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Parkinson’s disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized
neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves
release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine
pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also
be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore
has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-
D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA
antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines
of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological
modulation of the KP will represent a new therapeutic strategy for PD.

1. Introduction

Parkinson’s disease (PD) is the most common movement
disorder and is the second most common chronic progressive
neurodegenerative disorder after Alzheimer’s disease. PD is
a sporadic and age-dependent disease in 90% of cases and
affects more than 1% of the world population over the age
of 65 [1]. PD is characterised by motor symptoms including
bradykinesia, tremor, rigidity, postural instability as well as
nonmotor symptoms such as dementia, sleep disturbance,
neurobehavioral, and sensory abnormalities [2].

PD is neuropathologically characterized by the loss of
midbrain-pigmented neurons in the substantia nigra pars
compacta (SNpc). Under normal conditions, these neurons
produce dopamine at the striatum and other basal ganglia
nuclei [3]. It has been estimated that at the onset of PD symp-
toms, up to 70% of dopaminergic neurons have been lost.
Postmortem examinations have also shown that more than
90% of these neurons have been depleted [4]. Dopaminergic
loss leads to an irreversible degeneration of the nigrostriatal

pathway, followed by stratial dopaminergic denervation
which causes pathological changes in neurotransmission
of basal ganglia motor circuit and results in characteristic
Parkinsonian symptoms [5]. Another pathological hallmark
of the disease is the presence of protein inclusions called
Lewy bodies (LBs), which are abnormal intracellular α-
synuclein (SYN) aggregates in the cytoplasm and axons of
the remaining neurons [6]. Neurons containing LBs undergo
neurodegenerative processes and subsequently die.

To date, there is no available cure for PD. However,
L-Dopa and dopaminergic agonists are useful in treating
PD symptoms. This type of therapy mainly aims to replace
dopamine in the striatum but does not slow neurodegener-
ative processes. Moreover, long-term use is associated with
serious side effects such as dyskinesia and motor fluctuations
[7] resulting in a diminished effect of treatment [8].

Although the aetiology of PD is relatively unknown, it
has been suggested that there is an association with mito-
chondrial dysfunction in nigral neurons and neurotoxicity
from excess glutamate and reactive oxygen species (ROS)
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production [9, 10]. Microglia are the prime immune cells
of the central nervous system (CNS) and are important pro-
ducers of neuroactive molecules involved in oxidative stress,
excitotoxicity and neuroinflammation. Microglia respond
to a wide range of immunologic stimuli or CNS injuries
and either initiate protective and/or neuroinflammatory
processes [11]. The SN contains the highest concentration of
microglia compared with other brain areas [12].

Resting microglia have a characteristic ramified mor-
phology; the small cell body remains stationary whilst the
long branches are constantly moving and are sensitive to
any minor physiological changes [13, 14]. At the site of
inflammation, activated microglia change their morphology
becoming amoeboid and may act similarly to macrophages:
they possibly perform phagocytosis, express increased levels
of major histocompatibility complex (MHC) antigens, and
secrete various cytotoxins, which may ultimately activate
additional microglia to remove harmful stimuli and even
initiate healing processes [15, 16]. The total number of MHC
class II microglia has been shown to be significantly increased
not only in SN and putamen but also in the hippocampus,
transentorhinal cortex, cingulate cortex, and temporal cortex
in PD brains [17]. This implies that microglia are activated
and are likely to be associated with the neuropathological
phenomenon, which ultimately damages neurons [17, 18].
The microglial reaction is a very tightly regulated process
which is essential for a precise immune response; excessive
microglial activation leads to a continuous release of inflam-
matory mediators such as cytokines, chemokines, reactive
free radicals, and proteases [19]. This process is referred
to as “reactive microgliosis” and involves the proliferation,
recruitment, and activation of microglia which is then
followed by neuronal damage [20], all of which are secondary
to actual neuronal injury. Thus, initial, acute damage from
microgliosis may provoke a continuous cycle of events, which
then develops into chronic, progressive neurodegeneration
which is a common characteristic of Parkinson’s disease [21].

2. The Role of Neuroinflammation in
the Pathogenesis of PD

A large number of studies involving cells, animal models, and
human patients indicate the involvement of neuroinflamma-
tion in the neuropathogenesis of PD.

2.1. In Vitro/In Vivo. To demonstrate the delayed and pro-
gressive nature of neuroinflammation observed in PD, lipo-
polysaccharide (LPS) was administered to rodents as a single
dose or a chronic infusion [22]. While LPS has no direct
effect on neurons, it is capable of initiating a chronic inflam-
mation and a delayed, secondary progressive degeneration of
dopaminergic neurons in the SN [22, 23]. An in vitro study
has also shown that 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP) can initiate direct neuronal injury in
neuron-glia cultures which is then followed by the induction
of reactive microgliosis [24]. Furthermore, in a microglia free
neuronal-astrocytic coculture, MPTP induced only acute,
non-progressive neurotoxicity [21]. MPTP is selectively

toxic to dopaminergic neurons and is often used to induce
an in vivo PD-like disease in animal models [25]. Moreover,
inhibition of microglial activation results in a strong decrease
in neurotoxicity in both MPTP mouse and LPS rat models
[26, 27].

2.2. Human Studies. A large epidemiological study on
approximately 150,000 men and women has shown that the
use of nonsteroidal anti-inflammatory drugs (NSAIDs) can
prevent or delay the onset of PD [28]. Chen et al. have also
observed a similar effect in chronic users of ibuprofen, a
NSAID acting on cyclooxygenase (COX) [29]. A correlation
has also been found between high plasma concentrations of
interleukin-6, a proinflammatory cytokine, and an increased
risk of developing PD [30]. Moreover, in vivo imaging studies
on patients with idiopathic PD have shown an increase
in neuroinflammatory areas in basal ganglia, striatum, and
frontal and temporal cortical regions compared with age-
matched healthy controls [31]. All of these studies suggest
that microglial activation occurs at an early stage of the
disease either before (or in parallel with) the important loss
of dopaminergic neurons. In postmortem PD tissues, acti-
vated microglial cells have been detected around impaired
dopaminergic neurons in the SN, thus demonstrating the
presence of neuroinflammation [32]. As previously dis-
cussed, MPTP causes Parkinsonism in both humans and
primates. This leads to the chronic presence of activated
microglia around dopaminergic neurons in the SN for up
to 10 years after exposure [33, 34], even without L-DOPA
treatment [35]. Substantial evidence of microglial activation
associated with dopaminergic neuronal damage suggests that
degenerating neurons initiate microgliosis, which then leads
to further neuronal loss. Microglial activation represents
an initiator and/or a secondary responder in this disease
process. Therefore, suppressing neuroinflammation by pre-
venting microglial activation could potentially slow down or
stop this continuous and deleterious cycle which damages
neurons.

However, the initial stimulus driving excessive inflamma-
tion is still unknown. There are several compounds released
by damaged neurons, which are able to induce microgliosis
and ROS production. These include (i) matrix metallo-
proteinase 3 (released by damaged dopaminergic neurons),
which induces superoxide production by microglia leading to
neuronal death [36]. (ii) Neuromelanin, a neuronal pigment
released in PD by dying neurons which is capable of activat-
ing microglia [37]. (iii) SYN, a component of LB neurons,
typically found in PD that is toxic to neurons but only in
the presence of microglia. (iv) Aggregated SYN-activated
microglia are toxic to dopaminergic neurons isolated from
embryonic mouse brain. Importantly, its toxicity is depen-
dant on the presence of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase following ROS formation [38].
Another study has shown that neuroinflammation is accom-
panied by dopaminergic loss and aggregation of oxidized
SYN in the cytoplasm of SN neurons when human SYN is
present in the mouse brain [39]. Taken together, these studies
suggest that there is a link between protein aggregation and
the production of ROS by activated microglia.
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Over production of ROS by microglia has been directly
linked to neuronal toxicity and death via the nitric oxide
(NO) mechanism [40, 41]. NO induces oxidative stress, a
major cause of neuronal injury, which is strongly linked to
the pathogenesis of PD and physiological aging [42, 43]. For
example, NO can react with dopamine to generate quinone
products, which are known to have a damaging effect on
brain mitochondria [44]. Basal level of lipid peroxidation
is increased in the SN of PD patients, suggesting a higher
sensitivity of this area to free radicals and ROS [45]. Aging
also contributes to microglial “priming”: activated microglia
in healthy aged brains release excessive quantities of proin-
flammatory cytokines compared to younger individuals
[46, 47]. Furthermore, there is an increased probability of
developing a neurodegenerative disorder after 60 years of
age due to age-related increases in oxidative, metabolic, or
inflammatory activation [48].

Inflammatory cytokines (IL-1β, TNF-α, IL-6, and IFN-
γ) are also released by activated microglia and amplify
the inflammatory response. Excessive production of these
cytokines has been reported in the SN of PD patients [49, 50]
as well as in cerebrospinal fluid (CSF) and blood compart-
ments [51, 52]. Cytokines can stimulate inactivated microglia
and also directly bind to receptors on the cellular surface
of dopaminergic neurons thereby promoting apoptotic cell
death and subsequent phagocytosis of DA neurons [53].
Neurons in the midbrain, unlike those in the hippocampus
or cortex, exhibit a greater sensitivity to proinflammatory
cytokines. Moreover, this sensitivity has been directly related
to a high degree of oxidative processes [19]. In contrast, acti-
vated microglia also produce anti-inflammatory cytokines
such as TGF-β1, IL-10, and IL-1. These cytokines play a role
in the inhibition of the inflammatory response. Importantly,
the balance between pro- and anti-inflammatory cytokine
production is impaired during neuroinflammation [54].

On the other hand, the excitatory neurotransmitter
glutamate plays a critical role in glutamatergic transmission
in basal ganglia functions [55]. The action of glutamate on
neurons is mediated by ionotropic and metabotropic gluta-
mate receptors. Ionotropic N-methyl-D-aspartate (NMDA)
receptors are known to mediate excitotoxicity caused by
high levels of glutamate and can be found on dopaminergic
neurons [56]. Activation of NMDA receptors located on DA
neurons leads to neurotoxicity both in vitro and in vivo
[57, 58]. The functional organisation of basal ganglia also
contributes to the genesis of symptoms observed in move-
ment disorder. The striatum (the input nucleus of the basal
ganglia circuit) is the main recipient of dopaminergic fibres
from the SN. The reduction in dopaminergic innervations
of the striatum and changes in the activity of basal ganglia
induces complex changes in the structure and function of
basal ganglia NMDA receptor [59]. Glutamatergic excitation
is increased and glutamatergic neurons become uninhibited
under PD conditions, especially due to the excessive firing
from the subthalamic nucleus to the SN [60] (Figure 1). It
has been shown that the neurotoxicity of activated microglia
is primarily mediated by glutamate released through NMDA
receptor signalling [61]. Neuritic beading (a focal bead-
like swelling in dendrites and axons) is a neuropathological
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Figure 1: Basal ganglia motor circuit in Parkinson’s disease:
dopaminergic neurons (DA) create a direct pathway between
Substantia Nigra pars compacta (SNpc) and striatum—the input
nuclei of the basal ganglia. Another direct pathway connects the
striatum to the internal segment of globus pallidus (GPi) and the
substantia nigra pars reticulata (SNpr). GPi and SNpr are the output
nuclei of the basal ganglia, which projects to the thalamus and from
there to the cortex. The indirect pathway connects the striatum
to output nuclei through external segment of the globus pallidus
(GPe) and then subthalamic nucleus (STN). In Parkinson’s disease
(PD), the dopaminergic input from SNpc is progressively lost,
causing a reduction in the direct pathway signal. Indirect pathway
increases its activity through STN in the output nuclei and has
inhibitory influence on the thalamus. It leads to a reduction of
thalamic glutamateric input on the motor cortex and subsequent
reduction in movement, as rigidity and bradykinesia are observed
in PD patients.

sign in PD [62]. It can also be induced by microglia
activated through the NMDA receptor [61]. NMDA recep-
tors have been linked with disturbed energy metabolism
and glutamate transmission leading to neuronal death, and
have therefore been investigated as important therapeutic
targets in pharmacological PD research [63]. Accordingly,
reducing glutamatergic transmission may lead to an “anti-
PD activity”. Indeed, injections of the NMDA antagonist,
MK-801, reverses parkinsonian symptoms in MPTP-treated
monkeys [64]. Several studies using rodent PD models have
shown that glutamate antagonists have both symptomatic
and neuroprotective effects in PD [59]. Recently, PD patients
treated with memantine, another NMDA receptor antagonist
have shown moderate but significant improvements in terms
of cognitive symptoms [65]. The use of amantadine as an
adjuvant to levodopa has demonstrated beneficial effects on
motor response complications [66]. Additional evidence has
been reviewed and has demonstrated the potential of NMDA
receptor blockade in reversing parkinsonian symptoms [59].

3. The Kynurenine Pathway

The kynurenine pathway (KP) represents the main catabolic
pathway of the essential amino acid tryptophan (TRP),
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Figure 2: Simplified diagram of Kynurenine pathway: during neuroinflammation, 95% of the dietary tryptophan is metabolized along the
KP within the brain. The remaining 5% serves as a precursor to the synthesis of the neurotransmitter serotonin. IDO catalyses the initial and
rate-limiting step in the degradation of tryptophan through KP that ultimately leads to the production of nicotinamide.

which ultimately leads to the production of the cen-
tral metabolic cofactor, nicotinamide adenine dinucleotide
(NAD+) (Figure 2). The KP is also one of the major
regulatory mechanisms of the immune response [67]. Two
nonmutually exclusive theories have been proposed: (1)
that TRP degradation suppresses T-cell proliferation by
dramatically depleting the supply of this critical amino acid
and (2) that various downstream KP metabolites suppress
certain immune cells [67]. Induction of the KP by the rate-
limiting enzyme, indoleamine 2,3 dioxygenase (IDO1) in
dendritic cells completely inhibits clonal expansion of T
cells [68]. Moreover, TRP depletion and IDO1/KP activa-
tion have been implicated in the facilitation of immune
tolerance associated with pregnancy and tumour persistence
[69].

The cellular expression of the KP in the brain is only
partially understood. It is complete in cells of monocytic
lineage, including macrophages and microglia [70], but
only partially present in human astrocytes [71], neurons
[72], and endothelial cells [73]. The various KP metabolites
can have either neurotoxic or neuroprotective effects and
occasionally both depending on their concentration. The
neurotoxicity of several KP metabolites has been investigated
in relation to oxidative stress generation and neuronal death
in vitro and in vivo in animal models of neurodegener-
ative disorders [74–77]. 3-hydroxykynurenine (3-HK), 3-
hydroxyanthranilic acid (3HAA) and 5-hydroxyanthranilic
acid (5HAA) are known to induce cell death in cultures
of rat neurons [78]. 3-HK is toxic to stratial neuronal
cultures, mainly due to its ability to generate ROS and
initiate apoptosis [79]. Quinolinic acid (QUIN) however,
is likely to be the most important in terms of biological
activity. QUIN can selectively activate NMDA receptors

producing excitation and which ultimately causes selective
neuronal lesions in the rat brain [80, 81]. Acute QUIN
production can lead to human neuronal death and chronic
production causes dysfunction by at least six separate mecha-
nisms [82, 83]. In pathophysiological concentrations, QUIN
activates the NMDA receptor [84]. QUIN also increases
glutamate release in neurons and inhibits glutamate uptake
and catabolism in astrocytes. QUIN can potentiate its own
toxicity and that of other excitotoxins, for example, NMDA
and glutamate thus producing progressive mitochondrial
dysfunction [85]. Finally, QUIN can increase free radical
generation by inducing nitric oxide synthase production
(NOS) in astrocytes and neurons which in turn leads to
oxidative stress [86, 87]. Within the brain, QUIN is produced
by activated microglia and infiltrating macrophages [70].
Neurons and astrocytes do not produce QUIN [88, 89].
Recent findings have demonstrated that QUIN excitotoxicity
in human astrocytes and neurons is mediated through
activation of an NMDA-like receptor [87]. In addition,
QUIN-induced damage can be increased in the presence of
3-HK, 6-hydroxidopamine, a specific dopaminergic neuron
toxin, or ROS [90–92]. Human glial cells, such as astrocytes
and microglia produce most components of the KP [93].
The KP components are also present in macrophages
that are capable of penetrating the blood-brain barrier
(BBB) in the presence of brain damage or infection [94].
Thus, up-regulation of QUIN production alone or with
additional neurotoxic factors during inflammation could
easily lead to over activation of the NMDA receptor. This
is followed by oxidative stress, which occurs in early PD
development.

In contrast to the neurotoxic activity of QUIN, kynurenic
acid (KYNA) is a neuroprotective metabolite, antagonising



Parkinson’s Disease 5

all ionotropic glutamate receptors (including NMDA) and
thus blocks some of the neurotoxic effects of QUIN and other
excitotoxins. KYNA is produced from kynurenine by the
kynurenine aminotransferase enzymes (KAT) I, KAT II, and
KAT III, in astrocytes [71]. Endogenous generation of KYNA
in rat brain has been shown to be more effective than KYNA
applied exogenously, suggesting the importance of localised
KYNA production and physical proximity to NMDA recep-
tors [95]. An increase in endogenous KYNA levels can
prevent SN dopaminergic loss caused by focal infusion of
QUIN or NMDA [96]. Nanomolar concentrations of KYNA
significantly reduce glutamate output from striatal neurons
in rat brain, similar to the kynurenine hydroxylase (KMO)
inhibitors [97]. Both, KYNA and QUIN are produced in
the SN or the adjoining striatum region [98, 99]. Based on
previous studies, it can be hypothesised that under normal
conditions local concentrations of KYNA and QUIN are
low and physiologically regulate NMDA receptor function.
However, in disease states, where QUIN production is high,
it is thought that there is insufficient KYNA concentration to
block QUIN production [100].

Picolinic acid is another endogenous neuroprotective
compound [101] and is also the main metal chelator in the
brain [102]. Previously, we have shown that it is produced in
micromolar concentrations by human primary neurons [72].
PD is associated with neuropathological features such as
protein aggregation and oxidative stress associated with the
involvement of metal ions [103]. Therefore, use of chelating
agents has also been suggested as a form of therapy for
PD.

The KP, under normal physiological conditions is well
balanced and produces all KP intermediates leading ulti-
mately to NAD+ production. However, under pathologic
conditions, IDO1 is activated and astrocytes produce kynure-
nine (KYN) and KYNA, [104], neurons produce PIC [88]
and activated microglia/infiltrating macrophages produce
QUIN [89]. It is important to note that PIC and KYNA
can partly antagonise the neurotoxic effects of QUIN [105].
However, astroglial secretion of large quantities of KYN can
lead to further synthesis of QUIN by microglia, suggesting
that the cerebral synthesis of QUIN largely overtakes the
neuroprotective effects of PIC and KYNA [106].

4. Evidence for the Involvement of the KP in PD

Impaired KP metabolism and altered KYNA levels have been
previously reported in the brain of PD patients. This occurs
when the KYNA/TRP ratio in serum and cerebrospinal fluid
(CSF) is significantly increased together with 3-HK levels, a
neurotoxic compound that contributes to oxidative damage
in the putamen and SNpc [107, 108]. These findings suggest
that endogenous KYNA concentrations are decreased and
unable to effectively block NMDA receptor and prevent
neurotoxicity induced by 3-HK. KAT I expression, the KP
enzyme which leads to KYNA formation, is decreased in
the SNpc of MPTP-treated mice [109]. KAT-I immunoreac-
tivity in dopaminergic neurons and surrounding microglia
has been linked to increased vulnerability of SN neurons to
toxicity. Lowered KYNA concentrations have also been found

Iba-1 Merge IFN-γ

Figure 3: Activated microglial cells express IFN-γ in Parkinsonism:
confocal images of the immunofluorescence of IFN-γ (red) com-
bined with microglia cells marker—Iba-1 (green) in the SNpc of a
parkinsonian monkey. Scale bar: 35 mm.

in the frontal cortex, putamen, and SNpc of PD patients
[107]. KYNA, but not the highly selective NMDA antagonist
7-chlorokynurenic acid exhibits partial protection against
MPP+ toxin on dopaminergic terminals of rat striatum
[110].

However, increased KAT II activity, which is an enzyme
responsible for 75% of the KYNA synthesis in the brain, has
been found in peripheral red blood cells of PD patients. It
is not however found in plasma [111]. The increased KAT II
activity correlates with higher blood KYNA concentrations;
this elevation may be caused by 3-HK released from the CNS.
As KYNA has limited abilities to cross the BBB, it has been
suggested that peripheral KYNA is likely to be transported
to the brain by large neutral amino acid carriers and there it
has neuroprotective effects [112]. Another recent study has
shown that KYNA is involved in leukocyte recruitment and
the investigators hypothesised that KYNA might therefore
have an anti-inflammatory action [113]. Based on preclinical
and clinical data, KYNA or its analogues are thought to have
neuroprotective effects in PD trough binding as antagonists
to the NMDA receptor. This in turn causes slow neuronal
excitotoxic damage [114].

Unpublished data from our group shows an increase in
the production of IFN-γ by microglia in the SN of MPTP-
treated macaques’ brain (Figure 3). This is of particular
significance, as IFN-γ is also a potent inducer of the
KP [115]. In the same study, we have also shown that
QUIN is produced and accumulated by activated microglia.
These microglia colocalise with dopaminergic neurons in
the SN of MPTP-treated macaques. Several other studies
have shown extensive evidence of activated microglial cells
and NMDAR+ dopaminergic neurons in the SNpc. This
suggests that the NMDA receptor is likely to be activated
by endogenous QUIN released by microglia and followed
closely by glutamate [116, 117] (Figure 4).

5. Recent KP Inhibitors for the Treatment of PD

Several drugs that block the KP are currently under thera-
peutic investigation both in our laboratory and by other
investigators. For example, 4-chlorokynurenine crosses the
BBB and blocks QUIN toxicity at the glycine site on NMDA
receptors [118]. Kynurenic acid analogues are currently
due to enter clinical trials for the treatment of epilepsy,
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Figure 4: Model for Kynurenine pathway interactions between astrocytes, neurons, and microglia during brain inflammation. Abbreviations:
TRP: tryptophan; IDO: Indoleamine 2,3-dioxygenase; KYN: kynurenine: QUIN: quinolinic acid; NMDAR: NMDA receptor; KAT:
Kynurenine aminotransferase; GluT: glutamate transporter.
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Figure 5: The possible role of Kynurenine pathway involvement in dopaminergic neurodegenerative process through microglia activation:
Parkinson’s disease is associated with chronic activation of microglia, which also can be induced by LPS or Rotenone treatments. Classic
microglia activation release neurotoxic substances including reactive oxygen species (ROS) and proinflammatory cytokines as INF-γ, potent
activator of Kynurenine pathway (KP). KP in activated microglia leads to upregulation of 3HK and QUIN. 3HK is toxic primarily as a result
of conversion to ROS. The combined effects of ROS and NMDA receptor-mediated excitotoxicity by QUIN contribute to the dysfunction of
neurons and their death. However, picolinic acid (PIC) produced through KP activation in neurons, has the ability to protect neurons against
QUIN-induced neurotoxicity, being NMDA agonist. Microglia can become overactivated, by proinflammatory mediators and stimuli from
dying neurons and cause perpetuating cycle of further microglia activation microgliosis. Excessive microgliosis will cause neurotoxicity to
neighbouring neurons and resulting in neuronal death, contributing to progression of Parkinson’s disease.
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stroke, and possibly PD as potential neuroprotective agents
[119]. Two KP analogues are at present under investi-
gation in a phase III clinical trial. These are Terifluno-
mide (Sanofi-Aventis) and Laquinimod (Teva Neuroscience)
[120]. Recently, one KP analogue reached the Japanese mar-
ket as a potent immunomodulatory drug for the treatment
of arthritis, asthma, and dermatitis [120]: Tranilast/Rizaben
(Kissei Pharmaceutics) is an anthranilic acid derivative and
it has been proposed as a treatment for autoimmune diseases
such as Multiple Sclerosis [121]. Finally, 8-OH Quinoli-
none metal attenuating compounds—Clioquinol and PBT2
(Prana) rapidly decrease soluble brain amyloid-beta and
improve cognitive performance [122]. Interestingly, these
2 compounds share close structural similarity and similar
biochemical properties with KYNA and QUIN.

Conjugates of KYNA analogues with D-glucose or D-
galactose increase its ability to cross the BBB and prevent
excitotoxicity and seizures in an animal model [123].
Kynurenine 3-hydroxylase inhibitors significantly reduce the
severity of dystonia in hamsters and may therefore be
a potential candidate for managing dyskinesia associated
with striatal dysfunction [124]. There is also an increasing
interest in the use of pharmacological modulation of the
KP in treating numerous disorders like AIDS-dementia and
many other neurodegenerative diseases, diabetes, depression,
infections, tumour development, glaucoma, and cataract
formation [116].

6. Conclusions

PD seems to be associated with an imbalance between the
two main branches of the KP within the brain. KYNA
synthesis by astrocytes is decreased and concomitantly,
QUIN production by microglia is increased (Figure 5). There
are many therapeutic opportunities for intervention and
modification of an impaired KP that may prevent the pro-
gression of neurodegenerative disorders such as PD. Using
specific KP enzyme inhibitors, it may be possible to reinstate
a physiologically normal KP, which is neuroprotective. This
neuroprotective state might also be synergistically improved
by concomitantly blocking the NMDA receptor using its
antagonists, such as memantine or MK801. Additionally,
neuroprotection may be achieved by designing KYNA
analogues that are able to penetrate the BBB and deliver
neuroprotective compounds to brain pools thus reducing
hyperactivation of glutamatergic receptors.
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