 could effectively inhibit metastasis of LC cells in nude mice. Furthermore, tumor volume and weight were down-
regulated in the nude mice injected with CPT-11 (Fig. 1D-F). IHC results showed decreased positive rates of Ki67 and PCNA in tumor
tissues of mice following CPT-11 injection (Fig. 1G).

The above results showed that the topoisomerase inhibitor CPT-11 could effectively suppress LC cell growth and metastasis in vivo.

3.2. EGFR might be a key action target protein of CPT-11

As shown in Fig. 2A, 15 target proteins of CPT-11 were predicted from the STITCH website. The differential analysis of the
GSE29249, GSE32863 and GSE44077 datasets yielded 2540, 12,621 and 13,689 DEGs, respectively (Fig. 2B-D). The target proteins
were intersected with the DEGs of CPT-11 (irinotecan), and thus CASP3, CES1, EGFR and TOP1MT were obtained (Fig. 2E).

RT-qPCR showed decreased EGFR expression yet no difference in CASP3, CES1 and TOP1MT expression in the nude mice treated
with CPT-11 versus that in the nude mice treated with DMSO (Fig. 2F). Therefore, we hypothesized that EGFR might be a key action
target of CPT-11, and CPT-11 could suppress EGFR expression.

3.3. CPT-11 inhibited LC cell growth and metastasis in vivo mainly by down-regulating EGFR expression

RT-qPCR results (Fig. 3A) showed that EGFR expression was significantly decreased in tumor tissues of metastatic tumor mouse
models in response to CPT-11, and additional overexpression of EGFR led to opposing trend. Pathological observations (Fig. 3B and C)
showed that lung metastasis was significantly decreased by CPT-11, and this trend was reversed by further oe-EGFR treatment. ELISA
results (Fig. 3D) showed that the protein expression of MMP7 and HMGB1 was markedly decreased in response to CPT-11, and this
effect was reversed by further oe-EGFR treatment.

In the subcutaneous xenograft model in mice, RT-qPCR results (Fig. 3E) showed decreased EGFR expression in the presence of CPT-
11, the trend of which could be reversed by further overexpression of EGFR. Moreover, as shown in Fig. 3F-H, tumor volume and
weight in lung tissue of mice were notably decreased in response to CPT-11, and this trend was reversed by further oe-EGFR treatment.
IHC results (Fig. 3I) showed that CPT-11 decreased the positive rates of Ki67 and PCNA, and the additional overexpression of EGFR
could reverse this effect.

The above results showed that CPT-11 mainly inhibited LC cell growth and metastasis in mice by downregulating EGFR expression.
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Fig. 4. CPT-11 inhibits EGFR/MAPK pathway activation. ELISA was adopted to detect phosphorylation levels of the MAPK pathway-related proteins
in lung tissue in the subcutaneous xenograft model in response to CPT-11 or oe-EGFR. There were 3 mice in each group. *p < 0.05. Measurement
data, which were expressed as mean + SD, were compared with one-way ANOVA combined with Tukey’s tests.

3.4. CPT-11 inhibited the activation of EGFR/MAPK pathway

EGFR relates to MAPK pathway activation [15], and MAPK pathway can promote LC progression and metastasis [16]. We then
focused on the regulatory mechanism between CPT-11 and EGFR/MAPK pathway. ELISA results (Fig. 4) showed decreased phos-
phorylation levels of JNK and p38 in the presence of CPT-11, and additional EGFR overexpression could reverse the changing
tendency.

Therefore, we speculated that CPT-11 might prevent LC growth and metastasis by inhibiting EGFR/MAPK pathway activation.

3.5. EGFR promoted LC cell growth and metastasis in vivo by activating MAPK pathway

RT-qPCR and ELISA (Fig. 5A and B) showed that EGFR expression and phosphorylation levels of JNK and p38 in lung tumor tissue
of metastatic tumor mouse models were significantly increased in the presence of oe-EGFR + DMSO relative to oe-NC + DMSO.
Compared with that upon oe-EGFR + DMSO, the expression of EGFR in lung tumor tissue in response to oe-EGFR + sesamolin had no
significant difference, but the phosphorylation levels of JNK and p38 were decreased significantly. Pathological observations (Fig. 5C
and D) demonstrated that lung metastasis was increased in response to EGFR overexpression, while opposite trends were seen after
further treatment with sesamolin. Furthermore, ELISA (Fig. 5E) showed increased protein expression of MMP7 and HMGBI in lung
tumor tissue in the presence of oe-EGFR + DMSO, the trend of which was reversed by additional treatment with sesamolin.

RT-qPCR and ELISA performed in the subcutaneous xenograft model in nude mice (Fig. 5F and G) showed that EGFR expression and
phosphorylation levels of JNK and p38 in lung tumor tissue of mice were significantly increased by EGFR overexpression, while further
sesamolin treatment caused no difference in EGFR expression in lung tumor tissue of mice but reduced the phosphorylation levels of
JNK and p38. Furthermore, as shown in Fig. 5SH-J, the tumor volume and weight were significantly increased by EGFR overexpression,
which could be reversed by additional treatment with sesamolin. IHC results (Fig. 5K) revealed that the positive rates of Ki67 and
PCNA upon EGFR overexpression were increased significantly, while additional treatment with sesamolin could reverse the trend. The
above results showed that EGFR promoted LC cell growth and metastasis in mice through activation of the MAPK pathway.

4. Discussion/conclusion

Lung cancer is considered to be a lethal tumor type because of the high rate of metastasis as well as recurrence post treatment [17].
Importantly, anticancer agents targeting Topoisomerase I and II have been widely applied for cancer treatment, showing effective
effect [18]. In this study, we intend to explore the possible molecular mechanism of the topoisomerase inhibitor CPT-11 in regulating
LC development and found that it could disrupt LC cell growth and metastasis by down-regulating the EGFR/MAPK pathway.

First, we confirmed through in vivo animal experiment that CPT-11 could effectively inhibit LC cell growth and metastasis in mice.
Similar with our results, SN-38, the active metabolite of CPT-11, was found to effectively suppress growth of human advanced NSCLC
cells [19]. It was documented that CPT-11 in combination with stem cells could exert therapeutic efficacy of apoptosis in primary and
advanced metastatic LC tissues [20]. Besides, CPT-11 combined with nedaplatin could produce good efficacy for treatment of
advanced SCLC [21]. Mechanistically, we discovered EGFR as the key target protein of CPT-11 through bioinformatics analysis, and
further confirmed in the in vivo animal experiments that CPT-11 could delay advanced LC cell growth and metastasis by inhibiting
EGFR. It should be noted that the regulatory relationship between CPT-11 and EGFR has been previously suggested in LC and other
cancer types. For instance, the use of GE11, the antibody of EGFR, could partially enhance the uptake of CPT-11 in A549 cells in nude
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Fig. 5. EGFR promotes LC cell growth and metastasis in mice by activating MAPK pathway. A, EGFR expression in lung tissue in the metastatic
tumor model upon EGFR overexpression or sesamolin as detected by RT-qPCR. B, The phosphorylation levels of MAPK pathway-related proteins in
lung tissue in the metastatic tumor model upon EGFR overexpression or sesamolin as determined by ELISA. C, Number of pulmonary nodules in lung
tissue in the metastatic tumor model upon EGFR overexpression or sesamolin. D, The lung metastasis in nude mice upon EGFR overexpression or
sesamolin as observed using HE staining. The black arrows indicate metastatic sites. E, Expression of MMP7 and HMGBI in lung tumor tissues upon
EGFR overexpression or sesamolin as detected by ELISA. F, The expression of EGFR in lung tissue in the subcutaneous xenograft tumor model upon
EGFR overexpression or sesamolin. G, The phosphorylation levels of the MAPK pathway-related proteins in lung tissue in the subcutaneous
xenograft tumor model upon EGFR overexpression or sesamolin as determined by RT-qPCR. H, Diagram of the body of subcutaneous xenograft
tumor upon EGFR overexpression or sesamolin. I, Statistical chart of subcutaneous xenograft tumor volume upon EGFR overexpression or sesamolin.
J, Weight statistics of subcutaneous xenograft tumor upon EGFR overexpression or sesamolin. K, The positive expression of Ki67 and PCNA upon
EGFR overexpression or sesamolin as detected by immunohistochemistry. There were 5 mice in each group. Measurement data, which were
expressed as mean =+ SD, were compared with one-way ANOVA, combined with Tukey’s tests or repeated measures ANOVA. *p < 0.05.

mice, thereby augmenting the efficacy for treating LC [22]. Notably, co-treatment of gefitinib and SN-38 was demonstrated to regulate
LC cells that expressed wild-type EGFR [8]. Besides, resistance to CPT-11 could result in EGFR activation in LoVo advanced colon
cancer cells [23]. Furthermore, in the current study, we revealed that EGFR could promote LC cell growth and metastasis in mice by
activating MAPK pathway. EGFR and MAPK are important in regulating LC. Targeted therapy with EGFR-TKIs is a standard regimen
for treating advanced NSCLC with EGFR-mutation [24]. It was unfolded that the suppression of MAPK/ERK pathway due to treatment
of lupeol could produce an anti-metastatic effect in LC [25]. Moreover, repressed MAPK by PP4C could aid in facilitating LC cell growth
while inhibiting the apoptosis [26]. Notably, it was previously unveiled that the inhibition of MAPK signal transduction by
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Fig. 6. Molecular mechanism diagram of the role of the topoisomerase inhibitor CPT-11 in affecting LC growth and metastasis by regulating the
EGFR/MAPK pathway. CPT-11 inhibits LC cell growth and metastasis by inhibiting activation of EGFR/MAPK pathway.

microRNA-195 could result in repressed cell apoptosis in SCLC [27]. Furthermore, the interaction between EGFR and MAPK has been
unveiled largely in LC. MAPK pathway is a downstream of EGFR, and p-MAPK/EGFR combined with p-mTOR/p-AKT can serve as a
promising predictive marker for survival of NSCLC patients [28]. Binding the ligand to the EGFR could lead to activation of the
intracellular signal transduction involving that of MAPK, contributing to NSCLC cell proliferation [29]. Intriguingly, the activated
EGFR pathway could regulate MAPK to increase the expression of circRNAC190, thereby promoting the development of NSCLC [30].
These previous reports support our findings regarding the inhibition of CPT-11 in LC cells achieved through blockage of EGFR/MAPK
pathway.

To sum up, the current study has demonstrated that the topoisomerase inhibitor CPT-11 inhibits LC cell growth and metastasis by
suppressing the activation of EGFR/MAPK pathway (Fig. 6). This finding may offer a new direction for understanding the mechanism
of CPT-11 in LC development; nevertheless, further validation is still warranted.
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