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Optimization two‑qubit quantum 
gate by two optical control 
methods in molecular pendular 
states
Jin‑Fang Li1,2*, Jie‑Ru Hu2, Feng Wan1 & Dong‑Shan He1

Implementation of quantum gates are important for quantum computations in physical system made 
of polar molecules. We investigate the feasibility of implementing gates based on pendular states 
of the molecular system by two different quantum optical control methods. Firstly, the Multi‑Target 
optimal control theory and the Multi‑Constraint optimal control theory are described for optimizing 
control fields and accomplish the optimization of quantum gates. Numerical results show that the 
controlled NOT gate (CNOT) can be realized under the control of above methods with high fidelities 
(0.975 and 0.999) respectively. In addition, in order to examine the dependence of the fidelity on 
energy difference in the same molecular system, the SWAP gate in the molecular system is also 
optimized with high fidelity (0.999) by the Multi‑Constraint optimal control theory with the zero‑area 
and constant‑fluence constraints.

Control and implementation of quantum logical gates are important for quantum  computing1–3. In 2002, DeMille 
first proposed a model to do quantum calculation based on molecular system and pointed that quantum bits 
can be seen as the direction of dipole moment up and down along the static field in ultra-cold polar diatomic 
molecular  system4. Meanwhile, the qubits can be combined with the dipole-dipole interaction so that the quan-
tum logical gates can be generated reasonably in decoherence  time4. Since then, the proposals have attracted more 
and more attention about performing quantum gates in molecular  system5–22. The diverse structures of polar 
molecule are chosen as the quantum basis to optimize quantum logical gates under the control of laser pulse. For 
example, the authors have did much quantum calculation based on molecular vibrational  states5–10. In vibrational 
states of C 2H2 system, two different IR-active model can be seen as quantum basis, so that the NOT and CNOT 
can be achieved with the fidelity more than 0.90 under the control of external  field5, while the fidelity is 0.96 for 
generating Hadamard  gate6. Based on the rotational and vibrational states, the authors have  discussed11–14 in NH3 
vibrational states with high fidelity 0.93 to achieve  CNOT11, and in electronic ground states of Na2 and Li2 with 
0.83 fidelity to achieve DJ  algorithm12; following, with two dipolar system NaBr-NaBr, based on the rotational 
and electronic ground states, the value of fidelity can reach 0.979. Recently, the authors demonstrate the high 
fidelities of entanglement between the rotational states of a molecular ion and the internal states of a atomic 
 ion15. In Ref.16, CNOT gate is generated based on quantum Zeno dynamics in order to make the system evolve 
into the target state between two atoms. And the authors studied the quantum adder and subtractor with fidelity 
0.97 by coding on the molecular vibrational  states23–26. Even in hyperfine levels of electronic ground states, the 
quantum computing model based on the electronic ground states of H 2 , LiH and H 2 O also have been  studied27.

Furthermore, the pendular state is formed based on rotational states when the molecules are trapped and 
partially oriented by external electric  fields28,29 and the special state can afford more information of polar mol-
ecule about alignment and  orientation30,31. Much attention have been attracted on the quantum entanglement 
and quantum computing in pendular  systems28,32,33. Herschbach et al has calculated the quantum concurrence 
in pendular state formed by two dipoles, in addition, when the dipole moment and rotational constant are set as 
variable, it can be demonstrated that the quantum logical gates can be operated by calculating the concurrence 
between two pendular  states33. Specifically, in the pendular system of SrO-SrO system, the single-qubit gate 
(NOT) and two-qubit logical gate (CNOT) can be achieved with the high fidelity of the values 0.985 and 0.975 
 respectively28. In general, a two-level system is basic and simple system to perform the quantum computing when 
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the qubits |0� and |1� are considered as quantum basis for single-qubit  gate34–37. By same principle, a four-level 
system can be implemented for two-qubit gate if the quantum basis include |00� , |01� , |10� and |11� which are 
complete and  orthogonal28. Both of the two-level system and four-level system can optimize the quantum gates 
due to the energy difference between different energy levels in molecular systems.

Quantum optical control methods provide a powerful tool to make the quantum initial states evolve to the 
final states with control  fields38–42. Rabitz et al proposed Multi-Target Optital Control Theory (MT-OCT) based 
on the coupled Schrödinger  equations43,44, and the theory aims to solve the two-point boundary equations step 
by step with many iterations. This method has attracted attention extensively for the specific physical molecu-
lar  system5,6,8,10,12,13,23–25,28. Later, Rabitz et al have proposed the other quantum optimal control theory based 
on optimization of unitary  operation45. The core of this theory is optimization the operation which satisfied 
Schrödinger equation, and the control field updates with the increasing of iteration. Finally, the unitary opera-
tion is applied in any initial state to optimize quantum logical gate to the final  state45–49. To satisfy conditions 
named zero-area and constant-fluence of control pulse, Shu and collaborators promoted this theory by adding 
constraints on control  pulse46–48 which is named as Multiple Constraint Quantum Optical Control (MC-OCT). 
With two important constraints on the optimized control fields during optimization, i.e., no-dc component 
and constant pulse fluence, then the time-dependent control protocol is keeping the pulse energy unchanged as 
compared with the initial inputs.

Based on the above analysis, in our work, we apply the above two quantum optical control methods to guide 
the control fields for optimization of two-qubit quantum logical gates. Particularly, we aim to get the CNOT and 
SWAP gates and try to find the priority method for optimization of two-qubit gate. The results show that both of 
the two quantum optical control methods can achieve the high efficiency to get the optimal control fields in the 
given pendular system. Compared to the results in Ref.28, the higher fidelity 0.999 for CNOT and SWAP quantum 
gates can be reached by MC-OCT in our work, so that an admissible error lower than 10−3 can be achieved in 
molecular system theoretically. Furthermore, the simulation difference of optimization situations is studied as 
well as the energy difference between different quantum basis in pendular system.

Results
Pendular system consisted of polar molecules. We consider two polar diatomic molecules trapped in 
an external static electric field (ǫ) , due to the Stark interaction, the system can be seen as pendular states result-
ing from mixing of the field-free rotational  states28. In rigid-rotor approximation, the Hamiltonian of the two 
trapped molecules can be written as following

and

where B is the rotational constant, µ is the permanent dipole moment and Ĵ is the angular momentum operator. 
θ1 and θ2 represent the polar angles between the dipole moment and the static field direction. The first molecule 
experiences an external static field of ǫ1 whereas the second molecule experiences an external static field of ǫ2 . 
The external static field contains a gradient in position of the two molecules allowing spectroscopic addressing 
of each  site4. The eigenstates of Ĥ1 and Ĥ2 are designated as pendular states resulting from the mixing of the 
field-free rotational states by the Stark effect.

As proposed in Ref.4, basic qubits are chosen as two molecular states. We can choose the ground state and 
second excited state |J̃0� and |J̃2� as the two pendular states, which can be described as superpositions of spheri-
cal  harmonics28

aj and cj are the coefficients of spherical harmonics and ϕ = 0 . In the absence of a control field, the total Ham-
iltonian of the two trapped molecules in the basis of the qubit pendular states can be written as a 4× 4 matrix

where Î is a 2 × 2 identity matrix. The eigenenergies E01 and E11 of the Hamiltonian Ĥ1 are calculated based on 
the quantum basis in Eq. (3), and E02 and E12 of Ĥ2 for the second molecule are calculated in the same way. The 
specific expressions are given as

The last term V̂dd in Eq. (4) describes the dipole-dipole interaction given  by50

where, µ is permanent dipole moment, r12 is the distance between the two molecules, and α is the angle between 
the array axis r̂12 and the static electric field direction. Specifically, here for convenience calculation, α is set as 
90 degree, then the matrix expression of V̂dd is given as

(1)Ĥ1 = BĴ2 − µǫ1 cos θ1

(2)Ĥ2 = BĴ2 − µǫ2 cos θ2,

(3)�θ ,ϕ|J̃0� =
∑

j

ajYj,0(θ ,ϕ); �θ ,ϕ|J̃1� =
∑

j

cjYj,0(θ ,ϕ).

(4)Ĥ0 = Ĥ1 ⊗ Î + Î ⊗ Ĥ2 + V̂dd ,

(5)Ĥ1 =

(

E01 0

0 E11

)

; Ĥ2 =

(

E02 0

0 E12

)

.

(6)V̂dd =
µ2

2πε0r
3
12

(1− 3 cos
2 α) · cos θ1 · cos θ2,
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where the elements are calculated as C1
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,
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∣ cos θ2
∣

∣J̃0
〉

,C2
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, and C2∗
x =

〈

J̃1
∣

∣ cos θ2
∣

∣J̃0
〉

.

So the specific elements of Hamiltonian in Eq. (4) can be written as

Optimization CNOT by multi‑target optical control theory. In this section, we will opti-
mize the specific quantum gate by applying the method named Multi-Target Optical Control The-
ory (MT-OCT). In Ref.28, {|00� |01�   |10� |11�} are a set of orthogonal and complete quantum basis vec-
tors corresponding to pendular system. In the following simulation, we choose the same quantum 
basis as the four lowest energy levels of molecular pendular system. The specific form can be written as 
{|J̃0� ⊗ |J̃0� → |00�, |J̃0� ⊗ |J̃1� → |01�, |J̃1� ⊗ |J̃0� → |10�, |J̃1� ⊗ |J̃1� → |11�} in the SrO-SrO pendular sys-
tem, Combined the Eq. (8) with the control pulse, then the expression of time-dependent Hamiltonian can be 
expressed as

The inherent dipole moment is µ = 8.9 Debye (3.5 a.u.), Ĥ0 is the Hamiltonian of Eq. (4) and the rotational 
constant is B = 0.33cm−1 ( 1.5× 10−6 a.u.). The static electric field is set as ǫ1 = 4.4 kV/cm ( 0.86× 10−6 a.u.) 
and ǫ2 = 6.6 kV/cm ( 1.28× 10−6 a.u.) in Eqs. (1) and (2). Then the address of two molecules will have gradi-
ent difference. Here, it should be noticed that the µǫ/B is unitless. According to the Ref.4, the value of µǫ/B 
changes between 2 and 5 reasonably, so we choose the values as µǫ1/B = 2 and µǫ2/B = 3 during the follow-
ing simualtion. In addition, to facilitate the optimization process, the distance between two molecule are set as 
r12 = 50nm ( 9.45× 102 a.u.). The initial pulse is set as E(t) = S(t)E0 cos(2πυt) , where S(t) is envelope function. 
The general form is S(t) = sin2(π t/T) , E0 is the amplitude, and the initial value is set as 1.5 kV/cm (2.9×10−7 
a.u.) and the pulse duration T is set as 65 ns (2.6×109 a.u.). Based on the above given data, we take the fixed step 
for Ruge–Kutta method and the Lagrange compensation factor is α0=5×106 (unitless) and the time step is given 
as �t=0.25 ps. In addition, the cosine matrix elements are C1

0 = 0.4677 , C1
1 = 0.4250 , C1

x = 0.3599 , C2
0 = 0.5726 , 

C2
1 = 0.5913 , C2

x = 0.4867 , and the specific calculation method can be found in Ref.33.
The two-qubit quantum gate CNOT and SWAP have the specific form as following

According to the principle of CNOT operation, when CNOT is applied on the four quantum basis, the 
population of |00� and |01� will keep the original distributions. However, the population of |10� and |11� will 
exchange distributions for each other. Here, in order to make the simulation more efficiently, we choose 
an initial state to optimize the CNOT based on the above pendular system. For example, when the ini-
tial state is [sin(π/3)|00� + cos(π/3)|10�]e−iφ , after the operation of CNOT, then the final state should be 
[sin(π/3)|00� + cos(π/3)|11�]e−iφ in theory. Whereas the initial population should be zero for |01� and |11�.

In Fig.1a, the optimized pulse of this initial state operated by CNOT is given as function of evolution time 
and the amplitude of the pulse is around 1.5kV/cm. From Fig.1b, it can be seen the result of central frequency is 
0.035 THz ( 1.1785cm−1 ), and the central frequency is the pendular energy level difference which is correspond-
ing to the quantum basis |10� and |11� and satisfies the condition of resonance (the energy value is difference 
between 1.5726cm−1 and 0.3939cm−1).

In Fig. 2, we give the initial state which has the form [sin(π/3)|00� + cos(π/3)|10�]e−iφ as the function of 
time when the initial phase is φ = 60 deg. And the final population should be 0.75 for |00� , 0.00 for |01� , 0.00 for 
|10� and 0.25 for |11� in theory. When we optimize the CNOT in this molecular system by MT-OCT, the fidelity 
F can reach 0.975 based on the above parameters, then the final population is 0.7582 |00� , 0.0086 |01� , 0.0026 |10� 
and 0.2304 |11� , thus the CNOT is operated correctly.

In Fig. 3, we give the initial state which has the form [sin(π/3)|10� + cos(π/3)|11�]e−iφ as the function of 
time. And the final population should be 0.00 for |00� , 0.00 for |01� , 0.25 for |10� and 0.75 for |11� in theory. After 
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(9)Ĥ(t) = Ĥ0 − µÊ(t),

(10)CNOT =







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







(11)SWAP =
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the optimization, the final population is 0.0073 for |00� , 0.0034 for |01� , 0.2641 for |10� and 0.7251 for |11� , the 
result is closed to the theoretical expected value.

Compared the simulations to the theoretical values, it can be seen the results are very closed to each other 
which means the optimization of CNOT is successful. Meanwhile, the fidelity F in Eq. (16) is 0.975 while the ideal 
value should be 1. In order to improve the fidelity (objective) and precision of optimization, we will optimize 
CNOT through MC-OCT thereinafter.

Optimization CNOT by multi‑constraint optical control theory. In this section, we will apply the 
other method named Multi-Constraint Optical Control Theory (MC-OCT) to do the optimization. And the two-
qubit CNOT gate will be optimized based on the the pendular state of SrO-SrO system. The initial control field is 
set as E(t) = S(t)E0 cos

2(2πυt) , where S(t) is the envelope function, and the specific form is S(t) = sin(π t/T)2 . 
Where T is the total time and T = 65 ns ( 2.60× 109 a.u.). During the optimization, �t = 0.06 ps ( 2.4× 103 
a.u.), the iteration step is �s = 1.5× 10−7 . The initial value of dummy variable s is zero, �s can be modulated 
to find the most optimal control fields E(s,  t). E0 and υ represent amplitude and frequency of control pulse. 
E0 = 5× 10−2 kV/cm ( 1× 10−8 a.u.).

In Table 1, we give the results of different initial states operated by CNOT. F is abbreviation of F(UT ) in Eq. 
(18), the results is 0.999 which approaches to the ideal value 1. During the calculation and simulation in this 
section, the initial phase φ is set as 60 (deg). The optimized pulse can be plotted as the function of time in Fig. 4a, 
and the amplitude of pulse is around 0.06 kV/cm. Besides, it can be seen that the central frequency is 0.035 THz 
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Figure 1.  (a) The evolution of control pulse as function of time corresponding to CNOT gate; (b) The Fourier 
transform of the control pulse in (a).
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Figure 2.  The evolution of population as function of time corresponding to the initial state 
[sin(π/3)|00� + cos(π/3)|10�]e−iφ.
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from Fig. 4b, and that means the pulse satisfies the condition of resonance and have the same performance under 
the control of MT-OCT.

In Fig. 5, when the initial state is given as 1/2[|00� + |10� + |10� + |11�]e−iφ , after the operation of CNOT, the 
final population is 0.2485 for |00� , 0.2514 for |01� , 0.2313 for |10� and 0.2688 for |11� , and the ideal value should 
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Figure 3.  (a) The evolution of population as function of time corresponding to the initial state 
[sin(π/3)|10� + cos(π/3)|11�]e−iφ ; (b) The specific evolution of the basis [|10� and |11�]e−iφ.

Table 1.  The optimization results of CNOT.

Initial state Final state F

(i)
1/2(|00� + |01�+ 1/2(|00�e−iφ1 + |01�e−iφ2+

0.999
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(ii)
[sin(π/3)|00�+ sin(π/3)|00�e−iφ1+

0.999
cos(π/3)|10�]e−iφ cos(π/3)|11�e−iφ2

(iii)
[sin(π/3)|10�+ sin(π/3)|11�e−iφ1+
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cos(π/3)|11�]e−iφ cos(π/3)|10�e−iφ2
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Figure 4.  (a) The evolution of control pulse as function of time; (b) The Fourier transform of the pulse in (a).
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be 0.25 for |00� , 0.25 for |01� , 0.25 for |10� and 0.25 for |11� ) in theory. And the fidelity can reach 0.999 while the 
ideal value is 1.

Then we check the other initial state to optimize the CNOT which is similar to the initial state above by 
the MT-OCT, and in Fig. 6, when the initial state is [sin(π/3)|00� + cos(π/3)|10�]e−iφ , after the operation of 
CNOT, the final population is 0.7482 for |00� , 0.0017 for |01� , 0.0004 for |10� and 0.2498 for |11� , which is closed 
to the ideal value 0.75 for |00� , 0.00 for |01� , 0.00 for |10� and 0.25 for |11� in theory while the fidelity is also 0.999.

And in Fig. 7, when the initial state is [sin(π/3)|10� + cos(π/3)|11�]e−iφ , after the operation of CNOT, the 
final population is 0.0000 for |00� , 0.0000 for |01� , 0.2581 for |10� and 0.7476 for |11� , and the ideal value should 
be 0.0000 |00� , 0.00001 |01� , 0.2581 |10� and 0.7476 |11� in theory. When the result is compared to the values of 
0.0073 for |00� , 0.0034 for |01� , 0.2641 for |10� and 0.7251 for |11� , it can be seen that the former is closer to the 
theoretical value.

Based on this pendular system, we optimize the CNOT by two different methods named MT-OCT and MC-
OCT respectively. Compared the results of both processing, for the same initial state, the fidelity is different 
and the values are 0.975 in MT-OCT and 0.999 in MC-OCT respectively. Obviously, the more higher fidelity is 
maintained in MC-OCT. Meanwhile, the iterations for the running time of Code are needed longer in the MT-
OCT than in the MC-OCT.

Optimization SWAP by multi‑constraint optical control theory. Based on the ideal optimization 
of CNOT, we apply the MC-OCT to optimize the two-qubit logical gate named SWAP. The initial pulse is set 
as E(t) = S(t)E0 cos

2(2πυt) , S(t) = sin(π t/T)2 . The total time is T=1.3× 103 ns. During the optimization, 
�t = 0.06 ps ( 2.4× 103 a.u.), the iteration step is �s = 1.5× 10−7 . E0 and υ are the pulse amplitude and central 
frequency ( E0 = 1.5 kV/cm).

Figure 5.  The evolution of population as function of time corresponding to the initial state 0.25 |00� + 0.25 |01�
+0.25 |10�+0.25 |11�.

Figure 6.  The results corresponding to 1 (ii); (a) The evolution of control pulse as function of time; (b) The 
evolution of control pulse as function of time and iterations.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14918  | https://doi.org/10.1038/s41598-022-18967-2

www.nature.com/scientificreports/

Then the optimized pulse is shown in Fig. 8a, and the Fourier transform of the pulse is shown in Fig. 8b, 
the amplitude of pulse is around E0 = 1.5kV/cm and the central frequency is 0.0071 THz, which is the energy 
difference between 0.6337 cm−1 and 0.3939 cm−1 due to the quantum basis |01� and |10� . Meanwhile, the pulse 
also satisfies the condition of resonance.

When the initial state is set as [sin(π/3)|00� + cos(π/3)|10�]e−iφ , and the population of final state is 0.7487 
for |00� , 0.2505 for |01� , 7.7637× 10−4 for |10� and 4.6586× 10−4 for |11� , as the ideal value should be 0.75 for 
|00� , 0.25 for |01� , 0.00 for |10� and 0.00 for |11� ), and the evolution of population is shown in Fig. 9. From Fig. 9b, 
it can be known that the basis |10� and |01� exchange the population for each other, which satisfies the principle 
of the logical gate SWAP correctly. Meanwhile, the fidelity of the processing can also reach 0.999.

Based the same quantum basis and the molecular pendular system, we try to optimize the SWAP logical gate. 
Compared to the results in optimization of CNOT, it can be seen the energy difference of pendular system is more 
smaller than in latter, and it needs more time of evolution and intensity of pulse to achieve the ideal fidelity, and 
the more iterations and longer running time of Code are needed. In summary, both of two-qubit logical gates 
CNOT and SWAP can be generated ideally in this pendular system.

Figure 7.  The results corresponding to Table 1(iii); (a) The evolution of control pulse as function of time; 
(b) The evolution of control pulse as function of time |00� and |01�]e−iφ ; (c) The evolution of control pulse as 
function of time and iterations.
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Figure 8.  (a) The evolution of control pulse as function of time; (b) The Fourier transform of pulse in (a).
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Discussion
In conclusion, we applied two quantum optimal control methods to find optimized control fields for constructing 
two-qubit logical gates, specifically, CNOT and SWAP gates. In addition, the pendular states of trapped polar 
molecules SrO–SrO system are choosen as quantum basis which is analyzed in Ref.28. Both of the quantum gates 
we studied show good performance with high fidelities and ideal population were achieved and close to the 
theoretical values. The same specific initial states have been studied in this work, and the high fidelities 0.975 and 
0.999 were achieved during the optimization for the above gates. Compared to the results in Ref.28, our results 
have demonstrated the higher fidelities and more perfect population which meant the more better optimization 
for quantum calculation. Meanwhile, the optimization methods is based on iterative solution for the coupled 
wave function equations, and the required convergence time and Random Access Memory (RAM) are also the 
important factors should be considered. According to the guidance of Ref.28, it was found that the convergence 
speed in MC-OCT is obviously faster than MT-OCT and the total evolution time have the same rule. Finally, 
the above two methods can be extended to optimized general quantum gates straightly. In practical experiment 
for specific systems, MC-OCT with constraints (e.g., pulse energy, fluence and magnitude) should be achieved 
much easier than MT-OCT.

It is also important to discuss analytical realization for experiment. Such as, in Ref.51 the authors propose and 
thoroughly investigate the scheme of employing trapped ultracold atoms in optical lattice to function as viable 
platform for quantum CN and CCN gates. In addition, they present a novel approximation method for realizing 
one- and two-qubit gates for the realization of quantum algorithms and their discussion can also be extended 
considering the dissipation effect in Ref.52. In Ref.53, the authors propose and analyze a detailed experimental 
procedure for implementing an N-bit discrete quantum Fourier transform. Furthermore, a new application of 
ballistic nanowires with spinbit interaction to realize some new quantum gates are discussed, such gates would 
be of interest to be experimentally implemented without scattering process in Ref.54. Based on the analysis, we 
hope the numerical simulation of our work can provide theoretical basis for experimental implementation.

Methods
Multi‑target optical control theory. Much attention has recently been devoted to applying optimal con-
trol theory for elements of quantum computation in molecular systems. The basic idea is to design laser pulses 
which allow manipulation of transitions within each qubit separately. For implementing basic quantum gates, 
the aim is to achieve large transition probabilities with the correct phase from a specific initial state into a final 
target state by application of an external laser field while minimizing the laser energy. The objective function  in 
the optimal control theory for elements of quantum computation can be  maximized43,44

where ψik(t) and ψfk(t) is the wave function driven by the optimal laser field, E(t). z is the total number of targets 
and z = 2N + 1 is set for N qubits. 2N is the number of input-output transitions in the gate transformation, and 
the supplementary equation is the phase constraint. A small △ϕ can be got by laser pulses during optimization 
produces and has a weak dependence on the initial qubit  state7,55. α is the Lagrange multiplier, and the envelope 
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Figure 9.  The evolution of population as function of time: (a) Corresponding to |00� and |11� ; (b) 
Corresponding to |10� and |01�.
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function S(t) is sin2(π t/T) sin2(π t/T) . H is the total Hamiltonian of system and H = H0 − µǫ(t) , H0 is Ham-
iltonian of rotational system and ǫ(t) which makes the rotational state transfer to pendular states composed of 
two polar molecules. µ is the transition dipole moment and T is the total evolution of time.

In order to get the optimized control field, δ = 0 should be satisfied. And the coupled Schrödinger equations 
with the control of laser pulse are written as

where φik is the wave function of ψik at the initial time and φfk is the wave function of ψfk at the final time. k is 
the number of equations. The control pulse has the specific form

where θ1 and θ2 is the angular between the axiex of two molecules and the static external electric field ǫ(t) . By 
solving partial differential equations, the evolution time varies from 0 to final T. During this processing, the 
control pulse are optimized and the population and fidelity reach the ideal accuracy. Here, the population of 
wave function is written as

the fidelity is defined as

Based on the above the simulation, the first split method and the second split method are used to solve the time-
dependent Schrödinger equation, the latter is more  precisely43,44.

Multi‑constraint optical control theory. The time evolution of wave function for the initial state |i� 
can be described by �(t) = Û(t, 0)|i� with a unitary evolution operator Û(t, 0) , which is governed by time-
dependent Schrödinger  equation46,48

with ℏ = 1 (atomic units are used in this work). The goal of this work is to optimize control field E(t) to generate 
a specified unitary transformation and implement desired logic gate based on specific molecular system, so that 
a specified unitary transformation H can be realized with the final unitary operator ÛT = Û(T , 0) . A convenient 
mathematical formulation of this control objective (fidelity) is

where �W |UT � = Tr(W†UT ) , F(UT ) ∈ [0, 1] and n is the number of qubits, then n = 2 means the two-qubit 
gate (CNOT) in this work.

To optimize the control field for maximizing the fidelity, a dummy variable s � 0 as used in Ref.48 is employed 
to parameterize the optimization, which can be expressed as

that can be satisfied by updating the control pulse as

In the resonant optical control  case46,47, the interaction between the dipole-dipole molecule and control field 
plays an important role, the fidelity can be written as

(13)
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where µ̂(t) = Û+(t, 0)µÛ(t, 0) , F represents the fidelity in resonance.
For practical applications, Eq. (20) may be generalized to include a set of equality constraints F(E(·, s)) , on 

the optimal optical fields

The combined demands in Eqs. (19) and (22) can be fulfilled simultaneously by updating the control field 
as function of variable s

where S(t) ≥ 0 is an envelope function which smoothly turns on and off the control field, and Ŵ is an invertible 
full rank (M + 1)× (M + 1) square matrix composed of elements

Here the optimized control field is limited to satisfy two constraints simultaneously

and

The zero-pulse area constraint in Eq. (25) implies that the optimized control field does not contain dc-
components, leading to pure ac control, whereas the constant fluence constraint in Eq. (26) keeps the energy 
of the optimized fields unchanged as compared with the initial guess. The numerical details of performing this 
multiple constraint quantum optimal control method can be found in previous  works46,47.

Data availability
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