Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-hydroxido- $\kappa^{4} \mathrm{O}: O$-di- μ-perchlorato$\kappa^{4} O: O^{\prime}$-bis $\left[\left(2,2^{\prime}\right.\right.$-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)$ copper(II)]

B. Saravanan, ${ }^{\text {a }}$ A. Jayamani, ${ }^{\text {b }}$ N. Sengottuvelan, ${ }^{\text {b }}$
G. Chakkaravarthi ${ }^{\mathrm{C} *}$ and V. Manivannan ${ }^{\mathrm{a} *}$

${ }^{\text {a }}$ Centre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, India, ${ }^{\text {b }}$ Department of Chemistry, DDE, Alagappa University, Karaikudi 630 003, India, and ${ }^{\text {c }}$ Department of Physics, CPCL Polytechnic College, Chennai 600 068, India
Correspondence e-mail: chakkaravarthi_2005@yahoo.com,
crystallography2010@gmail.com
Received 7 October 2013; accepted 10 October 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.026 ; w R$ factor $=0.077$; data-to-parameter ratio $=16.0$.

In the title binuclear copper(II) complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{OH})_{2^{-}}\right.$ $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}$], the $\mathrm{Cu}^{\text {II }}$ ion is coordinated in the form of a JahnTeller distorted octahedron by two bipyridine N atoms, two perchlorate O atoms and two hydroxide O atoms, and displays a distorted octahedral geometry. The molecule belongs to the symmetry point group $C_{2 h}$. The $\mathrm{Cu}^{\text {II }}$ ion is located on a twofold rotation axis and the hydroxide and perchlorate ligands are located on a mirror plane. Within the dinuclear molecule, the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is $2.8614(7) \AA$. The crystal structure exhibits $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ [centroid-centroid distance $=3.5374$ (13) \AA] interactions.

Related literature

For the biological activity of copper complexes, see: Müller et al. (2003); Lo et al. (2000). For related strucutures, see: Li et al. (2009); Shaikh et al. (2012); Wang et al. (2010).

Experimental

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=672.36$
Monoclinic, $C 2 / m$
$a=13.6014$ (12) \AA
$V=1189.19(19) \AA^{3}$
$Z=2$
$b=15.2064$ (13) \AA
$c=6.2738$ (6) A
$\beta=113.587$ (3) ${ }^{\circ}$

Data collection

Bruker Kappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.635, T_{\text {max }}=0.706$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.077$
$S=1.03$
1516 reflections
95 parameters
1 restraint

Mo $K \alpha$ radiation
$\mu=2.08 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.24 \times 0.20 \times 0.18 \mathrm{~mm}$

4520 measured reflections 1516 independent reflections 1330 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O}^{2}$	$0.81(2)$	$2.34(1)$	$3.134(3)$	$169(4)$
C5-H5 O^{i}	0.93	2.52	$3.381(3)$	153

Symmetry code: (i) $x, y, z+1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors thanks the STIC Cochin University of Technology, Cochin, for the data collection. AJ and NS acknowledge the Department of Science and Technology, New Delhi (DST-SR/FT/CS-049/2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6938).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, M.-J., Nie, J.-J. \& Xu, D.-J. (2009). Acta Cryst. E65, m881.
Lo, S. M. F., Chui, S. S. Y. \& Shek, L. Y. (2000). J. Am. Chem. Soc. 122, $6293-$ 6294.

Müller, A., Das, S. K. \& Talismanov, S. (2003). Angew. Chem. Int. Ed. 42, 50395044.

Shaikh, M. M., Mishra, V., Ram, P. \& Birla, A. (2012). Acta Cryst. E68, m1055.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, X.-J., Zheng, C., Mai, S.-W., Xu, X. \& Luo, Y.-F. (2010). Acta Cryst. E66, m1245.

supplementary materials

Di- μ-hydroxido- $\kappa^{4} O: O$-di- μ-perchlorato- $\kappa^{4} O: O^{\prime}$-bis[(2,2'-bipyridine$\left.\left.\boldsymbol{\kappa}^{2} N, N^{\prime}\right) \operatorname{copper}(\mathrm{II})\right]$

B. Saravanan, A. Jayamani, N. Sengottuvelan, G. Chakkaravarthi and V. Manivannan

1. Comment

Copper complexes have received much attention because of their interesting interactions with biological ligands to generate stable mixed coordinated complexes, which play a key role in life processes such as enzymatic catalysis, storage and conveyance of the matter, transfer of copper ions (Müller et al., 2003; Lo et al., 2000). In the molecular structure of the title compound (Fig. 1), the bond distances $\mathrm{Cu} 1-\mathrm{N} 1=1.9865$ (16) \AA and $\mathrm{Cu} 1 — \mathrm{O} 1=1.9097$ (13) \AA agree with the reported similar structures (Shaikh et al., 2012; Wang et al., 2010). Each $\mathrm{Cu}^{(I)}$ cation is hexa-coordinated with two N atoms of bipyridine, two hydroxyl group O atoms bridging the copper cations and two O atoms of perchlorate anions, showing distorted octahedral environment (Fig. 1). The molecule belongs to the symmetry point group $C_{2 h}$. The two

The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}($ Fig. $2 \&$ Table 1$)$ and $\pi-\pi\left[\mathrm{Cg1} \cdots \mathrm{Cg} 1^{1}\right.$ distance $=3.5374$ (13) $\AA ;$ (i) $-2-x, y,-z ; \mathrm{Cg} 1$ is the centroid of the ring ($\mathrm{N} 1 / \mathrm{C} 1 /-\mathrm{C} 5$)] interactions.

2. Experimental

To a solution of 2, 2'-bipyridine ($0.25 \mathrm{~g}, 1.60 \mathrm{mM}$) in 10 mL methanol, $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$. $6 \mathrm{H}_{2} \mathrm{O}(0.59 \mathrm{~g}, 1.60 \mathrm{mM})$ in 10 mL of methanol, was slowly added dropwise with constant stirring. The mixture was stirred well at room temperature for about 3 h , the formed blue solution was then concentrated to one third of its volume, washed well (with water, methanol and ether) and dried under vacuum. The complex was then recrystallized in ethanol by the slow evaporation method to obtain X-ray quality single crystals of the complex, which appeared gradually after several days.

3. Refinement

The H atom of the hydroxyl O atom was located in a difference Fourier map and refined with the $\mathrm{O} 1-\mathrm{H} 1$ distance restrained to $0.82(1) \AA$. All other H atoms were positioned geometrically and refined using riding model, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.
One reflection (1 1 0) was omitted from the final cycles of refinement owing to poor agreement.

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non- H atoms. Symmetry codes : (a) $-2-x, y,-1-z$; (b) $-2-x,-y,-1-z$; (c) $x,-y, z$.

Figure 2
The packing of the title compound, viewed down a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Di- μ-hydroxido- $\kappa^{4} \mathrm{O}: O$-di- μ-perchlorato- $\kappa^{4} \mathrm{O}: \mathrm{O}^{\prime}$-bis[(2,2'-bipyridine- $\left.\kappa^{2} \mathrm{~N}, \mathrm{~N}^{\prime}\right)$ copper(II)]

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=672.36$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=13.6014$ (12) \AA
$b=15.2064$ (13) \AA
$c=6.2738$ (6) \AA
$\beta=113.587$ (3) ${ }^{\circ}$
$V=1189.19(19) \AA^{3}$
$Z=2$

```
\(F(000)=676\)
\(D_{\mathrm{x}}=1.878 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation, \(\lambda=0.71073 \AA\)
Cell parameters from 4012 reflections
\(\theta=3.2-28.3^{\circ}\)
\(\mu=2.08 \mathrm{~mm}^{-1}\)
\(T=295 \mathrm{~K}\)
Block, colourless
\(0.24 \times 0.20 \times 0.18 \mathrm{~mm}\)
\(F(000)=676\)
\(D_{\mathrm{x}}=1.878 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation, \(\lambda=0.71073 \AA\)
Cell parameters from 4012 reflections
\(\theta=3.2-28.3^{\circ}\)
\(\mu=2.08 \mathrm{~mm}^{-1}\)
\(T=295 \mathrm{~K}\)
Block, colourless
\(0.24 \times 0.20 \times 0.18 \mathrm{~mm}\)
```


Data collection

Bruker Kappa APEXII
 diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.635, T_{\text {max }}=0.706$

$$
\begin{aligned}
& 4520 \text { measured reflections } \\
& 1516 \text { independent reflections } \\
& 1330 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.022 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=3.3^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-20 \rightarrow 18 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.077$
$S=1.03$
1516 reflections
95 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0419 P)^{2}+0.8702 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.44$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$-0.96779(13)$	$-0.27374(12)$	$-0.3726(3)$	$0.0316(4)$
C2	$-0.93192(16)$	$-0.34870(14)$	$-0.2418(3)$	$0.0415(4)$
H2	-0.9468	-0.4039	-0.3115	0.050^{*}
C3	$-0.87311(17)$	$-0.34058(17)$	$-0.0041(4)$	$0.0481(5)$

H3	-0.8474	-0.3903	0.0877	0.058^{*}
C4	$-0.85328(16)$	$-0.25859(17)$	$0.0941(4)$	$0.0469(5)$
H4	-0.8151	-0.2520	0.2536	0.056^{*}
C5	$-0.89063(16)$	$-0.18601(16)$	$-0.0462(3)$	$0.0429(5)$
H5	-0.8767	-0.1303	0.0207	0.052^{*}
N1	$-0.94650(12)$	$-0.19315(11)$	$-0.2767(2)$	$0.0331(3)$
O1	$-0.95484(16)$	0.0000	$-0.2803(3)$	$0.0416(5)$
O2	$-0.75740(19)$	0.0000	$-0.7997(4)$	$0.0547(6)$
O3	$-0.79963(14)$	$-0.07747(11)$	$-0.5234(3)$	$0.0566(4)$
O4	$-0.63781(17)$	0.0000	$-0.4095(4)$	$0.0584(6)$
Cl1	$-0.74892(5)$	0.0000	$-0.56343(11)$	$0.03846(17)$
Cu1	-1.0000	$-0.09408(2)$	-0.5000	$0.03551(13)$
H1	$-0.8987(16)$	0.0000	$-0.167(4)$	0.053^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0339(8)$	$0.0310(9)$	$0.0312(9)$	$-0.0004(7)$	$0.0143(7)$	$0.0011(7)$
C2	$0.0480(11)$	$0.0352(10)$	$0.0402(10)$	$0.0028(8)$	$0.0163(9)$	$0.0054(8)$
C3	$0.0491(11)$	$0.0519(14)$	$0.0398(11)$	$0.0063(10)$	$0.0139(9)$	$0.0167(10)$
C4	$0.0411(10)$	$0.0649(15)$	$0.0299(9)$	$-0.0013(10)$	$0.0093(8)$	$0.0043(10)$
C5	$0.0442(10)$	$0.0481(12)$	$0.0330(9)$	$-0.0068(9)$	$0.0118(8)$	$-0.0047(9)$
N1	$0.0373(7)$	$0.0311(8)$	$0.0297(7)$	$-0.0038(6)$	$0.0122(6)$	$-0.0013(6)$
O1	$0.0478(11)$	$0.0305(10)$	$0.0335(10)$	0.000	$0.0027(8)$	0.000
O2	$0.0678(14)$	$0.0552(14)$	$0.0335(11)$	0.000	$0.0123(10)$	0.000
O3	$0.0610(10)$	$0.0435(9)$	$0.0628(11)$	$-0.0040(7)$	$0.0223(8)$	$0.0070(8)$
O4	$0.0420(11)$	$0.0687(16)$	$0.0470(13)$	0.000	$-0.0004(10)$	0.000
C11	$0.0394(3)$	$0.0367(3)$	$0.0315(3)$	0.000	$0.0061(3)$	0.000
Cu1	$0.0431(2)$	$0.02606(18)$	$0.0349(2)$	0.000	$0.01302(14)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-N1	1.345 (2)	N1-Cu1	1.9865 (16)
$\mathrm{C} 1-\mathrm{C} 2$	1.375 (3)	$\mathrm{O} 1-\mathrm{Cu} 1$	1.9097 (13)
C1-C1 ${ }^{\text {i }}$	1.484 (3)	$\mathrm{O} 1-\mathrm{Cu}{ }^{\text {ii }}$	1.9097 (13)
C2-C3	1.388 (3)	O1-H1	0.807 (10)
C2-H2	0.9300	$\mathrm{O} 2-\mathrm{Cl1}$	1.440 (2)
C3-C4	1.369 (4)	O3-Cl1	1.4372 (17)
C3-H3	0.9300	O4-Cl1	1.431 (2)
C4-C5	1.376 (3)	$\mathrm{Cl1}-\mathrm{O} 3{ }^{\text {iii }}$	1.4372 (17)
C4-H4	0.9300	$\mathrm{Cu}-\mathrm{Ol}^{\text {ii }}$	1.9097 (13)
C5-N1	1.342 (2)	$\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	1.9865 (16)
C5-H5	0.9300	$\mathrm{Cu}-\mathrm{Cu} 1^{\text {ii }}$	2.8614 (7)
N1-C1-C2	121.81 (16)	$\mathrm{Cu}-\mathrm{O} 1-\mathrm{H} 1$	123.4 (12)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	114.25 (10)	$\mathrm{Cu1}{ }^{\text {iii }} \mathrm{O} 1-\mathrm{H} 1$	123.4 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	123.94 (11)	$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 3$	109.45 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	118.8 (2)	$\mathrm{O} 4-\mathrm{Cl1}-\mathrm{O}^{\text {iii }}$	109.45 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6	$\mathrm{O} 3-\mathrm{Cl1}-\mathrm{O}^{\text {iii }}$	110.11 (15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.6	$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 2$	108.83 (15)

supplementary materials

C4-C3-C2	119.3 (2)	$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 2$	109.49 (9)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Cl} 1-\mathrm{O} 2$	109.49 (9)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.3	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{1 i}$	82.97 (9)
C3-C4-C5	119.13 (19)	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	176.89 (8)
C3-C4-H4	120.4	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	97.91 (6)
C5-C4-H4	120.4	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	97.91 (6)
N1-C5-C4	122.0 (2)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 1$	176.89 (7)
N1-C5-H5	119.0	N1- $\mathrm{Cu} 1-\mathrm{N} 1$	81.37 (9)
C4-C5-H5	119.0	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{ii}}$	41.48 (4)
C5-N1-C1	118.93 (17)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {ii }}$	41.48 (4)
C5-N1-Cu1	126.04 (15)	$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {ii }}$	139.32 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	115.01 (11)	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 1^{\text {ii }}$	139.32 (4)
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{Cu} 1^{\text {ii }}$	97.03 (9)		
N1-C1-C2-C3	0.7 (3)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	-2.8(2)
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.4 (2)	$\mathrm{Cu} 1^{\text {ii }}-\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	0.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.6 (3)	$\mathrm{Cu1}-\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	176.99 (7)
C2-C3-C4-C5	-1.1 (3)	C5-N1-Cu1-O1	-3.53 (17)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	0.4 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	178.01 (13)
C4-C5-N1-C1	0.9 (3)	C5-N1-Cu1-N1 ${ }^{\text {i }}$	179.53 (19)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cu} 1$	-177.48 (15)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	1.07 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	-1.4 (3)	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu1}{ }^{\text {ii }}$	-0.47 (19)
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	178.60 (18)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cu1}{ }^{\text {ii }}$	-178.93 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	177.14 (14)		

Symmetry codes: (i) $-x-2, y,-z-1$; (ii) $-x-2,-y,-z-1$; (iii) $x,-y, z$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.81(2)$	$2.34(1)$	$3.134(3)$	$169(4)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.52	$3.381(3)$	153

Symmetry code: (iv) $x, y, z+1$.

