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Abstract: In this work, we are interested in the nucleation of bâtonnets at the Isotropic/Smectic A
phase transition of 10CB liquid crystal. Very often, these bâtonnets are decorated with a large number
of focal conics. We present here an example of a bâtonnet obtained by optical crossed polarized
microscopy in a frequently observed particular area of the sample. This bâtonnet presents bulges
and one of them consists of a tessellation of ellipses. These ellipses are two by two tangent, one to
each other, and their confocal hyperbolas merge at the apex of the bâtonnet. We propose a numerical
simulation with Python software to reproduce this tiling of ellipses as well as the shape of the smectic
layers taking the well-known shape of Dupin cyclides within this particular bâtonnet area.

Keywords: bâtonnets; focal conical domains; Smectic A phase; Dupin cyclides

1. Introduction

Thermotropic Liquid Crystals (LCs) are intermediate phases between crystalline solids
and isotropic liquids, and they can be made of elongated molecules—called “mesogens”
—which in turn possess a rigid core consisting of a set of phenyl groups and flexible tails
of varying lengths consisting of alkyl terminal chains R and R’ as shown in Figure 1a for
instance. They exhibit a very rich polymorphism—or mesomorph phases—depending on
temperature: nematics, smectics A, B, C, E, etc. [1]. In a Smectic A phase (Figure 1b), the
mesogens are arranged in layers with their centers of gravity distributed randomly in the
plane of the layers and their axes parallel to the normal to the layers (called director). It is
a sort of two-dimensional liquid in the plane of the layers and a solid in the direction of
the director.

R R'

rigid core

alkyl terminal chain

{a) b)

Figure 1. (a) Rod shape mesogen calamitic liquid crystal; (b) 3D Smectic A phase.

During the cooling stage from the isotropic phase to the Smectic A phase, elongated
defects of different shapes appear. These defects, first reported by Friedel [2], are called
bâtonnets, which is French-origin word for rods mainly used in the LC defect studies. They
have been reported in different lamellar phases of new liquid crystal compounds [3–7].
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They can be either cylindrical or spherical with rounded ends. Often, these bâtonnets exist
with different types of shapes and curvatures; they can be adorned with bulges that give
them the shape of balusters. These bulges are formed by a necklace of small pearls, small
protrusions perfectly equal to each other, which correspond to a festoon of focal domains
when their size is large enough, and will be developed afterwards. These domains satisfy
the law of focal conics (see Section 2.2).

Note that these kinds of bâtonnets also exist at the Isotropic—N* phase transition and
that smectic-like bâtonnets have been recently reported in N/NTB biphasic samples [8,9]
and in synthesized LCs from both inorganic and metal-organic precursors [10–12].

The growth dynamics of a bâtonnet has been investigated using universal scaling laws
of nucleus growth. A shape anisotropy of the bâtonnet has been measured both for the
length and for the width of the bâtonnet and a variation in square root of time has been
reported [13]. Previous studies involving the shape of a bâtonnet have also been done and
the complex structure inside has been resolved in several cases either for thermotropic [14]
or lyotropic [15] LCs. The LC droplets made by the lamellar phase inside a sponge phase
matrix are similar to Friedel’s bâtonnets but much simpler, and they are the result of a
competition between inter-facial tension, smectic elasticity, and the growth mechanism [16].
The effect of external constraints like, for instance, the application of an electric field has
also been reported (see [14,17]). The influence of anchoring energy on the prolate shape of
tactoids in lyotropic inorganic LC has also been developed [18].

In this article, we will focus on the analysis of the internal structure of a particular
area inside a bâtonnet in a usual thermotropic liquid crystal (10CB). We will indeed see a
particular example of a bâtonnet, which is made up of a very organized set of focal conics
that we will first describe in the next paragraph.

Under crossed polarizors optical microscopy, the SmA phase shows the macroscopic
texture of defects. These defects can be either made by Focal Conic Domains FCDs [19],
parts of FCD (DHs [20,21]) or FCD assemblies (oily streaks [22,23], polygonal texture [2,24],
and flower texture [25]), whose simulation was recently made in a hybrid-aligned smectic
with curved interfaces [26]. FCDs can be arranged in a regular lattice and might be
used for example as templates for lithographic applications [27]. Bahr et al. were also
interested in the manipulation of size and location of FCDs, by controlling the generation
and arrangement of these latter through chemical and topographical patterning of the
substrate or by varying the magnitude of anchoring strength on the substrate [28–31].
Honglawan et al. showed epitaxial assembly of the FCD lattice with a tailored domain
size and symmetry using polymer based micro-pillar arrays, where they can favor the
“pinning” of FCD centers near pillar edges [32,33]. These defects are present in different
technological fields: going from the fabrication of functional surfaces, the self-assembly
of soft micro-systems, template lithographic patterns [27], enhanced charge transport in
photovoltaic cells and transistors to optical vortex generators [34]. In order to enhance
their efficiency and their use in these technologies, a focus on the geometric aspect of these
domains is needed. However, what are these defects and how are they structured?

Friedel and Grandjean [35] have denoted by LC the compounds mentioned by
O. Lehmann [36]. They have made a precise classification of different phases and in
particular nematic and smectic phases. In smectic phases, they have obtained a large scale
of defects, due to the deformation of the lamellar structure. These defects take the shape
of two pairs of conjugate conics, in general, an ellipse and a confocal hyperbola or two
confocal parabolas, which are called Focal Conics FCs. These conics are located in two
mutually orthogonal planes, in such a way that the apex of one will pass through the focus
of the other and conversely.

Let us briefly recall the FCDs geometry. Figure 2a shows an ellipse of center 0 in
the (xOy) plane with semi-major axis a, semi-minor axis b, and its confocal hyperbola in
the (xOz) plane. Three specific points: E(xE, yE, 0), H(xH , zH ,0), D(xD, yD, zD) belonging
respectively to the ellipse, the hyperbola, and the Dupin cyclide are drawn. This ellipse, its
center 0, and its confocal hyperbola are illustrated in Figure 2b. An FCD is defined as the
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domain limited by four revolutions’ cones: two cones whose apexes are the poles of the
hyperbola, which lies on the ellipse and two other cones whose apexes are two diametrical
points of the ellipse, which lies on the hyperbola.

xρ
D(xD,yD,yD)

a

b

z

xcO
Fx

x
x

E(xE,yE,0)
H(xH,0,zH)

y

a) b)

Figure 2. (a) Ellipse and hyperbola in a confocal geometry; (b) Python simulation of (a).

It has been shown that, in order to keep their equidistant, smectic layers take the
shape of Dupin cyclides, which are a generalization of Tori. In our study, we will take only
the physical part of the FCD, which is here the one with negative Gaussian curvature (In
several cases, experimental situations in SmA phase of thermotropic LC necessitate to take
both negative and positive Gaussian curvature, see Figure 14 in [37] for an example). When
the ellipse is degenerated into a circle and the hyperbola into a straight line, Dupin cyclides
are simple parallel tori, called Toroidal Focals Conic Domains (TFCDs).

Let us consider D (xD, yD, zD) any point between E and H belonging to a Dupin
cyclide (Figure 2a), ρ being the distance between E and D. In order to simulate the smectic
layers in the presence of FCDs, we used the parametric equations of Dupin cyclides; see
Equation (1) [38]:

x− c cosh v = − a cosh v− r
a cosh v− c cos u

(c cosh v− a cos u)

y− 0 = − a cosh v− r
a cosh v− c cos u

(−b sin u)

z− b sinh v = − a cosh v− r
a cosh v− c cos u

(b sinh v)

(1)

where c =
√

a2 − b2, and u and v are the parameters of the surface respectively used to
describe the ellipse and the complete hyperbola (0 ≤ u ≤ 2π , −∞ ≤ v ≤ +∞). There
is only a physical part of the hyperbola, which corresponds to the two physical poles
(−π/2 ≤ v ≤ +π/2). Each value of r defines a single smectic layer, i.e., a single Dupin
cyclide. A sample of 75 µm includes approximately 20,000 layers; nevertheless, only three
of them have been illustrated in Figure 3 with the associated FC. In order to draw only the
physical part of the cyclides with negative Gaussian curvature, the limits of u and v are
given by:

u < arccos

(
r
c

)
and v < arccosh

(
r
a

)
(2)
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Figure 3. Three smectic layers corresponding to a single focal conic domain as a result of the Dupin
cyclides’ equations system.

One can see using a Polarized Optical Microscope (POM) that FCDs assemble in large
scale clusters, so the question is: what are the rules that they should obey? Our article
will be divided as follows: first, we will present the image obtained in POM observations.
Second, we will recall Friedel’s laws of association for two FCs, and in particular the law of
corresponding cones. Finally, we apply these association rules to the case of two and then
multiple FCs inside the selective area of our bâtonnet.

2. Results
2.1. Polarized Optical Microscopy

In order to obtain distinctly the focal conical structure, we heat the sample of 4-n-
decyl-4′-cyanobiphenyl (10CB) liquid crystal to the isotropic phase (52.2 °C) and then
the sample has been cooled very slowly. When the temperature approaches 51 °C, the
sample becomes progressively birefringence and shows the existence of a great number of
objects, which move very quickly in the field of the microscope. What is interesting in this
work is that a part of the smectic phase appears in the form of “bâtonnets” (Figure 4a,b).
When temperature is further decreased, coalescence of adjacent bâtonnets can be seen and,
progressively, bâtonnets will completely fill the sample and allow the place to the usual
Smectic A phase. The bâtonnets, which generally have a conical structure, contain large FC
when their size is large enough. The bâtonnets rotate quickly and, in order to stabilize the
texture observed in Figure 4a, the temperature has been very slowly increased. When two
bâtonnets of comparable sizes meet, they usually coalesce, giving rise to a bigger bâtonnet.

Looking more deeply into Figure 4, several areas are visible. Part A clearly shows:
an isolated FC in the bulk, and the hyperbola seems to be degenerated into a straight line
and its confocal ellipse into a circle. Figure 4 zone B presents two grain boundaries with
ellipses in the observation plane, and their confocal hyperbolas are seen as part of the lines
because they lie in a perpendicular plane. In Figure 4, we also see three different zones C1,
C2, and C3 exhibiting similar bâtonnets. In our study, we will focus on the simulation of
the bâtonnet inside the C2 zone. A zoom of this area C2 has been illustrated in the inset
(a) of Figure 4, where we observe the presence of about six FCs’ two by two tangents and
decorating the bâtonnet. Due to the revolution symmetry of this bâtonnet, we assume that
about six other hidden FCs exist behind them. The confocal hyperbolas are merging into
the apex of the bâtonnet, which presents strong similarities with Friedel’s representation.
In general, inside the bâtonnets, a variable number of FCs is present.
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Figure 4. Polarized Optical Microscopy of 10CB: (a) Zoom in a certain region where bâtonnets are
clearly visible; (b) bâtonnets’ model given by Friedel from [2].

2.2. Focal Conic Assembly Corresponding to Friedel’s Law

FC assembly laws were studied by Friedel in 1922 [2], and then, in 2000, they were
reviewed in a detailed way [39]. Briefly speaking, focal groups can show very wide-ranging
types of arrangements, but, despite this, they are not randomly distributed and they fit
together according to perfectly determined laws:

• First, the domains of two adjacent focal groups (FC) cannot overlap;
• Second, in the case where two conics are tangent at a point M, the cones of revolution

with apex M and resting on the focal lengths of the conics coincide; they share a
common generatrix, this is the Law of Corresponding Cones (L.C.C).

3. Discussion
3.1. Geometrical Model

The objective of this work is to simulate the bâtonnet observed in Figure 4a. In order
to do that, “roughly speaking”, we will proceed as follows:

First: Plot one set: ellipse and confocal hyperbola, which will define one single FCD.

Second: Decorate the predefined domain by adding their respective smectic layers using
the Dupin cyclides’ equation system.

These two first steps will define one single domain (see Figure 3).

Third: Plot the other focal conic domains based on Friedel’s law of focal conics’ assemblies
and mainly on the fact that these ellipses that have been shown in Figure 4a should
be tangent to each other and cannot interfere.

The third step is the crucial one, which we will detail in the next paragraph, but mainly our
idea is to copy the first domain and to rotate it with an angle depending on the number of
focal conic domains needed.

In the next paragraph, we will first present some graphs and equations related to
FCDs, which will be very useful in order to describe our model and later we will show the
results obtained for two and then for a set of multiple FCDs.
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3.1.1. Geometrical Definitions

Looking at a particular zone of Figure 4a (zone I), which corresponds to the apex of
our bâtonnet, a set of two by two tangent ellipses can be seen. Figure 5a represents one of
these patterns in the case of six ellipses; other patterns will be presented afterwards.

E

E'

.C

E
b

-b

-a a xCxE

yE
Cθ

dx

a) b)

Figure 5. (a) Projection of a group of six Focal Conics in the (xOy) plane and (b) Zoom in on one
particular ellipse; θ denotes the angle between the major axes of the ellipse and the tangent line
passing through C to the ellipse.

As we can see from Figure 5a, these ellipses are tangent and a kind of “flower texture”
is formed, where their semi-minor axes meet in a hexagon. In order to plot tangentially a
group of ellipses, our idea is as follows:

First: Plot an arbitrary FC with the corresponding smectic layers (Figure 3);

Second: Copy the graph obtained in the first step and then rotate it with a specific angle θ
and with center C, which is the center of the hexagon. For this, in Python code (see
Supplementary Materials), we will use a for loop that will enable us to plot as many
ellipses as we like, and, for each loop, the FCDs and the corresponding smectic layers
have been rotated using a rotational matrix. This task can be repeated as many times
as needed independently from the number of FCDs contained inside the bâtonnets,
see areas C1 and C2 in Figure 4.

In order to use the rotational function correctly, the center C of the hexagon should be the
center (0, 0, 0) of the three-dimensional axes. Therefore, we need to find the coordinate of C (xC) to
translate the FCD to the origin (0, 0, 0).

For that, let us describe useful plots and equations, Figure 5b shows one of the six
ellipses of the semi-major axis a, semi-minor axis b centered at the origin (0, 0, 0), and E
(xE, yE) the tangent point on the ellipse used to plot tangentially the other focal domains.
The equation of the tangent of the ellipse passing through C is needed. The first derivative
of the usual ellipse equation gives the needed equation:

dy
dx

= − b2

a2
x
y

, (3)

Thus, the slope equation for a tangent on E is :

αE = − b2xE

a2yE
⇒ α2

E =
b2x2

E
a2(a2 − x2

E)
, (4)

Using αE, we will correlate now xE with θ:

αE = tan θ =
yE
xE

, (5)

Therefore,
a2

b2 tan2 θ =
x2

E
a2 − x2

E
(6)
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That is, by regrouping xE terms:

x2
E =

a4

b2 tan2 θ

1 +
a2

b2 tan2 θ

, with θ =

2π

n
2

=
π

n
, (7)

After correlating xE with θ, our next step is to define the coordinate of xC in order to
center our graphs by translating them of −xC. Let us define dx as the distance between xE
and xC (Figure 5b); since C belongs to the tangent line, we can write it as:

yE + αEdx = 0⇒ dx = − yE
αE

(8)

dx2 =
y2

E
α2

E
=

(a2 − x2
E)

b2

a2

b2

a2
x2

E
(a2 − x2

E)

=
(a2 − x2

E)
2

x2
E

(9)

Or : xC = xE + dx therefore: xC = xE +
a2 − x2

E
xE

(10)

3.1.2. Application on Two FCDs

Let us consider one single ellipse and let us call β the angle between the ellipse plane
and the horizontal plane (xOy). If we plot a second ellipse tangentially to the first one with
their confocal hyperbolas, we obtain Figure 6a, where β = 0°; this case will be called the
flatten case. In Figure 6a, we can see two poles of hyperbolas converging at the apex of the
bâtonnet similar to zone I in Figure 4a. (Figure 7a and b represent respectively the domains
of one and two adjacents FCDs)

Another perspective can be considered, when the ellipses are tilted with respect to the
horizontal plane with an angle β (β 6= 0°), this case will be designated by the tilted case.
For demonstration purposes, we showed in Figure 6b a particular case where β has been
randomly chosen as 23°.

Three corresponding smectic layers using Dupin cyclide equation systems in both
flatten and tilted cases were added and presented in Figure 6c,d, where we can see that the
layers are equally distributed and also obey the l.c.c.

Two TFCDs are also presented, where the ellipses and their confocal hyperbolas are
respectively degenerated into a circle and a straight line. In the same way as done before,
Figure 8a presents the flatten case of two TFCDs (β = 0°). To achieve two different lines
merging at the apex of the bâtonnet (zone I in Figure 4a), circles and straight lines have been
tilted with an angle β. Figure 8b represents a particular case where β has been randomly
chosen to be 23°.

For both flatten and tilted cases, three smectic layers were respectively represented in
Figure 8c,d, where the Tori are equally distributed in the space and follow the l.c.c.
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a)

c) d)

b)β=0° β=23°

β=0° β=23°

Figure 6. (a) The flatten case of two FCDs plot it tangentially according to Friedel’s law (l.c.c.) with
their respective vertexes merging at the top. (b) the tilted case of the same FCDs with randomly tilt
angle β = 23°; (c,d) three equidistantly smectic layers corresponding respectively to the flatten and tilted
FCDs.

a) b)

Figure 7. (a) FCD limited by four revolution cones: two of them lie on the ellipses and the two others
lie on the hyperbolas; (b) two adjacent FCDs: their ellipses are tangent, and their confocal hyperbolas
are merging at two poles. The two cones posses a common generatrix in agreement with the law of
corresponding cones.
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a) b)

c) d)

β=0° β=23°

β=0° β=23°

Figure 8. (a) The flatten case of two TFCDs whose circles are mutually tangent according to Friedel’s
law (l.c.c.) with their respective parallel straight lines, (b) The tilted case of the same TFCDs with a
random angle of inclination β = 23°, where the straight lines are converging at the top, (c,d) three
equidistantly smectic layers attributed, respectively, to the flatten and the titled cases of TFCDs.

3.1.3. Application on Sets of FCDs

In the previous paragraph, we presented the simulation in a particular case of two
FCDs. Nevertheless, as we can observe in the POM image (Figure 9a), approximately
twelve FCs are present, six of them were enumerated—two by two tangents and their
confocal hyperbolas merging into the apex of the bâtonnet. To represent these situations,
we have to duplicate the task made to plot Figures 6 and 8, but, in this case, with twelve
iterations.

The flatten case of twelve FCDs with their respective 7 smectics layers according
to Dupin cyclide equations’ systems are presented in Figure 9b. Figure 9c represents a
particular example of the tilted case of 4 smectic layers where the value of β has been
randomly chosen as 23°.

Finally, a particular example of the tilted case for twelve TFCDs with their respective 7
smectic layers, where the value of β has been randomly chosen as 23°, is presented in
Figure 9d.

In all three cases, we can see that all the FCDs and TFCDs are in agreement with l.c.c.,
and they are tangent one to each other. Their confocal hyperbolas and straight lines were
also presented and look similar to what has been obtained in a POM image—zone I, they
are connected at the top of the bâtonnet.
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1 2 3 4 5 6

I

T
h
ird

 case

Second case

b)

c) d)

β=0°

β=23° β=23°

a)
First case

Figure 9. (a) Recall of the bâtonnet obtained in POM observation; (b,c) represent respectively the
flatten and tilted cases of twelve FCDs and their respective smectic layers plotted tangentially to each
other according to Friedel’s law (l.c.c.); (d) the tilted case of TFCDs with their respective smectic layers.

4. Materials and Methods

Polarized Optical Microscopy (POM) was the characterization method mainly used
in our study to observe the bâtonnet at the isotropic semctic A phase transition in our
material. We used 4-n-decyl-4′-cyanobiphenyl (10CB) liquid crystal having the chemical

structure of Figure 10 and the following phase transition sequence Isotropic 52.2 °C−−−→ SmA.
The simulation of the smectic layers has been done using Python 2.8.3 Version.

C10H21 CN

Figure 10. Molecule structure of 4-n-decyl-4′-cyanobiphenyl (10CB) liquid crystal.

5. Conclusions

In this work, we were interested in the understanding of the statique of a bâtonnet. We
proposed a model to simulate a specific zone inside a bâtonnet of 10 CB liquid crystal sam-
ple during the isotropic-SmA phase transition. These bâtonnets contain a certain number of
FCDs arranged according to specific laws and, in particular, the law of corresponding cones.
The number of FCDs can vary from one bâtonnet to another, but the internal structure
of the bâtonnets are fundamentally the same. Taking this into consideration, our model
can be used to simulate any number of FCDs present inside a bâtonnet. Nevertheless,
we just have to mention that our model assumes that the potential energy function is
isotropic, and, therefore, it is only applicable to the molecules with relatively small polarity.
Understanding the statics of these defects will help us to know the dynamics of formation
of bâtonnets more in depth, which in turn enhances our knowledge on the morphological
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properties of liquid crystals for further applications in technological fields. For instance, it
would be very interesting to study the coalescence of bâtonnets and the effect of an electric
field in their shape change behavior.

Supplementary Materials: The Python program used in this work is available online via GitHub
at https://github.com/Mikhael-HALABY-MACARY/FCDs---and-Dupin-cyclides---tiling---inside-
--batonnet.git (accessed on 8 August 2021).
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