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ABSTRACT Genomic selection is revolutionizing plant breeding and therefore methods that improve
prediction accuracy are useful. For this reason, active research is being conducted to build and test methods
from other areas and adapt them to the context of genomic selection. In this paper we explore the novel
deep learning (DL) methodology in the context of genomic selection. We compared DL methods with
densely connected network architecture to one of the most often used genome-enabled prediction models:
Genomic Best Linear Unbiased Prediction (GBLUP). We used nine published real genomic data sets to
compare a fraction of all possible deep learning models to obtain a “meta picture” of the performance of
DL methods with densely connected network architecture. In general, the best predictions were obtained
with the GBLUP model when genotype·environment interaction (G·E) was taken into account (8 out of
9 data sets); when the interactions were ignored, the DL method was better than the GBLUP in terms of
prediction accuracy in 6 out of the 9 data sets. For this reason, we believe that DL should be added to the
data science toolkit of scientists working on animal and plant breeding. This study corroborates the view
that there are no universally best prediction machines.
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It is important to use new technologies to increase food production,
given that theworld populationwill reach 10.4 billion by 2067, with 81%
residing inAfrica orAsia.Due to the increase in population, therewill be
a decrease of 0.15 ha per person in the arable land available for food
production. Further, temperature is expected to increase in tropical and
temperate zones, especially in the Northern Hemisphere, which will

push growing seasons and farming areas away fromarid areas intomore
northern latitudes (Britt et al., 2018). Under these scenarios, increasing
world food production is a challenge. Genomic selection is a promising
development in agriculture that aims to improve production by exploit-
ing molecular genetic markers to design novel breeding programs and
develop marker-based methods for genetic evaluation of plants and
animals (Jonas and de Koning 2015; Hickey et al., 2017).

Genomic selection (GS) is a type of marker-assisted selection that
uses dense molecular markers from the entire genome simulta-
neously in a linear regression model (Meuwissen et al., 2001). A
predictive model using individuals with known genotypic and phe-
notypic information is then constructed. With this model, genomic
estimated breeding values (GEBVs) for the desired trait are calcu-
lated and used to rank individuals with unknown phenotypes for
subsequent selection. The accuracy of the predictions is evaluated
using some form of cross-validation. Originally proposed in animal
breeding, this method has revolutionized and transformed breeding
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programs worldwide, and is being implemented in most developed
nations. The fast growing popularity of GS can be attributed to a
continuous reduction in the cost of obtaining large numbers of
DNA markers of plant or animal genomes, and to the empirical
evidence that this approach indeed improves genetic gains per unit
of time, facilitating the rapid selection of superior genotypes and
accelerating the breeding cycles (Weller et al., 2017).

For these reasons, genomic selection is being implemented by
commercial companies and national breeding programs of maize and
wheat (Crossa et al., 2017), cassava (Wolfe et al., 2017), oil palm
(Kwong et al., 2017), and macadamia (O’Connor et al., 2018), among
others. The goal of most breeding programs is to predict the genetic
merit of unphenotyped individuals and thus enable targeted combina-
tions of desired alleles to improve the performance of the next
generation(s). However, to effectively implement GS in crop breeding
also requires prediction models that can improve prediction accuracy
in large-scale data sets and are robust across trait-environment combi-
nations. Prediction models often perform poorly for some trait-
environment combinations, so the search for better genomic prediction
models is an active area of research.

Machine learning (ML) is a field of computer science that uses
statistical techniques to give computer systems the ability to “learn” (i.e.,
progressively improve performance on a specific task) from data, with-
out being explicitly programmed to do this (Samuel 1959).ML is closely
related to (and often overlaps with) computational statistics, which also
focuses on making predictions through the use of computers. In gen-
eral, ML explores algorithms that can learn from current data andmake
predictions on new data, by building a model from sample inputs
(Samuel 1959). The fields of statistics and ML have some goals in
common and will continue to come closer together in the future. Al-
though applications of ML in genomic selection (González-Camacho
et al., 2012) exist, application of DL methods in genomic prediction
is lacking.

This paper evaluates prediction accuracy in the context of genomic
selection of Deep Learning (DL) methods with a densely connected
network architecture, which is a type of ML algorithm that uses an
artificial neural network with multiple layers linked nonlinearly. The
“deep” in DL refers to the number of layers through which the data are
transformed. The layers in these methods consist of multiple stages of
nonlinear data transformations, where features of the data are repre-
sented by successively higher andmore abstract layers. The goal of a DL
method is either to predict or to classify a response variable using
inputs. Traditional linear regression models are not considered deep
because they do not applymultiple layers of non-linear transformations
to the data. The prediction performance of DL methods has proved to
be similar or better than that of traditional methods in many areas like
health care, image processing, natural language processing, speech rec-
ognition, military target recognition, marketing, investment portfolio
management, financial fraud detection, stock market forecasting, opti-
cal character recognition and traffic sign classification (Deng and Yu
2013). Also, companies such as Microsoft, Google, IBM, Yahoo, Twit-
ter, Baidu, Paypal and Facebook are exploiting DL methods to under-
stand consumers (Deng and Yu 2013).

There have been successful applications of DL in the biological
sciences. For example, Menden et al. (2013) applied a DL method to
predict the viability of a cancer cell line exposed to a drug. Alipanahi
et al. (2015) used DL with a convolutional network architecture to
predict specificities of DNA- and RNA-binding proteins. Tavanaei
et al. (2017) used a DL method for predicting tumor suppressor genes
and oncogenes. DL methods have also made accurate predictions of
single-cell DNA methylation states (Angermueller et al., 2017). In the

area of genomic selection, we found two reports only: (a) McDowell
and Grant (2016) found that DL methods performed similarly to
several Bayesian and linear regression techniques that are com-
monly employed for phenotype prediction and genomic selection
in plant breeding; (b) Ma et al. (2017) also used a DL method with a
convolutional neural network architecture to predict phenotypes
from genotypes in wheat and found that the DL method outper-
formed the GBLUP method.

In this study we examine a DL method with a densely connected
networkarchitecture in the contextofGS inplants tohaveabetter ideaof
its prediction performance. We compare the DL method with GBLUP,
themost widely usedmethod. Our study involved 9multi-environment
real data sets used in genomic selection of wheat and maize breeding
programs. The data sets comprise a large number of wheat and maize
lines with several traits that were measured in several environments.

MATERIALS AND METHODS

Model implementation

Multiple-environment Genomic best linear unbiased predictor
(GBLUP) model: Since genotype·environment interaction is of
paramount importance in plant breeding, the following univariate lin-
ear mixed model is often used for each trait:

yij ¼ Ei þ gj þ gEij þ eij (1)

where yij represents the response of the jth line in the ith environment
(i ¼ 1; 2; :::; I, j ¼ 1; 2; :::; JÞ. Ei represents the fixed effect of the ith
environment, gj represents the random genomic effect of the jth line,
with g ¼ ðg1; :::; gJÞT � Nð0;s2

1GgÞ; s2
1 is a genomic variance and

Gg is of order J · J , represents the genomic relationship matrix
(GRM) and is calculated (VanRaden 2008) as Gg ¼ WWT

p , where
p denotes the number of markers and W is the matrix of markers of
order J · p. The Gg matrix is constructed using the observed similarity
at the genomic level between lines, rather than the expected similarity
based on pedigree. Further, gEij is the random interaction term between
the genomic effect of the jth line and the ith environment; let
gE ¼ ðgE11; :::; gEIJÞT � Nð0;s2

2 II5GÞ, where s2
2 is an interaction

variance, and eij is a random residual associated with the jth line in the
ith environment distributed as Nð0;s2Þ; where s2 is the residual
variance.

Deep learning model: Popular neural network architectures are: (a)
densely connected networks, (b) convolutional networks, and (c)
recurrent networks. Details on each type of network, its assumptions
and input characteristics can be found in Gulli and Sujit (2017),
Chollet and Allaire (2017) and Angermueller et al. (2016). In this
study we implemented type (a), which is a typical feedforward neu-
ral network also known as multilayer perceptron, which does not
assume a specific structure in the input features (Goodfellow et al.,
2016). In general, the basic structure of a densely connected network
consists of an input layer, an output layer andmultiple hidden layers
between the input and output layers. Neurons (units) are connected
in the network; the strength of the connection between neurons is
called weight. The weight values of the connections between the
layers are how neural networks encode the learned information
extracted from the raw training data. The input layer neurons cor-
respond to the number of features (called independent variables by
the statistics community) you wish to feed into the neural network.
The hidden layer neurons are generally used to perform non-linear
transformation of the original input attributes (Lewis 2016). The
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number of output neurons corresponds to the number of response
variables (traits in plant breeding) you wish to predict or classify and
they receive as input the output of hidden neurons and produce as
output the prediction values of interest (Goodfellow et al., 2016).

The layer is the core building block of a neural network; it is a data-
processing step thatwe can think of as afilter for data, since the data that
go in are transformedandcomeout in amoreuseful form. Specific layers
extract representationsoutof thedata,whichare fed into representations
that are more meaningful for the problem at hand. Most DL methods
consist of joining together simple layers that will implement a form of
progressive data distillation (Chollet and Allaire 2017).

In training neural networks, one epochmeans one pass (forward and
backward) of the full training set through the neural network. Since one
epoch is too big to feed into the computer at one time, we divide it into
several smaller batches. A batch consists of a number of training samples
in one forward/backward pass. The larger the batch size, the more
memory is needed to run the model. For example, suppose you had a
batch size of 500, with 1000 training samples. It will take only two
iterations to complete one epoch. An iteration is the number of batches
needed to complete one epoch. We used more than one epoch because
too few epochs lead to underfitting of DL models. Therefore, as the
number of epochs increases, the weights are changed in the neural
networkand theDLmodel goes fromunderfitting tooptimalfittingor to
overfitting.Unfortunately, the rightnumberof epochs isdatadependent.

Also, due to the sensitivity of DL models to overfitting, constraints
are put on the complexity of a neural network by forcing its weights
to take on only small values, which makes the distribution of weight
values more regular. This is called weight regularization, and it is done
by adding to the loss function of the network a cost (penalty) associated
with having large weights. There aremany types of regularization but in
this paper we implemented dropout regularization, which consists of
temporarily removing a random subset (%) of neurons with their
connections during training. This means that their contribution to
the activation of downstream neurons is temporarily removed on the
forward pass and any weight updates are not applied to the neurons on
the backward pass. In other words, dropout consists of randomly
dropping out (setting to zero) a number of output features of the layer
during training. Unfortunately, choosing the optimal values for each of
these hyperparameters is challenging; the process of choosing these
values is art and science.

Model selection in DL. Hyperparameters govern many aspects of
the behavior of DL models, such as their ability to learn features from
data, the models’ exhibited degree of generalizability in performance
when presented with new data, as well as the time and memory cost of
training the model, since different hyperparameters often result in
models with significantly different performance. This means that tun-
ing hyperparameter values is a critical aspect of the model training
process and a key element for the quality of the resulting prediction

Figure 1 Maize data set 1-Trait GY. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Maize data set 1 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Maize data set 1 WI).
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accuracies. However, in DL models, making a good choice of the
number of layers, number of units (neurons), number of epochs,
type of regularization penalty, type of activation function, among
others is challenging.

Manual tuning of DL models is of course possible, but relies heavily
on the user’s expertise and understanding of the underlying problem.
Additionally, due to factors such as time-consumingmodel evaluations,
non-linear hyperparameter interactions in the case of large models, and
tens or even hundreds of hyperparameters, manual tuning may not be
feasible. For this reason, the four most common approaches for hyper-
parameter tuning reported in the literature are: (a) grid search, (b)
random search, (c) Latin hypercube sampling, and (d) optimization
(Koch et al., 2017). In the grid search method, each hyperparameter of
interest is discretized into a desired set of values to be studied, and
models are trained and assessed for all combinations of the values
across all hyperparameters (that is, a “grid”). Although fairly simple
and straightforward to carry out, a grid search is quite costly because
the expense grows exponentially with the number of hyperparameters
and the number of discrete levels of each.

A random search differs from a grid search in that we no longer
provide a discrete set of values to explore for each hyperparameter;
rather, we provide a statistical distribution for each hyperparameter
from which values may be randomly sampled. This allows a much

greater chanceoffindingeffectivevalues foreachhyperparameter.While
Latin hypercube sampling is similar to the previousmethod, it is amore
structured approach because it uses a random Latin hypercube sample
(LHS) (McKay 1992), an experimental design in which samples are
exactly uniform across each hyperparameter but random in combina-
tions. These so-called low-discrepancy point sets attempt to ensure that
points are approximately equidistant from one another in order to fill
the space efficiently. This sampling allows for coverage across the entire
range of each hyperparameter and is more likely to find good values of
each hyperparameter.

The previous two methods for hyperparameter tuning perform
individual experiments by building models with various hyperpara-
meter values and recording the model performance for each. Because
each experiment is performed in isolation, this process is parallelized,
but is unable to use the information from one experiment to improve
thenext experiment.Optimizationmethods, on theotherhand, consist
of sequential model-based optimization that allows using the results of
previous experiments to improve the sampling method of the next
experiment. These methods are designed to make intelligent use of
fewer evaluations and thus save on the overall computation time (Koch
et al., 2017). Optimization algorithms that have been used in machine
learning generally for hyperparameter tuning include Broyden-
Fletcher-Goldfarb-Shanno (BFGS) (Konen et al., 2011), covariance

Figure 2 Maize data set 2- Trait ASI. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model with
genotype·environment interaction (Maize data set 2 I), and the second vertical sub-panel corresponds to the same model but without genotype·
environment interaction (Maize data set 2 WI).
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matrix adaptation evolution strategy (CMA-ES) (Konen et al., 2011),
particle swarm (PS) (Renukadevi and Thangaraj 2014), tabu search
(TS), genetic algorithms (GA) (Lorena and de Carvalho 2008), and
more recently, surrogate-based Bayesian optimization (Dewancker
et al., 2016). Also, recently the use of the surface response method-
ology has been explored for tuning hyperparameters in random forest
models (Lujan-Moreno et al., 2018). However, the implementation of
these optimization methods is not straightforward because it requires
expensive computation; also, software development is required for
implementing these algorithms automatically. There have been ad-
vances in this direction for some machine learning algorithms in the
statistical analysis system (SAS) software (Koch et al., 2017). An
additional challenge is the unpredictable computation expense of
training and validating predictive models using different hyperpara-
meter values. Finally, although it is challenging, the tuning process
often leads to hyperparameter settings that are better than the default
values, since it provides a heuristic validation of these settings, giving
greater assurance that a model configuration that has higher accuracy
has not been overlooked.

Real data sets. Three maize and six wheat data sets were analyzed.

Maize data sets 1-3: These three data sets are made up of a total of
309maize lineswhichwereusedbyCrossa et al. (2013) andMontesinos-
López et al. (2016, 2017). Traits evaluated were grain yield (GY; data

set 1), anthesis-silking interval (ASI; data set 2), and plant height (PH;
data set 3); each of these traits was measured in three environments
(Env1, Env2, and Env3). Phenotypes of each trait were pre-analyzed
and adjusted for the experimental field design. The number of single
nucleotide polymorphisms (SNP), after filtering for missing values
and minor allele frequency, was 158,281.

Wheat data sets 4-6: These three data sets were used by López-Cruz
et al. (2015) and Cuevas et al. (2016). The phenotypes in the three data
sets are grain yield (GY, tons/hectare) adjusted for the experimental
design. The data sets came from CIMMYT and were obtained from its
wheat breeding station at Cd. Obregon, Sonora, Mexico. The environ-
ments were three irrigation regimes (moderate drought stress, optimal
irrigation, and drought stress), two planting systems (bed and flat
planting), and two different planting dates (normal and late). Wheat
data set 4 had 693 wheat lines evaluated in four environments; wheat
data set 5 included 670 wheat lines evaluated in four environments, and
wheat data set 6 had 807 lines evaluated in five environments. Geno-
types were derived using genotype by sequencing (GBS) technology; in
all the analyses we used 15,744 GBS markers that resulted after quality
control.

Wheat data sets 7-8: These two wheat data sets came from a total of
250 wheat lines that were extracted from a large set of 39 yield trials

Figure 3 Maize data set 3- Trait PH. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model with
genotype·environment interaction (Maize data set 3 I), and the second vertical sub-panel corresponds to the same model but without genotype·
environment interaction (Maize data set 3 WI).
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grown during the 2013-2014 crop season in Ciudad Obregon, Sonora,
Mexico (Rutkoski et al., 2016). The traits measured were: (1) plant
height (PH) recorded in centimeters (data set 7), and (2) days to head-
ing (DTHD) recorded as the number of days from germination until
50% of spikes had emerged in each plot (data set 8), in the first replicate
of each trial. Phenotypes were adjusted by experimental design as well.
The genomic information was obtained by GBS and we used a total of
12,083 markers that remained after quality control.

Wheat Iranian data set 9: This data set was used in Crossa et al.
(2016), where full details are presented. It consists of 2374 wheat lines
evaluated in a drought environment (D) and a heat environment (H)
at the CIMMYT experiment station near Ciudad Obregón, Sonora,
Mexico (27 � 20 ’N, 109 � 54 ’W, 38 meters above sea level), during
the 2010-2011 cycle. The measured trait was days to maturity (DTM).
The number ofmarkers used was 39,758 that remained after the quality
control process from a total of 40,000 markers.

Method implementation. The GBLUP method was implemented
with the BGLR package (de los Campos and Pérez-Rodríguez 2014) in
the R statistical software (R Core Team 2018). DL methods were fitted
with the Keras package (Gulli and Sujit 2017; Chollet and Allaire 2017)
with a densely connected network architecture also in the R statistical
software. In both GBLUP and DL, we used two different sets of cova-
riates: the first set was composed of information on environments and
genomes (that takes into account genomic information), while the
second set of covariates included genotype·environment interaction

(G·E) information as well. It is important to point out that marker
information was not included directly as covariates in both models
(DL and GBLUP) since information on markers was included in the
design matrix of genotypes and G·E through Cholesky decomposi-
tion of the genomic relationship matrix (GRM) that was calculated
with the marker information as mentioned above with the VanRaden
(2008) method. The GBLUP and DLmodels were compared with and
without the G·E term. Since the DL method requires values of some
tuning parameters, we first ran several DL scenarios by choosing as
tuning parameters some values recommended in the DL literature.
Based on such runs, we implemented the grid search method with a
full factorial design with the following three factors: (a) number of
units (U), (b) number of epochs (E), and (c) number of layers (L). For
U we used 50, 60, 70, 80, 90 and 100; for E we used 20, 40, 60, 80 and
100; and for L we used 1, 2 and 3. Thus 6·5·3 = 90 experiments were
run for each data set with a densely connected DL method. It is
important to point out that the 90 DL experiments used dropout
regularization, which is one of the most effective and commonly used
regularization techniques in neural networks, developed by Srivastava
et al. (2014) at the University of Toronto. In our case, the dropout rate
was fixed at 0.3 (30%); this meant that the percentage of features that
were set to zero was 30% in each layer; this value was selected follow-
ing the suggestions of Gulli and Sujit (2017), Chollet and Allaire
(2017) and Srivastava et al. (2014). Also, concerning the activation
function we implemented in the deep layers and output layer the
Rectified linear unit (Relu).

Figure 4 Wheat data set 4- Trait GY. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 4 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Wheat data set 4 WI).
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Cross-validation: Prediction accuracy of both DL and GBLUP was
evaluated with random cross-validation (CV): the whole data set was
divided into a training (TRN) and a testing (TST) set. This cross-
validation is the same as the so-called replicated TRN-TST in the
publication of Daetwyler et al. (2012) since some individuals can never
be part of the training set. The percentages of the whole data set
assigned to the TRN and TST sets were 65% and 35%, respectively.
Our random CV used sampling with replacement, which means that
one observation can appear in more than one partition. The design we
implemented mimics a prediction problem faced by breeders in in-
complete field trials where lines are evaluated in some, but not all, target
environments. More explicitly, TRN-TST partitions were obtained as
follows: since the total number of records per trait available for the data
set with multi-environments isN ¼ J · I, to select lines in the TST data
set, we fixed the percentage of data to be used for TST (PTesting =
35%). Thenwe chose 0.35·N (lines) at random, and subsequently, one
environment per line was randomly picked from I environments. The
resulting cells (ijÞ were assigned to the TST data set, while cells not
selected through this algorithm were allocated to the TRN data set.
Lines were sampled without replacement if J$ 0:35·N , and with re-
placement otherwise (Lopez-Cruz et al., 2015).

The cross-validation we just described is called the outer CV and
was applied for both models. However, in the DL model, an inner CV
strategy was also applied for tuning the hyperparameters using the grid
of hyperparameter values defined above (90 experiments). The inner
CVstrategyconsistedof splittingeachtrainingsetof theouterCV,where
20% of data were assigned to testing-inner and 80% to training-inner.

The training-inner data set was used to train the DL model using the
grid of hyperparameter values. This inner CV strategy was facilitated
by using the internal capabilities of Keras and the validation_split
argument on the fit() function. The predictive power is assessed in
the second part of the data set (testing-inner). With this, a set of best-
fitting hyperparameters (the best combination of units, epochs and
layers) from the inner CV loop is obtained. Finally, this set of hyper-
parameters was used to predict the performance of the independent
testing data set (testing-outer). For each data set, 10 random outer CV
partitions were implemented, and with the observed and predicted
valuesof each testing-outerdata sets,we calculated the averagePearson’s
correlation as a measure of prediction accuracy. It is important to point
out that the outer cross-validation we implemented did not allow for-
ward prediction because our TRN and TST sets were not separated
across generational lines (Daetwyler et al., 2012). The accuracy reported
in terms of Pearson’s correlation was divided by the square root of the
heritability of each trait-environment combination since heretabilities
change in each trait-environment combination.

Data availability and software. The phenotypic and genotypic data
used in this study can be found in several articles (see the description of
the data above). The readers can download theDataSets_DK.rar used in this
study from the following link hdl:11529/10548082. Furthermore, R codes
for fitting the DL methods used in this study are given in the Appendix.

RESULTS
The results are given in 10 sections, one for each real data set plus one
where all data sets are compared. In the first 9 sections, we provide a

Figure 5 Wheat data set 5-Trait GY. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 5 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Wheat data set 5 WI).
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figure with the predictions disaggregated by environment obtained with
the DL model and those of the GBLUP model. For the DL model, the
predictions reported correspond to the best combination (in terms of
epochs, layers and units) obtained from the grid search. Finally, in Figure
10 we provide ameta-picture of the prediction performance of the 9 data
sets, where the prediction performance of the best DL model is com-
pared to that of the GBLUPmodel across environments in each data set.

Maize data set 1-trait GY
Figure 1 shows that the average Pearson’s correlation (APC) prediction
accuracies under the GBLUP method desegregated by environment
when the G·E term interaction was taken into account were: 0.394
for environment 1, 0.411 for environment 2 and 0.319 for environment
3. The predictions (Figure 1) under the DL method were: 0.382 for
environment 1, 0.365 for environment 2 and 0.230 for environment 3.
When the covariates corresponding to the G·E interaction term were
ignored in both methods, the APCs were 0.274 for environment 1,
0.272 for environment 2 and 0.323 for environment 3 under the
GBLUP method. On the other hand, the predictions (Figure 1) with
the DL method under APC were 0.393, 0.388 and 0.306 for environ-
ments 1, 2 and 3, respectively. The corresponding standard errors (SE)
for the APCs are given in Table B1 of Appendix B.

Maize data set 2-trait ASI
Figure 2 shows that the APC for each environment for the GBLUP
method including the interaction term was 0.542 for environment 1,
0.512 for environment 2 and 0.312 for environment 3. On the other
hand, the predictions (Figure 2) with theDLmethodwith interaction in
terms of APC were 0.402 for environment 1, 0.451 for environment
2 and 0.194 for environment 3. On the other hand, when the G·E
interaction term was ignored, the predictions of the GBLUP method
were 0.427 for environment 1, 0.414 for environment 2 and 0.339 for
environment 3. Under the DL method, the predictions (Figure 2) in
APC terms were 0.496 for environment 1, 0.509 for environment 2 and
0.319 for environment 3 (Figure 2).

Maize data set 3-trait PH
Figure 3 shows that the APCs for the GBLUP method with the G·E
interaction term were: 0.481 for environment 1, 0.489 for environment
2 and 0.529 for environment 3. On the other hand, the predictions
(Figure 3) obtained with the DL method under the APC were: 0.506
for environment 1, 0.436 for environment 2 and 0.455 for environment
3. When the G·E interaction term was not taken into account, the
APCs of the GBLUP method were: 0.232 for environment 1, 0.296

Figure 6 Wheat data set 6- Trait GY. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 6 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Wheat data set 6 WI).
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for environment 2 and 0.471 for environment 3. Under the DL
method, the predictions (Figure 3) resulting in APC terms were
0.499 for environment 1, 0.482 for environment 2 and 0.491 for
environment 3 (Figure 3).

Wheat data set 4-trait GY
The predictions with the APC for each environment under the GBLUP
method with the interaction term were 0.902 for environment 1, 0.841
for environment 2, 0.712 for environment 3 and 0.800 for environment
4 (Figure 4). On the other hand, the predictions (Figure 4) with the
APC under the DL method were 0.594 for environment 1, 0.559 for
environment 2, 0.534 for environment 3 and 0.348 for environment
4 (Figure 4). When the G·E interaction was ignored, the predictions
under the GBLUP method were 0.848 for environment 1, 0.779 for
environment 2, 0.585 for environment 3 and 0.666 for environment 4,
while under the DL method, the predictions (Figure 4) were 0.689 for
environment 1, 0.620 for environment 2, 0.548 for environment 3 and
0.488 for environment 4 (Figure 4).

Wheat data set 5-trait GY
Figure 5 shows that the APCs under the GBLUPmethod disaggregated
by environment with the G·E interaction term were 0.661 for environ-
ment 1, 0.787 for environment 2, 0.713 for environment 3 and 0.843 for
environment 4 (Figure 5). On the other hand, the predictions (Figure 5)

under the DL method were 0.584 for environment 1, 0.557 for
environment 2, 0.548 for environment 3 and 0.571 for environment
4 (Figure 5). When the G·E term was ignored, the predictions for
the GBLUP method were 0.380 for environment 1, 0.707 for envi-
ronment 2, 0.568 for environment 3 and 0.791 for environment 4,
while the predictions (Figure 5) under the DLmethod were 0.597 for
environment 1, 0.706 for environment 2, 0.599 for environment
3 and 0.647 for environment 4 (Figure 5).

Wheat data set 6-trait GY
Figure 6 shows that the APCs under the GBLUPmethod disaggregated
by environment with interaction were 0.664 for environment 1, 0.552
for environment 2, 0.724 for environment 3, 0.498 for environment
4 and 0.511 for environment 5 (Figure 6). Under the DL method with
the G·E interaction term, the predictions (Figure 6) in terms of APC
were 0.682 for environment 1, 0.555 for environment 2, 0.731 for
environment 3, 0.405 for environment 4 and 0.422 for environment
5 (Figure 6). When the G·E term was ignored under the GBLUP, the
predictions were 0.321 for environment 1, 0.209 for environment 2,
0.356 for environment 3, 0.337 for environment 4 and 0.324 for envi-
ronment 5 (Figure 6). Under the DL method, the predictions in terms
of APC were 0.634 for environment 1, 0.497 for environment 2, 0.705
for environment 3, 0.359 for environment 4 and 0.363 for environment
5 (Figure 6).

Figure 7 Wheat data set 7- Trait PH. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 7 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Wheat data set 7 WI).
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Wheat data set 7-trait PH
Figure 7 shows that the APCs for the GBLUP method were 0.388 for
environment 1, 0.684 for environment 2, and 0.724 for environment
3 (Figure 7). The predictions (Figure 7) under the DL method with
interaction in terms of Pearson’s correlation were 0.554 for environ-
ment 1, 0.563 for environment 2 and 0.733 for environment 3 (Figure
7). On the other hand when the interaction term was ignored, the
APCs under the GBLUPmethod were 0.119 for environment 1, 0.719
for environment 2 and 0.672 for environment 3 (Figure 7). Under the
DL method, the predictions in terms of APC were 0.430 for envi-
ronment 1, 0.573 for environment 2 and 0.836 for environment
3 (Figure 7).

Wheat data set 8-trait DTHD
Figure 8 shows that the APCs of the GBLUP method with G·E in-
teraction were 1.00 for environment 1, 1.00 for environment 2 and 1.00
for environment 3 (Figure 8). Under the DL method with G·E in-
teraction, the predictions (Figure 8) in terms of APC were 0.75 for
environment 1, 1.00 for environment 2 and 0.978 for environment
3 (Figure 8). When the G·E interaction term was ignored, the APCs
for environments 1, 2 and 3were 1.00, 1.00 and 1.00, respectively, under
the GBLUP method, while the predictions (Figure 8) under the DL
method were 0.967 for environment 1, 1.00 for environment 2 and
1.00 for environment 3 (Figure 8).

Wheat data set 9-trait DTM
Figure 9 shows that the APCs of the GBLUP method with interaction
were 1.00 for environment 1 and 0.918 for environment 2 (Figure 9).
Under the DLmethod, the predictions (Figure 9) in terms of APC were
1.00 for environment 1 and 0.792 for environment 2 (Figure 9). On the
other hand, when the interaction term was ignored, the APCs for
environments 1 and 2 were 1.00 and 0.633, respectively, under the
GBLUP method without interaction (Figure 9). The predictions under
the DL without G·E method for DTM were 0.633 for environment
2 and 0.552 for environment 1 (Figure 9).

A meta-picture of the DL method vs. the GBLUP model
Figure 10 shows themean Pearson’s correlation across environments of
the GBLUP model and DL model, with and without G·E interaction
for each data set. Here it is evident that for data sets 1, 2, 3, 5, 6 and
7 when the G·E interaction term was not taken into account, the DL
method was better than the GBLUPmodel. When the G·E interaction
termwas taken into account, the GBLUPmodel was the best in 8 out of
9 of data sets under study; only in data set 7, the DL method was better
than the GBLUP model.

DISCUSSION
The rapid increase in the genomic data dimension andacquisition rate is
challenging conventional genomic analysis strategies. The DL method

Figure 8 Wheat data set 8- Trait DTHD. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 8 I), and the second vertical sub-panel corresponds to the same model but without
genotype·environment interaction (Wheat data set 8 WI).
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that recently appeared in the biological arena promises to leverage very
large data sets tofind hidden structureswithin them, andmake accurate
predictions (Angermueller et al., 2016). In other words, DL algorithms
dive into data in ways that humans cannot, detecting features that
might otherwise be impossible to catch. In our study, we explored a
fraction of all possible combinations of hyperparameters of DL meth-
ods. Based on our results, we found that the DL method with densely
connected network architecture competes well with the GBLUP
method, since in many scenarios under study we did not find great
differences between these two approaches. The network structure
implemented with the DL method is a feedforward multilayer neural
network whose structure (topology) is composed of an input layer, one
or many hidden layers, and a single output layer. Each layer can have a
different number of neurons and each layer is fully connected to the
adjacent layer. The connections between the neurons in the layers form
an acyclic graph.

One possible explanation for the good performance of the GBLUP
method comparedwith theDLmethod is that, as has been documented,
when the data are scarce (no really large data sets in terms of observa-
tions), many times the most commonly used statistical (or machine)
learning method outperforms the DL method. Given that with small
data sets, one of the major challenges when training a DL method is
dealingwith the riskof overfitting (i.e., when the training error is lowbut
the testing error is high), the method fails to learn a proper generaliza-
tion of the knowledge contained in the data. For this reason, in our
application of DL with a densely connected network, we used dropout

regularization, which consists of temporarily removing a random sub-
set (30%) of neurons with their connections during training. However,
even with regularization, DL results were not superior in general terms
to GBLUP results when the interaction term was taken into account.

It is important to point out that the DL method was superior when
the G·E interaction term was not included in the method under the
grid of parameters implemented. This can be attributed to the fact that
DL methods are capable of capturing complex relationships hidden in
the data without requiring strong assumptions about the underlying
mechanisms, which are frequently unknown or insufficiently defined
(Angermueller et al. 2016). Also, DL methods are a type of general-
purpose approach for learning functional relationships from data that
do not require prior information, as do the GBLUP and other genomic
Bayesianmethods. However, three main disadvantages of DL are: (a)
it is really hard to train a DL method because we need to test
different combinations of hyperparameters corresponding to the
number of layers, the number of units, the number of epochs, the
type of regularization (and the dropout percentage in the context of
dropout regularization) and the type of activation function in each
layer; (b) the computational time required to implement a DL
method, since it increases as the number of layers and units increases;
and (c) a DL method requires a level of experience in computer
science and statistics that is not always available in organizations
working with biological data.

Also, according to our results, the best combination of hyper-
parameters (i.e., number of layers, number of units and number of

Figure 9 Wheat data set 9- Trait DTM. Mean Pearson’s correlation for each environment. The first vertical sub-panel corresponds to the model
with genotype·environment interaction (Wheat data set 9 I), and the inferior horizontal sub-panels correspond to the same model but without
genotype·environment interaction (Wheat data set 9 WI).
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epochs) is data dependent since the best prediction in each data set
can be obtained with a different combination of hyperparameters,
which corroborates that the process of hyperparameter tuning in
DL is a challenging process that required further investigation.

Based on our results, the DLmethods are a powerful complement of
classic genomic-enabled prediction tools and other analysis strategies.
For these reasons, DL methods have been applied successfully in many
areas of science, from social science to engineering. However, the results
obtained here only apply to DL methods with densely connected
network architecture and for the studied hyperparameters; but there
are still opportunities to evaluate the performance of other network
architectures such as convolutional neural networks and recurrent
neural networks.

Furthermore, in the companion article of Montesinos-López
et al. (2018) the authors extended the multi-environment DL model
of this research to the case of multi-trait multi-environment DL
model (MTDL) and found challenging aspects for the selection of
the hyperparameters. However, the authors have concluded that
that MTDL is feasible, and practical in the GS framework with
important savings on computing resources as compared to other
multi-trait multi-environment models.

Finally, it should be noted that although the DL method per-
formed well compared to the most popular Bayesian genomic
selectionmethod (GBLUP), its prediction accuracy was always lower
than that of the GBLUPmethod. However, the boom of DLmethods
is very widespread and the media are selling DL as the panacea for
predicting any type of phenomenon. However, as pointed out above,
the DL method also has many limitations that need to be improved,
since it is a methodology with a rational thought process that is
entirely dependent on the problem we are trying to solve. A lot of
time is needed to understand its essence and be able to take advantage
of its virtues when trying to apply it to solve real-world problems.

However, we must also point out that DL is an alternative approach
that can help explore other pathways that underlie biological data.

CONCLUSIONS
In this paper we compare a DL method with densely connected
network architecture to themost popular genomic predictionmethod,
the GBLUP. Our results show that the DL method with densely
connected network architecture performed as well as the GBLUP
method, but that in general terms, the GBLUP method was superior
when the covariates corresponding toG·E interaction were taken into
account. However, the DLmethod was superior (in terms of Pearson’s
correlation) to the GBLUP method when G·E interaction was ig-
nored, since in 6 out of the 9 data sets under this scenario, the DL
method was better than the GBLUP method in terms of prediction
accuracy. Based on this empirical evidence, we can say that DL meth-
ods with densely connected network architecture were competitive
with the most popular genomic prediction method (GBLUP). For this
reason, DL methods should be added to the data science toolkit of
statisticians, animal and plant breeding scientists so they can use
them to evaluate other data sets and other types of network architec-
tures of DL methods that have been applied successfully in other
scientific domains.
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APPENDIX

Deep learning R codes for a densely connected network
setwd(“C:\\TELEMATICA 2017\\Deep Learning CONTINUOUS”)
rm(list = ls())
######Libraries required##################################
library(tensorflow)
library(keras)
#############Loading data###############################
load(“Data_Maize_1to3.RData”)
####Genomic relationship matrix (GRM)) and phenotipic data#####
G=G_maize_1to3
Pheno=Pheno_maize_1to3
head(Pheno)
###########Cholesky decomposition of the GRM##############
LG=t(chol(G))
########Creating the desing matrices ########################
Z1G=model.matrix(�0+as.factor(Pheno$Line))
ZE=model.matrix(�0+as.factor(Pheno$Env))
Z1G=Z1G%�%LG ####Incorporating marker information to lines
Z2GE=model.matrix(�0+as.factor(Pheno$Line):as.factor(Pheno$Env))
G2=kronecker(diag(3),data.matrix(G))
LG2=t(chol(G2))
Z2GE=Z2GE%�%LG2
###Defining the number of epoch and units#####################
units_M=50
epochs_M=20
##########Data for trait GY#################################
y =Pheno$Yield
X = cbind(ZE, Z1G, Z2GE)
#############Training and testing sets########################
n=dim(X)[1]
Post_trn=sample(1:n,round(n�0.65))
X_tr = X[Post_trn,]
X_ts = X[-Post_trn,]
y_tr = scale(y[Post_trn])
Mean_trn=mean(y[Post_trn])
SD_trn=sd(y[Post_trn])
y_ts = (y[-Post_trn]- Mean_trn)/SD_trn
#########Model fitting in Keras################################
model ,- keras_model_sequential()
#########Layers specification ################################
model %.%
layer_dense(
units =units_M,
activation = “relu”,
input_shape = c(dim(X_tr)[2])) %.%
layer_dropout(rate = 0.3) %.% ###Input Layer
layer_dense(units = units_M, activation = “relu”) %.%
layer_dropout(rate = 0.3) %.% ###Hidden layer 1
layer_dense(units = units_M, activation = “relu”) %.%
layer_dropout(rate = 0.3) %.% ####Hidden layer 2
layer_dense(units = 1) ####Output layer
model %.% compile(
loss = “mean_squared_error”,
optimizer = optimizer_adam(),
metrics = c(“mean_squared_error”))
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history ,- model %.% fit(
X_tr, y_tr, epochs = epochs_M, batch_size = 30,
verbose = FALSE)
#######Evaluating the performance of the model###################
pf = model %.% evaluate(x = X_ts, y = y_ts, verbose = 0)
y_p = model %.% predict(X_ts)
y_p=y_p�SD_trn+ Mean_trn
y_ts=y_ts
y_ts=y_ts�SD_trn+ Mean_trn
###############Observed and predicted values of the testing set#
Y_all_tst = data.frame(cbind(y_ts, y_p))
cor(Y_all_tst[,1],Y_all_tst[,2])
plot(Y_all_tst)

APPENDIX B

n Table B1. Standard errors (SE) for the average Pearson’s correlation (APC) for each environment in each of the 9 data sets. I denotes
with and WI denotes without the (G3E) interaction term

Env Method Interaction Maize 1 Maize 2 Maize 3 Wheat 4 Wheat 5 Wheat 6 Wheat 7 Wheat 8 Wheat 9

Env1 GBLUP I 0.040 0.030 0.058 0.008 0.015 0.014 0.021 0.011 0.008
Env2 GBLUP I 0.042 0.036 0.031 0.015 0.024 0.019 0.019 0.012 0.008
Env3 GBLUP I 0.044 0.032 0.023 0.019 0.015 0.007 0.022 0.016 -
Env4 GBLUP I - - - 0.011 0.015 0.014 - - -
Env5 GBLUP I - - - - - 0.013 - - -
Env1 DL I 0.036 0.036 0.037 0.016 0.017 0.017 0.034 0.030 0.005
Env2 DL I 0.040 0.028 0.033 0.013 0.033 0.013 0.021 0.010 0.016
Env3 DL I 0.083 0.066 0.028 0.021 0.027 0.013 0.025 0.016 -
Env4 DL I - - - 0.036 0.024 0.030 - - -
Env5 DL I - - - - - 0.031 - - -
Env1 GBLUP WI 0.048 0.038 0.073 0.010 0.010 0.035 0.049 0.010 0.007
Env2 GBLUP WI 0.079 0.042 0.066 0.017 0.026 0.050 0.013 0.011 0.015
Env3 GBLUP WI 0.044 0.036 0.028 0.014 0.024 0.032 0.020 0.016 -
Env4 GBLUP WI - - - 0.016 0.020 0.022 - - -
Env5 GBLUP WI - - - - - 0.033 - - -
Env1 DL WI 0.029 0.028 0.040 0.018 0.018 0.021 0.052 0.020 0.015
Env2 DL WI 0.039 0.032 0.039 0.019 0.024 0.028 0.030 0.008 0.017
Env3 DL WI 0.063 0.041 0.036 0.028 0.018 0.010 0.025 0.009 -
Env4 DL WI - - - 0.019 0.020 0.038 - - -
Env5 DL WI - - - - - 0.030 - - -
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