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Abstract

Sensory deprivation has long been known to cause hallucinations or “phantom” sensations,

the most common of which is tinnitus induced by hearing loss, affecting 10–20% of the pop-

ulation. An observable hearing loss, causing auditory sensory deprivation over a band of fre-

quencies, is present in over 90% of people with tinnitus. Existing plasticity-based

computational models for tinnitus are usually driven by homeostatic mechanisms, modeled

to fit phenomenological findings. Here, we use an objective-driven learning algorithm to

model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus.

The learning algorithm maximizes the network’s output entropy by learning the feed-forward

and recurrent interactions in the model. We show that the connectivity patterns and

responses learned by the model display several hallmarks of early auditory neuronal net-

works. We further demonstrate that attenuation of peripheral inputs drives the recurrent net-

work towards its critical point and transition into a tinnitus-like state. In this state, the network

activity resembles responses to genuine inputs even in the absence of external stimulation,

namely, it “hallucinates” auditory responses. These findings demonstrate how objective-

driven plasticity mechanisms that normally act to optimize the network’s input representation

can also elicit pathologies such as tinnitus as a result of sensory deprivation.

Author summary

Tinnitus or “ringing in the ears” is a common pathology. It may result from mechanical

damage in the inner ear, as well as from certain drugs such as salicylate (aspirin). A com-

mon approach toward a computational model for tinnitus is to use a neural network

model with inherent plasticity applied to early auditory processing, where the input layer

models the auditory nerve and the output layer models a nucleus in the brain stem. How-

ever, most of the existing computational models are phenomenological in nature, driven

by a homeostatic principle. Here, we use an objective-driven learning algorithm based on

information theory to learn the feed-forward interactions between the layers, as well as

the recurrent interactions within the output layer. Through numerical simulations of the
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learning process, we show that attenuation of peripheral inputs drives the network into a

tinnitus-like state, where the network activity resembles responses to genuine inputs even

in the absence of external stimulation; namely, it “hallucinates” auditory responses. These

findings demonstrate how plasticity mechanisms that normally act to optimize network

performance can also lead to undesired outcomes, such as tinnitus, as a result of reduced

peripheral hearing.

Introduction

Tinnitus is a common form of auditory hallucinations, affecting the quality of life of many peo-

ple (� 10–20% of the population, [1–6]). It can manifest as a “ringing” or hissing sound across

a certain frequency range, typically with a distinct spectral peak [7, 8]. An observable hearing

loss, causing sensory deprivation over a band of frequencies, is present in >90% of people with

tinnitus [1–4], and the remaining people with tinnitus are believed to suffer some damage in

higher auditory processing pathways [5, 9] or have some cochlear damage that does not affect

the audiogram [10].

From a neural processing point of view, hallucinations correspond to brain activity in sen-

sory networks, which occurs in the absence of an objective external input. Hallucinations can

occur in all sensory modalities, and can be induced by drugs, certain brain disorders, and sen-

sory deprivation. For example, it is well known that visual deprivation (e.g., being in darkness

for an extended period) elicits visual hallucinations, and, similarly, auditory deprivation elicits

auditory hallucinations [11–13].

Although the causes of tinnitus can sometimes be mechanical (“objective tinnitus” [2, 14]),

this is not the case in>95% of patients [6, 14]. This so-called “subjective tinnitus” is commonly

associated with plasticity of feedback and recurrent neuronal circuits [2, 5, 10, 15–18].

The dorsal cochlear nucleus (DCN) is known to display tinnitus-related plastic reorganiza-

tion following cochlear damage [19–22], and is thought to be a key player in the generation of

tinnitus [23–26]. It is stimulated directly by the auditory nerve with a tonotopic mapping.

Each output unit, composed of a group of different cells, receives inputs from a small number

of input fibers and inhibits units of similar tuning [27, 28]. This connectivity pattern results in

a sharp detection of specific notches [28]. As the DCN is the foremost anatomical structure in

the auditory pathway in which tinnitus-related activity has been observed [19, 20], it is the

structure most associated with the generation of tinnitus [23–26]. This choice is also supported

by DCN hyperactivity following artificial induction of tinnitus [21, 22]. Interestingly, this

induced hyperactivity seems to persist even if the DCN is later isolated from inputs other than

the auditory nerve [29]. This suggests that tinnitus-related hyperactivity in the DCN is self-sus-

tained and does not depend on feedback from higher order auditory networks.

The DCN also receives non-auditory inputs, such as somatosensory and vestibular projec-

tions [30–33]. The somatosensory projections, in particular, are known to be upregulated in

tinnitus [22, 34–38]. Furthermore, somatosensory stimulation is known to affect the perceived

tinnitus in >60% of the cases [37, 39, 40]. In light of these observations, the somatosensory

projections are considered to play a major role in tinnitus [37]. A recent study used a bimodal

auditory-sensory stimulation as a treatment paradigm in both guinea pigs and humans, suc-

cessfully modulating the percept of tinnitus and reducing its loudness, though the effect did

not last after terminating the treatment [41].

While existing computational models successfully account for some of the characteristics of

tinnitus [42], many of them are based on lateral inhibition [43–45] or gain adaptation [46],
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and do not take into account long-term neural plasticity. Plasticity-based models for tinnitus

are usually phenomenological models, where plasticity is described as a homeostatic process

[47–53] or an amplification of central noise [54], and not as a process which serves a computa-

tional goal. Another computational model for tinnitus is based on stochastic resonance and

suggests that tinnitus arises from an adaptive optimal noise level [55, 56]. This model success-

fully accounts for various aspects of tinnitus and other auditory phenomena related to sensory

deprivation, but it is focused on a single auditory frequency and has yet to be further explored

in a broader context.

In this work, we try to gain new insights into tinnitus by using information theoretic-driven

plasticity. We implemented the entropy maximization (EM) approach in a recurrent neural

network [57] to model the connection between the raw sensory input and its downstream

representation. This approach was previously applied to model the feed-forward connectivity

in the primary visual cortex, giving rise to orientation-selective Gabor-like receptive fields

[58]. A later generalization of the algorithm to learning recurrent connectivity [57] was used to

show that EM drives early visual processing networks toward critical behavior [59]. Further-

more, the evolved recurrent connectivity profile has a Mexican-hat shape; namely, neurons

with similar preferred orientations tend to excite one another, while neurons with distant pre-

ferred orientations tend to inhibit one another, consistent with empirical data. While the

aforementioned studies focused on the normal function of the visual system, EM-based neural

networks were barely used to model abnormalities or to study the effect of changes in input

statistics [60]. The relationship between EM-based adaptation and the emergence of tinnitus

from sensory deprivation was previously discussed in the context of single neurons [61], yet it

was never explored on a large-scale recurrent network.

Here, we trained a recurrent EM neural network to represent auditory stimuli, so it can

stand as a simplified model for early auditory processing. Subsequently, to test the effect of sen-

sory deprivation on the network’s output representation, we modified the input statistics by

attenuating a certain range of frequencies. Our findings show that tinnitus-like hallucinations

naturally arise in this model following sensory deprivation. Specifically, the recurrent interac-

tions act to compensate for the attenuated input by increasing their gain, causing the network

to cross a critical point into a regime of hallucinations. These findings suggest that hallucina-

tions following sensory deprivation can stem from general long-term plasticity mechanisms

that act to optimize the representation of sensory information.

Results

To model the early stages of auditory processing (e.g., DCN), we used an EM approach to train

a recurrent neural network (see Methods). The neurons obey first-order rate dynamics, and it

is assumed that the network reaches a steady state following the presentation of each stimulus.

The learning algorithm for the feed-forward and recurrent connectivity was based on the gra-

dient-descent algorithm described in [57], with the addition of regularization. The network

was trained in an unsupervised manner to represent simulated auditory stimuli (see Methods

for more details). Figs 1 and 2A depict the network’s architecture and typical stimuli,

respectively.

In all simulations described here, we used a network of 40 input neurons and 400 output

neurons (an overcomplete representation). Regularization was achieved using a cost on the

norm of the weights and was applied to both feed-forward (using ℓ1 norm) and recurrent

(using ℓ2 norm) sets of connections (see Methods). The coefficients of the regularization terms

were set to λW = 0.001 for the feed-forward connections and λK = 0.226 for the recurrent
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connections (for details regarding these choices, see below the subsection on the Regulariza-

tion effect).

Training using typical stimuli

First, we trained the network using typical auditory inputs, simulated as a combination of mul-

tiple narrow Gaussians in the log-scaled frequency domain with additional noise (see Methods

and Fig 2A). After the convergence of the learning process, each output neuron had a specific

and unique preferred frequency, as manifested in the feed-forward connectivity profiles (Fig

3A and 3B). The recurrent connections converged to a “Mexican-hat” profile with short-range

excitation and longer-range inhibition (Fig 3C and 3D). This profile of connectivity causes

neurons with adjacent frequencies to excite one another, while neurons with slightly more dis-

tant frequencies inhibit each other. The significance of this profile lies in its ability to reduce

the width of the output response profile for a Gaussian input, thus, effectively reducing the

noise. Similarly shaped spectral receptive fields were observed in various primary auditory net-

works [27, 28, 62, 63] including the DCN, suggesting similar connectivity patterns.

The network’s response to typical stimuli shows tonotopic responses, and the response in

the absence of external stimuli is near spontaneous activity (Fig 4A and 4B). We note that the

initial feed-forward connectivity was manually tuned to produce a tonotopic mapping (using

weak Gaussian profiles with ordered centers). Although the feed-forward connections do

change throughout the learning process, the tonotopic organization remains stable. The tono-

topic mapping is a well-known property of all auditory processing stages between the cochlea

and the auditory cortex in various species, including humans [64–68]. The preservation of the

tonotopic organization throughout the learning process is in agreement with biological obser-

vations, suggesting that it is created in the embryonic stages of development and is preserved

through plasticity processes [69].

We noticed that spatial connectivity profiles hardly change throughout the learning, while

their scale changes dramatically. In light of this observation, we quantified several global

parameters of the network as a function of the scale of the recurrent connectivity matrix (Fig

5). We also used these measurements to gain insights into the effect of regularization on our

results. First, note that the regularization caused the network learning process to converge to

Fig 1. Network’s architecture. The architecture of an overcomplete recurrent neural network with M input neurons

and N output neurons, where N>M.

https://doi.org/10.1371/journal.pcbi.1008664.g001
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down-scaled recurrent interactions compared to the optimal scale in terms of the non-regular-

ized objective function (Fig 5A, dashed vertical lines). This specific scale seems to play a role in

determining the proximity of the network dynamics to the critical point. Specifically, the con-

vergence time rises dramatically at this point (Fig 5B), reflecting the well-known phenomenon

of “critical slowing down” [70–73]. In addition, at this scale, the population vector’s magnitude

rises, reflecting the emergence of non-uniform activity profiles in the absence of a structured

input (see Methods and Fig 5C). Finally, the average pairwise correlations obtain a minimum

around this scale Fig 5D).

All these results point to the same conclusion—without the regularization, the recurrent

connectivity should have been scaled by�3.14, such that the spectral radius of the recurrent

connectivity matrix would be�4. We note that the maximal derivative of the chosen activation

Fig 2. Typical stimuli. A: Three examples of typical simulated stimuli, representing the activity of the input neurons as

a function of their preferred frequency. B–F: The stimuli presented in A, after attenuation of different frequency ranges

using different attenuation profiles. Attenuation was achieved by multiplying the original input vector by an

attenuation profile, depicted in gray. The attenuation profiles in B–D and F were inverted sigmoidal functions with

parameters k0 = 20, β = 10 for B, k0 = 30, β = 10 for C, k0 = 20, β = 1 for D and k0 = 20, β = −10 for F, where k0

represents the transition frequency (in the input neurons domain, between 1 and M = 40) and β represents the

sharpness of the transition. The attenuation profile in E was composed of two sigmoidal functions with parameters

k1 = 10, k2 = 30, β = 1. For further details, see Methods.

https://doi.org/10.1371/journal.pcbi.1008664.g002
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function 1/(1 + exp(−x)) is ¼. Thus, having the spectral radius of the recurrent connectivity

matrix near 4 indicates proximity to the critical point (see Methods). This means that the regu-

larization keeps the recurrent connectivity below its optimal scale (in terms of the entropy

term alone), and the network remains subcritical. We note that for different regularization

coefficients, the scale of the interactions could obtain different values.

Sensory deprivation

After the learning was stabilized for normal stimuli, we attenuated the inputs in a certain fre-

quency range (Fig 2B–2F), and let the network’s recurrent connections adapt to the new input

statistics. The resulting recurrent connectivity profile among the deprived neurons had a

stronger central excitation and a wider inhibition (Fig 3E and 3F and S1 Fig). The stronger

recurrent connectivity in the deprived region led to a phase transition, resulting in an inhomo-

geneous stationary activity pattern independent of the given input (Fig 4C–4G). We interpret

those results as “hallucinations”, elicited by the sensory deprivation. Interestingly, the “halluci-

nations” in our model develop only in the deprived region of the output layer, consistent with

certain types of tinnitus [3, 7, 61, 74]. Furthermore, the corresponding activity profile has a

single peak, in line with the most common forms of tinnitus [7, 8, 75]. The network’s sensitiv-

ity to external inputs in the deprived frequencies is lower, as reflected by the elevated hearing

thresholds in the simulated audiograms (S11 Fig).

Following the induction of sensory deprivation, we evaluated the criticality measures once

again (Fig 5 right panels, S2 and S3 Figs). The results for the objective function, convergence

time and population vector remained qualitatively similar, but the optimal scale moved much

Fig 3. The network’s connectivity before and after sensory deprivation. A–B: The feed-forward connectivity matrix

and its average row profile. C–D: The recurrent connectivity matrix and its average row profile before sensory

deprivation. E–F: The recurrent connectivity matrix and its average row profiles after sensory deprivation, averaged

separately for neurons in the deprived zone and the non-deprived zone. Each row profile is obtained by aligning the

presynaptic connections to every neuron according to its preferred frequency and then averaging. The x-axis in B, D

and F describes the log-scaled difference in the preferred frequency between the presynaptic and postsynaptic neurons.

The attenuation profile’s parameters were k0 = 20, β = 10 (see Fig 2B). The classification of output neurons into

deprived and non-deprived zones in F is based on the level of attenuation at the preferred frequency of the neuron.

https://doi.org/10.1371/journal.pcbi.1008664.g003
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closer to 1 (�1.07). Thus, the network converged to a point much closer to its critical point,

compared to its state before the induction of sensory deprivation. Interestingly, the average

pairwise correlations now exhibit a maximum rather than a minimum. This finding is qualita-

tively consistent with the observed increase in synchrony following the induction of tinnitus

Fig 4. The network’s response to different stimuli before and after sensory deprivation. A: Typical stimuli and a

silent stimulus (zero input—right panel). B: The network’s response to the stimuli presented in A. C–G: The network’s

response to the stimuli presented in A after training on stimuli with an attenuated frequency range. The attenuation

profiles are depicted in gray. The spontaneous activity of the output neurons, defined here as the average activity in

response to a silent stimulus before attenuation (as in the right panel of B), is indicated in B–G by a dashed line.

https://doi.org/10.1371/journal.pcbi.1008664.g004
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Fig 5. Global measures for different scaling of the recurrent connections. A: The network’s objective function,

without the regularization terms. Low values of the objective function correspond to high network’s susceptibility. B:

The convergence time of the network dynamics using Euler’s method; i.e., the number of time-steps until the

simulation reaches a convergence criterion (see Methods). C: The population vector magnitude. D: The squared

correlation coefficient between pairs of output neurons, averaged over all such pairs. All the above measures are

displayed for different scaling factors of the recurrent connectivity matrix Ktr, as found by the training process; i.e., for

each value of the scaling factor σ, the different measures were evaluated by replacing the recurrent connectivity matrix

with K = σKtr. In the left panels, we used the recurrent connectivity matrix Ktr trained on typical stimuli, while in the

right panels, we used the recurrent connectivity matrix obtained after sensory deprivation. The operating point is at a

scaling factor of 1, namely, the recurrent connectivity the learning process has converged to. The marked critical point

(�3.14 in the left panels and�1.07 in the right panels) is the scaling factor for which the spectral radius ρ(K) of the

recurrent connectivity matrix is 4, i.e., 4/ρ(Ktr). The derivatives of B–C are also displayed for better visualization of

transitions in values. The exact values of the objective function and convergence time displayed in A–B are completely

arbitrary, therefore these figures should only be considered in a qualitative manner. The attenuation profile’s

parameters were k0 = 20, β = 10 (see Fig 2B). For visualization purposes, different panels are displayed on different

vertical scales.

https://doi.org/10.1371/journal.pcbi.1008664.g005
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[76]. We note that following sensory deprivation, the effect of learning on the recurrent con-

nections is not limited to scaling. Hence, the different measures exhibit different patterns in

the supercritical domain (above the scale of�1.07).

Regularization effect

As discussed above, to keep the dynamics from crossing into the supercritical domain, we

added regularization to the network’s weights. For each type of connectivity matrix (feed-for-

ward and recurrent), we tested regularization both by ℓ1 and ℓ2 norms of the connections.

Applying ℓ1 regularization is known to lead to sparse connectivity [77]; however, applying it to

the recurrent connectivity matrix ended in nullifying all connections but a few, which were

still strong enough to turn the dynamics into the supercritical domain (see S5 and S6 Figs).

Because recurrent connectivity is present in most biological neural networks, we chose to

focus only on simulations where the recurrent connections were regularized by their ℓ2 norm.

Using either the ℓ1 or ℓ2 norm to regularize the feed-forward connectivity did not have a dra-

matic effect on the results. Since using the ℓ1 norm leads to a more biological sparse feed-for-

ward connectivity, as found experimentally in the DCN [28], we chose to focus on this option.

The stability of the network’s fixed point is determined by the sign of the eigenvalues of the

matrix that controls the linearized dynamics. In this case, the corresponding matrix is (I − GK),

where K is the recurrent connectivity matrix and G is a diagonal matrix containing the deriva-

tives of the activation function for each output neuron (see Methods). Since the maximal deriv-

ative of the chosen activation function (1/(1 + exp(−x))) is ¼, the critical point is characterized

by having the spectral radius of the recurrent connectivity matrix, K, near 4. We used this result

as an efficient surrogate to the actual critical point.

In our simulations, the spectral radius of the recurrent connectivity matrix K decreased

with the respective regularization coefficient λK, with a characteristic sharp drop (Fig 6). Gen-

erally, the value of λK where this drop occurs depends mainly on the number of output neu-

rons; however, in our simulations, sensory deprivation caused this value to rise. This

phenomenon created an interval of λK values, where sensory deprivation drives the dynamics

much closer to the critical point, thus, eliciting the hallucination-like responses described

before. Interestingly, we found that the results depicted in Fig 6 were robust to changes in the

attenuation profile of the inputs (see S4 Fig), suggesting that they depend only on the net-

work’s size and feed-forward connectivity. In all simulations above we used a regularization

coefficient near the upper bound of this interval (λK = 0.226), as higher values within the inter-

val tended to yield results more consistent with biological findings, such as the single-peaked

“hallucination” profile [8, 75].

Discussion

In this work, we used an EM approach to train a recurrent neural network to represent simu-

lated auditory stimuli, and examined the effect of input statistics on the evolved representation.

For typical inputs, the network developed connectivity patterns and exhibited output

responses similar to biological findings regarding the auditory system in general [78–81] and,

more specifically, the DCN [27, 28]. Interestingly, sensory deprivation elicited tinnitus-like

“hallucinations” in the network, resembling the characteristics of common types of tinnitus [3,

7, 8, 13, 61, 74]. Although we focused here on tinnitus, this qualitative phenomenon is inde-

pendent of the input modality and can be used to explain how other kinds of “phantom” sensa-

tions are caused by neural plasticity and involve the specific region in the sensory input space,

which was deprived of input [82, 83].
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The DCN is known to receive various non-auditory inputs [30–33]. In particular, somato-

sensory projections to the DCN are known to be upregulated in tinnitus [22, 34–38], and sen-

sory stimulation modulates the perceived tinnitus in most cases [37, 39, 40]. Conceptually,

these findings are in line with the EM approach—strengthening external inputs to a deprived

output neuron will tend to increase its entropy. Such upregulation of connections from one

sensory modality to another resembles acquired synaesthesia, namely the triggering of sensa-

tions in a sensory deprived modality by stimulation of another modality [84]. For example, fol-

lowing visual deafferentation, visual sensations can be elicited by auditory or somatosensory

stimuli [85–87]. Indeed, the relationship between tinnitus and acquired somatosensory-audi-

tory synaesthesia was proposed previously [84]. The emergence of such acquired synaesthesia

following sensory deprivation has been demonstrated in a network model based on the same

EM approach used here [60]. Thus, the proposed computational framework can naturally

account for the effect of non-auditory projections.

Nevertheless, the strengthening of feed-forward connections, such as the somatosensory

projections, cannot explain the emergence of tinnitus by itself. First, while the perception of

tinnitus can be modulated by external feed-forward projections, such projections cannot

maintain persistent activity by themselves in the absence of non-auditory stimulation. Second,

the perceived tinnitus typically has a distinct spectral profile, whereas a simple enhancement of

feed-forward somatosensory inputs would be expected to elicit a homogeneous profile within

the deprived frequency range. Recurrent networks, on the other hand, can naturally give rise

to and maintain inhomogeneous persistent activity in the absence of external stimulation [88,

89]. Thus, the emergence of tinnitus is likely to rely on changes in recurrent circuitry, although

Fig 6. Regularization effect on the spectral radius of the recurrent connectivity matrix. The spectral radius of the

recurrent connectivity matrix K decreases with the regularization coefficient λK, before and after the induction of

sensory deprivation. Due to the chosen sigmoidal activation function, the sharp drop in the spectral radius from�4 to

�2 determines the border between near-critical and subcritical dynamics. After the induction of sensory deprivation,

this border moves to higher values of the regularization coefficient, hence, creating an interval (from�0.183 to

�0.228) of regularization coefficient values where sensory deprivation causes “hallucinations”. The attenuation

profile’s parameters were k0 = 20, β = 10 (see Fig 2B).

https://doi.org/10.1371/journal.pcbi.1008664.g006
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it may also involve additional changes in feed-forward interactions. This study focused on the

role of recurrent interactions in the emergence of tinnitus. We note, however, that the corre-

sponding recurrent network may go beyond the DCN and incorporate other brain areas, such

as the ventral cochlear nucleus (VCN) and the inferior colliculus (IC), which are known to

undergo plastic changes during tinnitus [90–93]. Future work can generalize the current

model to also include different non-auditory inputs and model their effect on the perceived

tinnitus.

Previous computational models rely on phenomenological homeostasis-driven plasticity to

demonstrate tinnitus elicited by sensory deprivation [47–52]. Here, we use an objective-driven

plasticity, namely, the main mechanism underlying the network’s plasticity is optimizing an

explicit computational goal. Specifically, the network maximizes the entropy of its output,

which corresponds to increasing input sensitivity [59]. The general resemblance of our model

to biological findings supports the hypothesis that EM serves as a computational objective for

primary sensory processing networks in the brain (e.g., [58, 59]). However, as described in the

Methods section, the vanilla EM learning rules drive the network into a phase transition. This

process may lead the network away from a stable fixed point and into dynamical states with

poor information representation. Thus, some regularization should be used to keep the net-

work subcritical. To this end, we used a penalty on the ℓ2 norm of the recurrent connections as

a regularization method, which can be thought of as a kind of homeostatic mechanism [94–

98]. Following sensory deprivation, the network increases the gain of its recurrent connectivity

to compensate for the attenuated inputs and operates much closer to its critical point, giving

rise to tinnitus-like “hallucinations”. In this model, the emergence of tinnitus depends on the

interplay between the computational objective and the homeostatic regularization, in contrast

to models driven by a single phenomenological homeostatic mechanism. Future studies might

employ different types of regularization methods (e.g., firing-rate-based rather than weight-

based) and examine their effect on the dynamics of the network.

While most of the hyper-parameters of the model can be chosen arbitrarily without having

any qualitative effect on the results, the regularization coefficient for the recurrent connectiv-

ity, λK, is an exception; if it is too small, numerical instabilities might accidentally drive the net-

work into a supercritical domain, but if it is too large, the network will always remain

subcritical. In the first case, the output may no longer be dependent on the input, while in the

second case, the input may have little effect on the output—in both cases, moving away from

the critical point leads to poor sensitivity. In practice, there is a specific range of values which

yields the qualitative results demonstrated in this paper (see Fig 6) and, according to our obser-

vations, it is independent on the chosen attenuation profile (see S4 Fig). Here, we used a grid

search to find the corresponding range, and the results were obtained using a near-maximal

value within it. This choice maximized the cost of regularization relative to the EM objective,

while still allowing a sensory deprivation to drive the dynamics away from the subcritical

regime. This choice of λK has driven the network towards single-peaked “hallucinations”,

matching empirical findings [8, 75].

These results are interesting to discuss in light of a plethora of studies from recent years,

suggesting near-critical dynamics in biological neural networks across various scales, from

neuronal cultures to large-scale human brain activity [99–107]. In particular, it is proposed

that healthy neural dynamics are poised near a critical point, yet within the subcritical domain

[108]. Changes in the input statistics can drive the network to transition into supercritical

dynamics, which may manifest as hallucinations. Our study portrays a concrete, albeit simpli-

fied, network model that experiences a transition from healthy to pathological neural dynam-

ics as a consequence of inherent plasticity and sensory deprivation. We note that the network
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dynamics here are too simplified to enable a direct comparison with the rich dynamics

observed in cortical networks and with common hallmarks of criticality (e.g., [99]).

An illuminating perspective on the emergence of hallucinations, such as tinnitus, as a con-

sequence of sensory deprivation comes from the framework of Bayesian inference [109–111].

According to this framework, sensory systems generate perception by combining the incom-

ing stimuli with prior expectations in a way that takes into account the relative uncertainty of

each. Under sensory deprivation, the uncertainty about the input is very large; hence, the

weight of the prior expectations becomes more dominant. This process may eventually lead to

a state in which prior expectations dominate perception, which can be interpreted as a halluci-

nation [112]. If this perception is maintained long enough, it will turn into a strong prior by

itself, thus, giving rise to a chronic hallucination—namely, tinnitus [110]. Although our model

does not use the Bayesian framework explicitly, it can be thought of in similar terms. Here, the

prior expectations are effectively encoded in the evolved recurrent connectivity. Under sensory

deprivation, these recurrent interactions dominate the network’s response and can be thought

of as an enhanced prior. The advantage of the model described here lies in its mechanistic

nature, namely, that it is cast in the language of neuronal networks with long-term plasticity of

recurrent interactions. Thus, it can be more straightforward to interpret and compare to

experimental data.

It is important to note that this model is relatively simplified in terms of the network archi-

tecture and dynamics. For example, the steady-state response used here reflects an assumption

of slowly modulated inputs (compared to the network dynamics), which is usually reasonable

in the case of the auditory system, but it does not hold for all cases. As a consequence, the

model cannot fully capture some of the underlying details, such as the spectral response prop-

erties of DCN neurons and dynamical aspects like bursting and synchrony; however, such sim-

plifications are currently necessary to allow the derivation of EM-based learning rules for the

recurrent connections [57]. Developing suitable EM-based learning rules for non-stationary

inputs and outputs is an interesting and challenging task by itself, and its application to scenar-

ios of sensory deprivation may lead to further insights, but such derivation lies beyond the

scope of the current work. We believe that the underlying principle of EM leading to hallucina-

tions under sensory deprivation does not depend on such details. Future work can use the

same computational principles with a more biologically-detailed network model to better

account for other aspects as well.

To summarize, we have demonstrated how the EM approach can be used as a model of

early auditory processing and the phenomenon of tinnitus. Previous works have demonstrated

that EM-based neural networks can serve as models for early visual processing [58, 59] and the

phenomenon of synaesthesia [60]. We believe that this framework can be used for modeling

other modalities and phenomena as well. It is also important to extend this framework to

more biologically plausible network models, which could account for more detailed aspects of

the underlying neural dynamics.

Methods

The model

We modeled an early auditory processing neural network (e.g., the DCN) using the overcom-

plete recurrent EM neural network described in [57], with the addition of regularization on

strong connectivity.

Network architecture and dynamics. Our system is composed of M input neurons, x,

and N output neurons, s. Each output neuron’s activity through time is given by the dynamic
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equation:

t
dsi
dt
¼ � si þ g

XM

j¼1

Wijxj þ
XN

k¼1

Kiksk � Ti

 !

; ð1Þ

where W is the feed-forward connectivity matrix, K is the recurrent connectivity matrix, T are

the output neurons’ thresholds, and g(x) = 1/(1 + exp(−x)) is the activation function of the

neurons. For overcomplete transformations, we assume M< N (Fig 1).

The fixed points of Eq 1 are given implicitly by:

si ¼ g
XM

j¼1

Wijxj þ
XN

k¼1

Kiksk � Ti

 !

: ð2Þ

These fixed points are stable iff all of the eigenvalues of the linearized dynamics matrix (I − GK)

have positive real parts [59] (G is a diagonal matrix defined by

Gij � dijg 0ð
PM

j¼1
Wijxj þ

PN
k¼1

Kiksk � TiÞ). Since the values of G are upper-bounded by

maxx g0 (x) = ¼, for a matrix K with eigenvalues <4, the fixed points are indeed stable. In prac-

tice, when fixed points exist at all, there will usually be only one such stable fixed point.

Numerically, the steady state can be found via integrating Eq 1 using Euler’s method for a

long time-period until the activities stabilize; however, this method is highly inefficient. In this

work, we found the steady state by solving Eq 2 directly using the Newton-Raphson method.

When the eigenvalues of K are near 4, the eigenvalues of (I − GK) might get close to zero.

Crossing this point will result in instability of the fixed point and a phase transition. Near this

phase transition, the decrease in the eigenvalues of (I − GK) will cause the effective time con-

stants to rise—a phenomenon termed “critical slowing down”. To gain some insight into the

actual effective time constant, we evaluated the convergence time of Eq 1 by integrating it

using Euler’s method, and counting the number of time-steps until a convergence criterion

was met.

Furthermore, such a phase transition is expected to be characterized by a spontaneous sym-

metry breaking [113], which can be measured by several metrics. Here, we used the population

vector for that purpose, calculated as 1

N

PN
k¼1

skei�k where ϕk� 2πk/N and k is the index of the

output neuron. Although in our case the boundary conditions are not periodic, we assume

their effect to be negligible since N� 1 and treat the preferred frequencies of the neurons as

preferred angles.

Learning rules. The goal of the network is to find the set {W�, K�, T�} which maximizes

the entropy H(s) of the steady state outputs. To do so, we used the objective function described

in [57], with additional regularization terms on the ℓ1 and ℓ2 norms of W and K, respectively:

ε � �
1

2
hlog ðwTwÞix þ lW

X

i;j

jWijj þ
lK

2

X

i;k

K2

ik; ð3Þ

where wij �
@si
@xj

is the Jacobian of the transformation given by χ = ϕW, and ϕ� (I − GK)−1 G

[57].

This objective function, without the regularization terms, would lead to an increase in the

singular values of χ. One way to achieve that goal is to decrease the eigenvalues of (I − GK) to

zero, which may lead one of them to turn slightly negative due to numerical errors. This will

result in instability of the fixed point and a phase transition, as discussed above. The goal of

the regularization terms is to prevent this phenomenon, which is a general property of unregu-

larized entropy maximization systems of continuous variables [114].
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The learning rules were derived using the gradient descent method, as in [57]:

DW � � Z
@ε
@W
¼ Zðh�

T
ððwþÞ

T
þ yxTÞix � lWSðWÞÞ

DK � � Z
@ε
@K
¼ Zðh�

T
ðwwþ þ ysTÞix � lKKÞ

DT � � Z
@ε
@T
¼ Zh� �

T
yix;

ð4Þ

where yl � wwþ�ð Þll
g00ðhlÞ
g0ðhlÞð Þ3

, hl �
PM

j¼1
Wljxj þ

PN
k¼1

Klksk � Tl, S(A) is defined by

(S(A))ij� sign (Aij) and χ+ stands for the pseudo-inverse of χ (in the overcomplete case used

here, χ+ = (χT χ) χT).

Auditory inputs

The input stimuli were chosen according to certain heuristics to emulate the system’s response

to tones of varying frequencies and amplitudes. Each input sample embodies the reaction of

the auditory hair cells to a combination of tones of certain frequencies. As the cochlea maps

the frequencies on a logarithmic scale, we assumed each pair of adjacent input neurons, repre-

senting inner hair cells, to represent equally log-spaced frequencies. The input profile for a

pure tone is centered on the neuron that best matches that frequency, and drops off to neigh-

boring neurons to form a narrow Gaussian response curve. The frequency of each pure tone

was chosen at random with a uniform distribution (in the log-spaced frequency domain)

within the permitted range. The amplitude of each pure tone was randomly drawn from a uni-

form distribution, reflecting the unimodal distribution of the logarithms of amplitudes in nat-

ural sounds (e.g., [115]). Other unimodal distributions, e.g., the normal distribution, may also

be used to model the logarithms of the amplitudes. To account for the logarithmic response of

hair cells and the auditory nerve to different amplitudes [116, 117], we modeled the distribu-

tion of the logarithms of the amplitudes rather than that of the raw amplitudes. In addition to

the input response, all neurons feature some spontaneous random activity that is irrespective

of the inputs, to model the neurons’ reaction to background noises and non-stimulated motion

of the hair cells (Fig 2A).

The amplitudes of natural sounds are not uniformly distributed, loud sounds being expo-

nentially less common; however, the response of the inner hair cells is determined not only by

the absolute amplitude of the sound, but also by the reactivity of the basilar membrane, as con-

trolled by the outer hair cells. This serves as an automatic gain control mechanism, giving the

inner hair cells use of their full motion capacity for normal inputs. Therefore, we hold the uni-

form distribution to be a good approximation to the output of the inner hair cells when pre-

sented with natural sounds [118, 119].

To model sensory deprivation, we attenuated a part of the frequency domain by applying a

(monotonically decreasing) sigmoid envelope to all stimuli. The choice of attenuating the

higher frequencies in most attenuation profiles was based on the most common type of hear-

ing loss [120, 121], but attenuation was also applied to other frequency bands (Fig 2B–2F).

Implementation details

Input generation. Each input sample was composed of up to 5 different tones, uniformly

distributed in the input domain. The response to each tone was a Gaussian, with a folded-nor-

mally distributed standard deviation (the standard deviations themselves have a standard devi-

ation of half the input domain) and a uniformly distributed amplitude between 7 and 10
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(arbitrary units). An additive uniformly distributed noise between 0 and 1 was added to each

simulated input sample. Finally, all input samples were divided by twice the highest activation

obtained over all samples and input neurons, such that the new activations were in the range

[0, 0.5].

Attenuation profiles. Input attenuation of high frequencies was simulated by multiplying

each input neuron’s activity by a factor between 0 and 1. This factor was chosen according to a

sigmoid function: a(k) = 1/(1 + exp(−β(k0 − k))), where k is the input neuron’s index, k0 repre-

sents the cutoff frequency in the input neurons domain (analogous to the log-scaled frequency

domain) and β controls the attenuation profile’s steepness. Here we chose k0 to be at either ½
(Fig 2B, 2D and 2F) or ¾ (Fig 2C) of the number of input neurons, and β to be either 10 (Fig

2B and 2C), 1 (Fig 2D) or -10 (a non-inverted sigmoid; Fig 2F). To simulate a hearing loss at a

certain frequency band, we combined two sigmoidal functions to get the attenuation profile:

a(k) = 1 − (1 − 1/(1 + exp(−β(k1 − k)))) � (1 − 1/(1 + exp(−β(k − k2)))), where k1 and k2 are the

edges of the frequency band, defined similarly to k0 in the previous cases. Here, we chose k1

and k2 to be at ¼ and ¾ of the number of input neurons, respectively, and β to be 1 (Fig 2E).

Training schedule and hyper-parameters. The network was trained in an on-line man-

ner using 1,000,000 samples randomly drawn as described in the Input generation subsection.

The training process was divided into three phases:

1. Feed-forward training: Only the feed-forward connections (W) and the thresholds (T)

were trained using unattenuated inputs for 50,000 iterations. The learning rate was η = 0.1

and the feed-forward regularization coefficient was set to λW = 0.001. During this phase the

recurrent connections were set to zero.

2. Recurrent training: Only the recurrent connections (K) were trained using unattenuated

inputs for 1,000,000 iterations. The learning rate was η = 0.001 and the regularization coeffi-

cient was λK = 0.226 (see Regularization effect). During training, auto-synapses (from an

output neuron to itself) were manually truncated to zero.

3. Attenuated inputs training: The training continued exactly as in the previous recurrent

training phase (phase 2) for another 1,000,000 iterations, but now the inputs were

attenuated.

We note that the different number of iterations in each phase was chosen to be large enough

to implicate full convergence of the learning process. In practice, the learning usually con-

verges after much fewer iterations.

While the second learning phase was meant to simulate a normal development of the recur-

rent connectivity prior to the sensory deprivation, similar results to those displayed through-

out the paper are also obtained without it (see S7–S10 Figs).

Supporting information

S1 Fig. The network’s recurrent connectivity before and after sensory deprivation for dif-

ferent attenuation profiles. Each row of panels depicts the recurrent connectivity matrix and

its average row profile after sensory deprivation, averaged separately for neurons in the

deprived zone and the non-deprived zone. Each row match the attenuation profiles from pan-

els C–F in Fig 2, respectively. See Fig 3 for further details.

(TIF)

S2 Fig. Global measures for different scaling of the recurrent connections. A: The network’s

objective function, without the regularization terms. B: The convergence time of the network

dynamics using Euler’s method. C: The population vector magnitude. D: The squared
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correlation coefficient between pairs of output neurons, averaged over all such pairs. All the

above measures are displayed for different scaling factors of the recurrent connectivity matrix

Ktr, as found by the training process; i.e., for each value of the scaling factor σ, the different

measures were evaluated by replacing the recurrent connectivity matrix with K = σKtr. The

recurrent connectivity matrices used here were obtained after sensory deprivation. The left

and right panels correspond to attenuation profiles with k0 = 30, β = 10 and k0 = 20, β = 1,

respectively (Fig 2C and 2D). The operating point is at a scaling factor of 1, namely, the recur-

rent connectivity the learning process has converged to. The marked critical point is the scal-

ing factor for which the spectral radius ρ(K) of the recurrent connectivity matrix is 4, i.e.,

4/ρ(Ktr). See Fig 5 for further details.

(TIF)

S3 Fig. Global measures for different scaling of the recurrent connections. A: The network’s

objective function, without the regularization terms. B: The convergence time of the network

dynamics using Euler’s method. C: The population vector magnitude. D: The squared correla-

tion coefficient between pairs of output neurons, averaged over all such pairs. All the above

measures are displayed for different scaling factors of the recurrent connectivity matrix Ktr, as

found by the training process; i.e., for each value of the scaling factor σ, the different measures

were evaluated by replacing the recurrent connectivity matrix with K = σKtr. The recurrent

connectivity matrices used here were obtained after sensory deprivation. The left and right

panels correspond to the last two attenuation profiles from Fig 2 (panels E and F, respectively).

The operating point is at a scaling factor of 1, namely, the recurrent connectivity the learning

process has converged to. The marked critical point is the scaling factor for which the spectral

radius ρ(K) of the recurrent connectivity matrix is 4, i.e., 4/ρ(Ktr). See Fig 5 for further details.

(TIF)

S4 Fig. Regularization effect on the spectral radius of the recurrent connectivity matrix.

The spectral radius, ρ(K), of the recurrent connectivity matrix K as a function of the regulariza-

tion coefficient λK, before and after the induction of different sensory deprivation profiles. See

Fig 6 for further details.

(TIF)

S5 Fig. The network’s recurrent connectivity before and after sensory deprivation using ℓ1

regularization. A–C: The recurrent connectivity matrix and its average row profile and con-

nectivity distribution, before sensory deprivation. D–F: Same as A–C, but after sensory depri-

vation. In E, the row profiles were averaged separately for neurons in the deprived zone and

the non-deprived zone. The attenuation profile’s parameters were k0 = 20, β = 10 (see Fig 2B).

See Fig 3 for further details.

(TIF)

S6 Fig. The network’s response to different stimuli before and after sensory deprivation

using ℓ1 regularization. A: Typical stimuli and a silent stimulus (zero input—right panel). B:

The network’s response to the stimuli presented in A. C: The network’s response to the stimuli

presented in A after training on stimuli with attenuated high frequencies. The attenuation pro-

file is depicted in gray. The spontaneous activity of the output neurons, defined here as the

average activity in response to a silent stimulus before attenuation (as in the right panel of B),

is indicated in B–C by a dashed line. See Fig 4 for further details.

(TIF)

S7 Fig. The network’s recurrent connectivity after sensory deprivation without pretraining

the recurrent connections on normal stimuli. A: The recurrent connectivity matrix. B: The
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average row profile of the recurrent connectivity matrix, averaged separately for neurons in

the deprived zone and the non-deprived zone. The attenuation profile’s parameters were

k0 = 20, β = 10 (see Fig 2B). See Fig 3 for further details.

(TIF)

S8 Fig. The network’s response to different stimuli before and after sensory deprivation,

without pretraining the recurrent connections on normal stimuli. A: Typical stimuli and a

silent stimulus (zero input—right panel). B: The network’s response to the stimuli presented in

A after training only the feed-forward connections. C: The network’s response to the stimuli

presented in A after training on stimuli with attenuated high frequencies. The attenuation pro-

file is depicted in gray. The spontaneous activity of the output neurons, defined here as the

average activity in response to a silent stimulus before attenuation (as in the right panel of B),

is indicated in B–C by a dashed line. See Fig 4 for further details.

(TIF)

S9 Fig. Global measures for different scaling of the recurrent connections, without pre-

training the recurrent connections on normal stimuli. A: The network’s objective function,

without the regularization terms. B: The convergence time of the network dynamics using

Euler’s method. C: The population vector magnitude. D: The squared correlation coefficient

between pairs of output neurons, averaged over all such pairs. All the above measures are dis-

played for different scaling factors of the recurrent connectivity matrix Ktr, as found by the

training process; i.e., for each value of the scaling factor σ, the different measures were evalu-

ated by replacing the recurrent connectivity matrix with K = σKtr. The recurrent connectivity

matrix used here was obtained after sensory deprivation. The attenuation profile used had the

parameters k0 = 20, β = 10. The operating point is at a scaling factor of 1, namely, the recurrent

connectivity the learning process has converged to. The marked critical point is the scaling fac-

tor for which the spectral radius ρ(K) of the recurrent connectivity matrix is 4, i.e., 4/ρ(Ktr).

See Fig 5 for further details.

(TIF)

S10 Fig. Regularization effect on the spectral radius of the recurrent connectivity matrix,

without pretraining the recurrent connections on normal stimuli. The spectral radius, ρ(K),

of the recurrent connectivity matrix K as a function of the regularization coefficient λK, after

the induction of sensory deprivation. See Fig 6 for further details.

(TIF)

S11 Fig. Simulated audiograms for different attenuation profiles. A: A simulated audio-

gram without sensory deprivation. B–F: Simulated audiograms for different attenuation pro-

files, matching the ones in Fig 2B–2F, respectively. To simulate subjective hearing thresholds,

the threshold of each frequency represents the input activity required to produce a difference

of 0.01 (measured by ℓ1-norm) between a silent input and an input where only the specific

frequency is active. The thresholds were found using the bisection method in the interval

[0, 100], with a tolerance of 10−6.

(TIF)
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7. Noreña A, Micheyl C, Chéry-Croze S, Collet L. Psychoacoustic characterization of the tinnitus spec-

trum: Implications for the underlying mechanisms of tinnitus. Audiology and Neurotology. 2002; 7

(6):358–369. https://doi.org/10.1159/000066156 PMID: 12401967

8. Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ. Residual inhibition functions overlap tinni-

tus spectra and the region of auditory threshold shift. Journal of the Association for Research in Otolar-

yngology. 2008; 9(4):417–435. https://doi.org/10.1007/s10162-008-0136-9 PMID: 18712566

9. Weisz N, Hartmann T, Dohrmann K, Schlee W, Noreña A. High-frequency tinnitus without hearing

loss does not mean absence of deafferentation. Hearing Research. 2006; 222(1):108–114. https://doi.

org/10.1016/j.heares.2006.09.003 PMID: 17079102

10. Noreña AJ, Farley BJ. Tinnitus-related neural activity: Theories of generation, propagation, and cen-

tralization. Hearing Research. 2013; 295:161–171. https://doi.org/10.1016/j.heares.2012.09.010

PMID: 23088832

11. Zuckerman M, Cohen N. Sources of reports of visual and auditory sensations in perceptual-isolation

experiments. Psychological Bulletin. 1964; 62(1):1–20. https://doi.org/10.1037/h0048599 PMID:

14176649

12. Merabet LB, Maguire D, Warde A, Alterescu K, Stickgold R, Pascual-Leone A. Visual hallucinations

during prolonged blindfolding in sighted subjects. Journal of Neuro-Ophthalmology. 2004; 24(2).

https://doi.org/10.1097/00041327-200406000-00003 PMID: 15179062

13. Schaette R, Turtle C, Munro KJ. Reversible induction of phantom auditory sensations through simu-

lated unilateral hearing loss. PLoS One. 2012; 7(6):1–6. https://doi.org/10.1371/journal.pone.0035238

PMID: 22675466

14. Blom JD, Sommer IEC. Auditory hallucinations: nomenclature and classification. Cognitive and Behav-

ioral Neurology. 2010; 23(1). https://doi.org/10.1097/WNN.0b013e3181b2791e PMID: 20299866

15. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends in Neurosciences. 2004; 27

(11):676–682. https://doi.org/10.1016/j.tins.2004.08.010 PMID: 15474168

PLOS COMPUTATIONAL BIOLOGY Tinnitus-like “hallucinations” in an entropy maximization recurrent neural network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008664 December 8, 2021 18 / 23

http://www.ncbi.nlm.nih.gov/pubmed/17147043
https://doi.org/10.1016/j.jcomdis.2007.03.006
http://www.ncbi.nlm.nih.gov/pubmed/17418230
https://doi.org/10.1523/JNEUROSCI.4028-10.2010
https://doi.org/10.1523/JNEUROSCI.4028-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21068300
https://doi.org/10.1016/j.amjmed.2010.02.015
https://doi.org/10.1016/j.amjmed.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20670725
https://doi.org/10.1016/S1474-4422(13)70160-1
http://www.ncbi.nlm.nih.gov/pubmed/23948178
https://doi.org/10.1016/j.heares.2016.05.009
https://doi.org/10.1016/j.heares.2016.05.009
http://www.ncbi.nlm.nih.gov/pubmed/27246985
https://doi.org/10.1159/000066156
http://www.ncbi.nlm.nih.gov/pubmed/12401967
https://doi.org/10.1007/s10162-008-0136-9
http://www.ncbi.nlm.nih.gov/pubmed/18712566
https://doi.org/10.1016/j.heares.2006.09.003
https://doi.org/10.1016/j.heares.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/17079102
https://doi.org/10.1016/j.heares.2012.09.010
http://www.ncbi.nlm.nih.gov/pubmed/23088832
https://doi.org/10.1037/h0048599
http://www.ncbi.nlm.nih.gov/pubmed/14176649
https://doi.org/10.1097/00041327-200406000-00003
http://www.ncbi.nlm.nih.gov/pubmed/15179062
https://doi.org/10.1371/journal.pone.0035238
http://www.ncbi.nlm.nih.gov/pubmed/22675466
https://doi.org/10.1097/WNN.0b013e3181b2791e
http://www.ncbi.nlm.nih.gov/pubmed/20299866
https://doi.org/10.1016/j.tins.2004.08.010
http://www.ncbi.nlm.nih.gov/pubmed/15474168
https://doi.org/10.1371/journal.pcbi.1008664
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