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Zinc has long been recognized as an essential trace element, playing roles in the growth and development of all living organisms. In
recent decades, zinc homeostasis was also found to be important for the innate immune system, especially for maintaining the
function of macrophages. It is now generally accepted that dysregulated zinc homeostasis in macrophages causes impaired
phagocytosis and an abnormal inflammatory response. However, many questions remain with respect to the mechanisms that
underlie these processes, particularly at the cellular and molecular levels. Here, we review our current understanding of the roles
that zinc and zinc transporters play in regulating macrophage function.

1. Introduction

A healthy human body usually contains 2–4 grams of zinc
[1]. Approximately 60% of the body’s zinc is located in the
skeletal muscle, 30% in the bone, 5% in the liver and the skin,
and the remaining 2–3% in other tissues [2]. Internal zinc
homeostasis is regulated by the cooperative activities of two
metal transporter protein families. One family consists of
ten solute-linked carrier 30 (SLC30 or ZnT) exporters, and
the other family consists of fourteen solute-linked carrier 39
(SLC39, also known as Zrt- and Irt-like proteins, or ZIP)
importers [3, 4]. The majority of labile zinc in the body is
absorbed by intestinal epithelial cells via the metal trans-
porter protein Slc39a4 [5], which is then transported into
the plasma and utilized by nearly all cell types in the circula-
tion. To maintain zinc homeostasis, excessive zinc is excreted
through the kidneys [6] and the intestine [7] via Slc39a5.

Endogenous zinc is usually present in two forms in vari-
ous organs and tissues. The majority of zinc is in a fixed pool
in which zinc is tightly bound to metalloenzymes and zinc
finger transcription factors; the remaining small amount of
zinc is in a labile pool consisting of a variable amount of
loosely bound zinc and free zinc ions [8]. In mammals, the
plasma concentration of zinc ranges from 14 to 23μmol/l

under normal physiological conditions, and serum zinc
accounts for only 0.1% of the body’s total zinc pool, 80%
loosely bound by albumin and 20% bound by macroglobulin
[9, 10]. Thus, sufficient daily intake of zinc is required to
achieve steady-state levels. In order to meet the daily require-
ment, the World Health Organization recommends a daily
zinc intake of 9.4–10mg and 6.5–7.1mg for men and women,
respectively [11].

Zinc plays an important role in the immune system and
affects both innate and adaptive immune cells. Many studies
found that zinc deficiency can lead to a reduced immune
response and increased susceptibility to infection [12–16].
Moreover, endogenous zinc levels have been suggested to
affect both the number and the function of various types of
immune cells, including macrophages, neutrophils, dendritic
cells, mast cells, T cells, and B cells [17–24]. The underlying
molecular mechanisms have been discussed in previous stud-
ies [25, 26], and the importance of zinc as a signaling mole-
cule has been suggested [17, 27].

Macrophages play a key role in innate immunity by regu-
lating numerous homeostatic, developmental, and host
defense responses. Moreover, macrophages also participate
in a wide range of other biological activities, including modu-
lating endogenous levels of reactive oxygen species [28, 29],
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iron homeostasis [30], tissue repair, and metabolic processes
[31].Macrophageshave threemajor functions—phagocytosis,
antigen presentation, and immunomodulation—and are
essential for maintaining normal immune status under a
wide variety of pathophysiological conditions [32]. Many
previous studies investigated the relationship between zinc
and macrophages [33–37]; however, some studies yielded
contradictory results, and the underlying mechanisms are
poorly understood. Here, we provide an overview of the latest
studies regarding the role of zinc in macrophages.

2. Zinc Homeostasis in Macrophages

The regulation of zinc homeostasis is a complicated process.
As a divalent cation, zinc is hydrophilic and does not readily
pass lipid-based cell membranes via passive diffusion; thus,
specialized transporters are required in order to facilitate its
transport in and out of the cytoplasm. In macrophages and
many other immune cells, SLC39 and SLC30 family mem-
bers have distinct expression patterns and have various func-
tions in response to infectious stimuli (Table 1).

Multiple SLC30/SLC39members are expressed in macro-
phages. In untreated mouse macrophages, Slc39a1, Slc39a6,
and Slc39a7 are the most robustly expressed genes in the
Slc39a family, whereas the Slc30a5, Slc30a6, Slc30a7, and
Slc30a9 genes are the most robustly expressed genes in
the Slc30a family [22], suggesting that these transporters
play an important role in macrophages under physiological
conditions. However, under pathological conditions, other
key transporters are expressed. For example, upon stimula-
tion with lipopolysaccharides (LPS), which are found in
the outer membrane of gram-negative bacteria, Slc39a10
expression is significantly downregulated, whereas Slc39a14
expression is strongly upregulated [22, 38]. Moreover,
Slc39a2, Slc30a4, and Slc30a7 are significantly upregulated
in GM-CSF-activated peritoneal and bone marrow-derived
macrophages [39].

Several SLC30/39 members have been found to partici-
pate in the function of macrophages by mediating zinc
homeostasis. Our recent study using macrophage-specific
Slc39a10-knockout mice revealed that Slc39a10 plays an
essential role in p53-dependent macrophage survival follow-
ing LPS stimulation [22]. Interestingly, the trans-fatty acid
elaidate was found to increase the expression of SLC39A10
and increase intracellular zinc levels in human macrophages
[40], which also indicates the importance of Slc39a10 in zinc
homeostasis in macrophages. In addition, several studies
reported that SLC39A8 plays a role in inflammatory reac-
tions [41, 42]. For example, LPS has been suggested to upreg-
ulate the expression of SLC39A8 in human macrophages,
thereby increasing zinc uptake and reducing proinflamma-
tory pathways by inhibiting Iκβ kinase (IKK) [41] and IL-
10 [42]. Furthermore, SLC39A14 was also found to be upreg-
ulated in response to LPS stimulation in macrophages,
thereby regulating cytokine production [38]. Moreover, sys-
temic inflammation in mice resulted in the IL-6-dependent
upregulation of the zinc importer Slc39a14, which mediates
zinc uptake by hepatocytes in the liver [43]. Although previ-
ous studies summarized above suggest functions of Slc39a8,

Slc39a10, and Slc39a14 in macrophages, potential roles of
other SLC39/30 transporters in macrophages [22, 44–48]
remain to be explored.

Recently, a growing body of evidence supports the notion
that zinc transporters transport not only zinc but also other
divalent metals, including iron and manganese; for example,
both SLC39A8 and SLC39A14 have been associated with iron
and manganese transport [49–55]. These findings raise the
question of whether other SLC30/39 family members are
involved in the development and functions of macrophage
through mediating the homeostasis of other metals, such as
iron or manganese.

In addition to the two zinc transporter families, intra-
cellular zinc levels are also regulated by metallothioneins
(MTs). Because of its toxicity, intracellular labile zinc is
generally present in extremely low levels. Laurin et al.
reported that adding zinc to the culture medium increased
the rate of MT degradation and decreased the rate of
MT synthesis and accretion in a chicken macrophage cell
line [56].

Several groups reported that MTs play a role in macro-
phage function. MT-I/II-knockout mice developed more
severe brain injury accompanied by increased numbers of T
cells in the injury site and circulating leukocytes and the
decreased number of alternatively activated macrophages in
the circulation after 7-day treatment with brain cryolesion.
These observations indicate that MT-I/II may have a neuro-
protective role via modulation of the immune response [57].
Besides, Zbinden et al. measured increased numbers of mac-
rophages in the ischemic hind limb of MT-deficient mice 21
days after ischemia was induced; moreover, CD11b+ mac-
rophages isolated from MT-deficient mice were more inva-
sive, which indicates that MT plays an important role in the
recovery of collateral flow and angiogenesis, an effect medi-
ated partly by macrophages [58]. In addition, in Salmonella
typhimurium-infected human monocyte-derived macro-
phages, NOD2 mediates the induction of MT via NF-κB-
and caspase-1-mediated IL-1β secretion. Moreover, the
elevated MT level was found to upregulate intracellular zinc
in a MTF-1-dependent manner. However, the underlying
mechanism remains unclear [59]. Furthermore, during
alternative activation of macrophages, IL-4 increases intra-
cellular zinc dependence on metallothionein-3 (MT-3) and
Slc30a4 and weakens the antimicrobial defense against
intracellular pathogens [60]. In addition, matrix metallo-
thionein 7 (MMP7) cleaves the precursor forms of α-defen-
sin and β-defensin to produce their respective active forms
[61], and MMP12 destroys the pathogen’s cell wall, leading
to cell death [62]. In summary, a wide range of MTs are
involved in maintaining macrophage function during the
immune response.

3. Zinc and the Macrophage Cell Fate

Zinc homeostasis determines the cell fate of macrophages. In
the innate immune system, monocytes migrate into the
infected tissue and then differentiate into macrophages. Zinc
supplementation increases the number of peritoneal macro-
phages in a T. cruzi infection model [63]. In addition, zinc-
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Table 1: Summary of the immune cell expression and infection-related findings of SLC30 and SLC39 transporters based on previous
literature.

(a)

Importer
proteins

Expression in macrophages Expression in other immune cells Infection-related findings

Slc39a1
Strong expression in the plasma

membrane and cytoplasm in THP1-
derived macrophages [44]

Expressed in murine T cells [114]
HIV-1 stimulated Slc39a1 expression in alveolar

macrophages [115]

Slc39a2

THP1 macrophages: weak expression
mainly in nucleoli; TPEN

significantly increases Slc39a2
expression

Alveolar macrophages: strong
expression in the plasma membrane

and cytoplasm [44]

No expression in human monocytes
or in granulocytes [46]; moderated
expression in murine DCs [116]

Unknown

Slc39a3
Strong expression in human

monocytes [46]
Expressed in human T cells and

granulocytes [46]
Unknown

Slc39a4
Expressed in alveolar macrophages

[117]
Uniform expression in human

monocytes and in granulocytes [46]
Chronic alcohol exposure decreases Slc39a4
expression in alveolar macrophages [117]

Slc39a5 Unknown
No expression in human monocytes

or in granulocytes [46]
Unknown

Slc39a6
Strong expression in murine

macrophages [22]
Expressed in human DCs and T cells

[20]

LPS decreases the expression of Slc39a6 in human
DCs; Slc39a6-silenced macrophages have
increased TNFα expression following LPS

stimulation [20]

Slc39a7
Strong expression in murine

macrophages [22], which can be
inhibited by TPEN [45]

Expressed in murine T cells [114] Unknown

Slc39a8
Strong expression in both human and

murine macrophages
Strong expression in human T cells

[21]

Both TNFα and LPS upregulate Slc39a8
expression in human macrophages, which

increases zinc uptake and directly inhibits IKKβ
[41] and IL-10 [42]

Slc39a9 Unknown Expressed in murine T cells [114] Unknown

Slc39a10
Strong expression in murine

macrophages
Expressed in murine early B cells [23]

and T cells [114]

Slc39a10fl/fl; LysMCre+ mice have significantly
decreased LPS-induced mortality due to

increased macrophage apoptosis mediated by
zinc-p53 signaling [22]

Slc39a11 Unknown Expressed in murine T cells [114] Unknown

Slc39a12 Unknown
Expressed in murine T cells,
expression is increased by zinc

deficiency [114]
Unknown

Slc39a13 Unknown Unknown Unknown

Slc39a14
Expressed in alveolar macrophages,
expression is decreased by TPEN [44]

Expressed in leukocytes; Slc39a14-
knockout mice have delayed

leukocytosis [118]

LPS upregulates Slc39a14 expression and
downregulates NF-κB in human macrophages

[38]; Slc39a14-knockout mice have impaired zinc
uptake and decreased plasma zinc and IL-6 levels

following LPS stimulation [119]

(b)

Exporter
proteins

Expression in macrophages Expression in other immune cells Infection-related findings

Slc30a1
Expressed in alveolar macrophages,
expression is decreased by TPEN [44]

Expressed in murine DCs, expression is
upregulated by LPS [18]

M. tuberculosis infection
upregulates Slc30a1 expression in

human macrophages [111]
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depleted monocytes have increased maturation, suggesting
that low zinc status promotes their differentiation into mac-
rophages [64]. High concentrations of zinc were found to
decrease the viability of a human monocyte cell line and U-
937 cells [65]. Moreover, another study confirmed that cell
viability is significantly decreased in THP-1 monocytes/mac-
rophages upon exposure to 100μg/ml of ZnO (zinc oxide)
particles. However, ZnO nanoparticles were found to induce
the migration, adhesion, and cholesterol uptake of mono-
cytes/macrophages, which may accelerate the formation of
foam cells and lead to atherosclerosis [66]. Furthermore, a
low-zinc environment can inhibit the differentiation of HL-
60 cells into macrophages, and this inhibition can be partially
prevented by the addition of exogenous zinc [67]. As in other
cell types, both zinc deficiency and excessive zinc can induce
apoptosis in macrophages. For example, using a genetic
mouse model, we recently found that loss of Slc39a10 reduces
zinc levels in macrophages, resulting in p53-dependent apo-
ptosis, but not necroptosis, pyroptosis, ferroptosis, or
autophagy [22]. On the other hand, zinc oxide nanoparticles
have been shown to induce necrosis and apoptosis in
RAW264.7 cells [68–70]. These results suggest that altered
zinc homeostasis induces distinct forms of cell death under
different circumstances.

4. Zinc and Macrophage Function

Innate immunity provides a rapid, nonspecific defense
against pathogens and is activated by pathogen-associated
molecular patterns (PAMPs). During this process, conserved
structures in pathogens are recognized by their respective
receptors, including Toll-like receptors (TLRs), which then
trigger phagocytosis, cytokine secretion, the killing of target
cells, and/or antigen presentation [71]. Monocytes/macro-
phages mediate host defense via phagocytosis and oxidative
burst. In addition, these cells can serve as antigen-presenting
cells (APCs) and can secrete proinflammatory cytokines in
order to regulate the immune response [72, 73]. Zinc plays
a critical role in the immune function of macrophages, and
this function has been implicated in a variety of pathologi-
cal processes, including decreased connective tissue contrac-
tion [34].

4.1. Zinc and Phagocytosis by Macrophages. The level of
intracellular zinc influences the phagocytosis capacity of
macrophages, and zinc was recently linked to the antimi-
crobial response in macrophages [33]. In chronic obstruc-
tive pulmonary disease (COPD), impaired efferocytosis
(i.e., clearance) of apoptotic epithelial cells by alveolar

Table 1: Continued.

Exporter
proteins

Expression in macrophages Expression in other immune cells Infection-related findings

Slc30a2

Weak expression in macrophages in the
nulliparous mammary gland [47]; increased
expression in murine macrophages during

infection [39]

No expression in human monocytes or
granulocytes [46]

Unknown

Slc30a3
Expressed in alveolar macrophages,
expression is decreased by TPEN [44]

Expressed at low levels in human peripheral
blood lymphocytes [48]

Unknown

Slc30a4 Unknown
Expressed in murine DCs, expression is

upregulated by LPS [18]; highly expressed in
the human Molt-4 T cell line [48]

GM-CSF upregulate Slc30a4
expression to transport zinc into

Golgi [39]

Slc30a5
Expressed in alveolar macrophages,
expression is decreased by TPEN [44]

Expressed in murine mast cells and required
for the mast cell-mediated delayed-type

allergic response [19]
Unknown

Slc30a6
Expressed in THP-1 monocytes, expression

is upregulated by zinc deficiency [48]
Expressed in murine DCs, expression is

upregulated by LPS [18]
Unknown

Slc30a7
Expressed in THP-2 monocyte, expression is

upregulated by zinc deficiency [48]
Expressed in human B lymphocytes with the

target molecule CD40 [120]

GM-CSF upregulates Slc30a7
expression, leading to increased
zinc transport into the Golgi

apparatus [39]

Slc30a8 Unknown
Expressed in human peripheral blood

lymphocytes [48]

May function as an autoantigen
targeted by disease-associated
autoreactive T cells in humans

[121]

Slc30a9
Strong expression in murine macrophages

[22]

Expressed at low levels in human circulating
blood lymphocytes [48]; expressed in murine

T cells, expression is decreased by zinc
deficiency [114]

Unknown

Slc30a10 Unknown Unknown Unknown

DCs: dendritic cells; GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; LPS: lipopolysaccharides; TPEN: N,N,N′,N′-tetrakis(2-
pyridylmethyl)-ethylenediamine (a membrane-permeable zinc chelator).
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macrophages is mediated primarily by zinc restriction [44].
The transporters Slc39a1 and Slc39a2 respond differently to
zinc deficiency and play important roles in macrophage-
mediated efferocytosis [44]. On the other hand, zinc does
not affect the phagocytic function of RAW264.7 cells [74]
or bone marrow-derived macrophages [22] at nontoxic
concentrations. Interestingly, a recent study by Mehta
et al. found that alcohol abuse is associated with significant
zinc deficiency in alveolar macrophages, which is accompa-
nied by impaired immune function due to decreased
phagocytosis-mediated bacterial clearance [75]. The authors
also found that treating alveolar macrophages with zinc sig-
nificantly improved their phagocytic capacity [75]. An ear-
lier study by Wirth et al. found that zinc deficiency impairs
the uptake and survival of protozoan parasites [76]. Zinc
supplementation was also found to increase the phagocytosis
of E. coli and Staphylococcus aureus by peritoneal macro-
phages in a mouse model of polymicrobial sepsis. Notably,
Sheikh et al. reported that zinc deficiency decreases the
phagocytic capacity of monocytes in children with entero-
toxigenic E. coli-induced diarrhea, whereas treating patients
with zinc (20mg/day) or dietary zinc supplementation
(10mg/day) slightly improved the monocytes’ phagocytic
capacity and significantly decreased their cellular oxidative
burst capacity [77]. From a clinical perspective, these effects
of zinc supplementation with respect to alleviating symp-
toms in zinc-deficient children are highly encouraging.

4.2. Zinc and Oxidative Burst in Macrophages. The relation-
ship between zinc and the level of oxidative burst in macro-
phages after bacterial infection is controversial. Mayer et al.
reduced zinc concentrations in peripheral blood mononu-
clear cells—which include monocytes—either by treating
the cells with TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-
ethylenediamine) or by removing zinc from the culture
medium using the chelator Chelex 100. They found that the
level of oxidative burst was significantly increased in zinc-
deficient macrophages following infection with gram-
positive S. aureus [73]. In addition, zinc is an inhibitor of
NADPH, which is the electron donor for catalyzing the pro-
duction of O2

− [78]. On the other hand, Srinivas et al. found
that macrophages obtained from E. coli-infected rats released
significantly higher amounts of superoxide and that in vivo
superoxide production was increased by zinc supplementa-
tion; nevertheless, they also found that zinc supplementation
in vitro inhibited the production of superoxide by macro-
phages harvested from septic rats [79].

4.3. Zinc and Inflammatory Signaling in Macrophages. Zinc
also plays essential roles in the signaling and inflammatory
output of monocytes and macrophages, including many
upstream activators of the Toll-like receptor (TLR) family,
including mitogen-activated protein kinase (MAPK), protein
kinase C (PKC), phosphodiesterases, and NF-κB [36, 37].
Indeed, the relationship between zinc and inflammatory sig-
naling in monocytes/macrophages relies primarily on TLR
signaling (e.g., via TLR4), which is activated by the phos-
phorylation of interleukin-1 receptor-associated kinase 1
(IRAK1). Zinc is known to be required for the degradation

of IRAK1 in LPS-stimulated TLR activation both in vitro
and in vivo; however, zinc is not required for the phosphory-
lation or ubiquitylation of IRAK1 in macrophages [80]. Nev-
ertheless, zinc has been found to mediate the degradation of
procaspase-1 and the NLRP3 (NLR family, pyrin domain
containing 3), as well as to inhibit the production of IL-1β
in macrophages following LPS stimulation or Salmonella
infection. This effect may compromise the cell’s ability to
clear microbial pathogens [45].

TLR4 signaling occurs via MyD88-dependent and TRIF-
dependent pathways, and zinc has opposing effects on these
two signaling pathways. Upon LPS stimulation, TLR4 first
binds to the adapter proteins TIRAP andMyD88, which trig-
gers the phosphorylation of MAP kinases and the early acti-
vation of NF-κB. Zinc signaling is required for preventing the
dephosphorylation of the MAP kinases p38, MEK1/2, and
ERK1/2, as well as the activation of NF-κB. Thus, zinc
increases the release of inflammatory cytokines such as
TNF-α, IL-1β, and IL-6 [81, 82]. Subsequently, the receptor
complex is internalized and binds to TRAM and TRIF,
inducing the delayed activation of NF-κB and the phosphor-
ylation of IRF3. Phosphorylated IRF3 then translocated to
the nucleus, where it induces the transcription of IFN-β
[82, 83]. However, zinc can inhibit the phosphorylation of
IRF3 and can prevent the secretion of IFN-β [82]. Moreover,
zinc supplementation could downregulate inflammatory
cytokines through upregulation of A20 to inhibit NF-κB acti-
vation [78, 84].

Zinc deficiency has diverse effects on inflammation. Zinc
deficiency over the long term reduces the integrity of lyso-
somes, activates the NLRP3 inflammasome, and induces IL-
1β secretion in macrophages [85], while in the short term,
zinc depletion by TPEN inhibits inflammatory activation
[86]. Moreover, without adequate zinc, an inflammatory
response can also be elicited in cells, in part by causing the
aberrant activation of immune cells and/or by altering pro-
moter methylation [87]. In addition, a recent study found
that zinc deficiency reduces the production of IL-6 and
TNF-α in human monocytes [73]. Finally, zinc modulates
LPS-induced inflammation in human macrophages by
inducing SLC39A8 and by inhibiting C/EBPβ [42].

ZnO nanoparticles also affect the innate immune pro-
cess. For example, ZnO nanoparticles have been shown to
reduce bacterial skin infection by inducing oxidative stress
and causing cell membrane breakdown in macrophages
[88], as well as by reducing the innate immune response
and attenuating the macrophage responses to bacterial infec-
tion [89]. In contrast, ZnO nanoparticles have been shown
to induce a proinflammatory response in the RAW264.7
macrophage cell line [66, 90] and in peritoneal macrophages
via TLR6-mediated MAPK signaling [91]. These seemingly
contradictory results may be due—at least in part—to the
different concentrations of nanoparticles and/or cell types
used in the different studies.

Taken together, the evidence to date suggests that zinc
regulates the function of macrophages in a variety of ways.
For example, zinc deficiency induces the abnormal secretion
of immune factors via distinct pathways in response to spe-
cific infections. In addition, oxidative stress caused by altered

5Journal of Immunology Research



levels of zinc can lead to dysfunction of the innate immune
system during acute inflammation.

5. Zinc and Macrophage-Related Diseases

According to a 2002 report by the World Health Organiza-
tion, zinc deficiency ranks fifth among the most important
health risk factors in developing countries and eleventh
worldwide [92]; moreover, abnormal zinc homeostasis
causes a variety of health problems with various levels of
severity. In addition to the immune system, other organs
and systems can also be affected by changes in zinc.

5.1. Immunological Diseases. The relationship between zinc
and rheumatoid arthritis (RA) has been studied for more
than three decades. RA is a chronic systemic inflammatory
disease characterized by inflammation of the synovial mem-
brane and the progressive destruction of the articular carti-
lage and bone [93]. Importantly, the number and activation
level of macrophages in the inflamed synovial membrane/
pannus are correlated with the severity of RA. A recent
meta-analysis of 1444 RA cases and 1241 healthy controls
revealed that patients with RA often have decreased serum
zinc levels [94]. Correspondingly, the mean level of zinc
was significantly lower in hair samples of RA patients com-
pared with healthy individuals [95]. These clinical observa-
tions are supported by in vitro studies. For example, zinc
deficiency increases the levels of TNF-α, IL-1β, and IL-8 in
a monocyte-macrophage cell line [96]. In contrast, zinc sup-
plementation inhibits the LPS-induced release of TNF-α and
IL-1β in monocytes [97].

Chronic alcoholism can increase the risk of pneumonia
and the development of acute respiratory distress syndrome
(ARDS) [98]. As the resident bona fide phagocytic cell type
in the lungs, alveolar macrophages play a central role in
maintaining alveolar homeostasis, lung host defense, and
immune regulation [99]. Several groups have studied the
relationship between zinc levels and macrophage function
in the alveolar space. For example, Mehta et al. found that
alcohol-fed rats have a 5-fold decrease in lung bacterial clear-
ance compared to control-fed rats and providing dietary zinc
supplementation to the alcohol-fed rats restored bacterial
clearance and mitigated oxidative stress in the alveolar space,
which was reflected by the relative balance between the thiol
redox pair cysteine and cystine and by the increased nuclear
binding of both PU.1 and Nrf2 in alveolar macrophages
obtained from alcohol-fed rats [90, 100]. Similarly, Konomi
et al. found that during pregnancy, intracellular zinc levels
and the expression levels of the zinc transporters Zip1,
ZnT1, and ZnT4 are decreased in alveolar macrophages
after ethanol ingestion compared to control rats that did
not ingest alcohol. In addition, bacterial clearance capacity
was decreased in ethanol-treated alveolar macrophages,
and the addition of zinc reversed these effects in vitro
[101]. Furthermore, pulmonary zinc deficiency may be one
of the mechanisms by which HIV-1 infection impairs alve-
olar macrophage immune function and renders infected
individuals susceptible to severe pulmonary infection [102].

5.2. Nonimmunological Diseases. Evidence suggested that
chronic inflammation that originated in the liver or adipose
tissue plays an important role in the pathogenesis of
obesity-related metabolic dysfunction [103]. In obese mice,
zinc deficiency may increase leptin production and stimulate
macrophage infiltration into the adipose tissue, suggesting
that zinc is important in metabolic and macrophage-
mediated inflammatory dysregulation in obesity [104]. Based
on its anti-inflammatory and antioxidant functions, zinc also
plays a protective role in atherosclerosis [105]. However, zinc
deficiency does not appear to affect the uptake of low-density
lipoprotein (LDL) by macrophages in vitro [106]. Interest-
ingly, another study found that ZnO nanoparticles can
induce the migration and adhesion of monocytes to endothe-
lial cells and accelerate the formation of foam cells [107].

5.3. Pathogen Infection. A sufficient amount of zinc is essen-
tial for the host’s defense against pathogenic organisms. For
example, in both human monocyte-derived macrophages
and mouse macrophages, increased intracellular zinc levels
induced by the continuous stimulation of pattern recognition
receptors (PRRs) can increase the clearance of bacteria via
autophagy [59]. Moreover, treating mice with zinc and/or
all-trans retinoic acid supplements helps protect against
infection by the pathogen Listeria monocytogenes [108].

Interestingly, zinc is not only required by host cells but is
also required for invading pathogens. According to the
“nutritional immunity” theory, specific essential elements
are sequestered from pathogens in order to restrict their
growth [109, 110]. Zinc chelation was shown to restrict the
growth of certain pathogens, for example, Histoplasma cap-
sulatum [64]. A previous study found that zinc deprivation
may be a defense mechanism utilized by the host’s macro-
phages [35]. Moreover, when stimulated with granulocyte
macrophage-colony stimulating factor (GM-CSF), macro-
phages infected with Histoplasma capsulatum sequester zinc
by inducing zinc binding to metallothionein (MT) proteins
[39]. In addition, human macrophages attack intracellular
Mycobacterium tuberculosis pathogens by inducing a “burst
of labile zinc” and by increasing the expression of the zinc-
binding proteins MT1, MT2, and ZnT1 [111], as well as pos-
sibly releasing zinc stored in zincosomes [112]. Macrophages
can also use a “zinc trap” [113] to kill pathogens; this mech-
anism may be impaired when intracellular zinc is either too
high or too low.

6. Conclusions and Future Perspectives

The vital role that the micronutrient zinc plays in both health
and disease has been known for many years. Regular intake
of zinc and the coordinated function of zinc transporters
are essential for maintaining zinc homeostasis and for main-
taining health. With respect to innate immunity, the various
functions of macrophages, which include phagocytosis and
the secretion of immune-mediating factors, can be impaired
by zinc imbalance, thereby inducing or exacerbating various
inflammatory and/or disease processes, as illustrated in
Figure 1.
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Despite extensive research, the molecular mechanisms by
which zinc regulates the fate and function of macrophages
remain poorly understood. Similarly, the function of zinc
transporters is largely uninvestigated. In some cases, particu-
larly when accompanied by a defect in a zinc transporter, oral
zinc supplementation or restriction may not be sufficient for
preventing diseases caused by cellular zinc imbalance; there-
fore, molecular approaches are needed in order to develop
innovative new therapeutic approaches to correct the under-
lying defect. Given the development of powerful gene editing
tools, the genetic manipulation of zinc transporters can be
performed in various model systems, and research based on
these models will likely shed light on the molecular function
of these zinc transporters, as well as the mechanism of zinc in
macrophages, ultimately guiding the treatment and preven-
tion of zinc-related diseases.
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