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Abstract: For the first time, ruthenium-based assemblies have been used as carriers for photosensitiz-
ers in the treatment of rheumatoid arthritis by photodynamic therapy (PDT). These metallacages are
totally soluble in physiological media and can transport photosensitizers (PS) in their cavity. After an
incubation period, the PS is released in the cytoplasm and irradiation can take place. This strategy
allows photosensitizers with low or null solubility in biological media to be evaluated as PDT agents
in rheumatoid arthritis. The systems in which 21H,23H-porphine and 29H,31H-phthalocyanine
are encapsulated show excellent photocytotoxicity and no toxicity in the dark. On the other hand,
systems in which metalated derivatives such as Mg(II)-porphine and Zn(II)-phthalocyanine are used
show good photocytotoxicity, but to a lesser extent than the previous two. Furthermore, the presence
of Zn(II)-phthalocyanine significantly increases the toxicity of the system. Overall, fifteen different
host–guest systems have been evaluated, and based on the results obtained, they show high potential
for treating rheumatoid arthritis by PDT.

Keywords: rheumatoid arthritis; photodynamic therapy; drug delivery; host–guest system; COX-2;
photosensitizer; arene ruthenium complexes

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune joint disease, lead-
ing to cartilage and bone damage, and finally disability. Occasionally, RA is complicated
with extra-articular manifestations, particularly pulmonary involvement, and is associated
with cardiovascular comorbidities [1]. The prevalence is 0.3% to 1%, and is 2–3 times higher
in women than in men [2].

In recent years, it has become evident that RA arises based on both genetic and epige-
netic components, but also has an environmental component, such as cigarette smoke, dust
exposure, and particularly the effect of the microbiome [3]. Abnormalities in the cellular
and humoral immune response lead to the occurrence of autoantibodies, detected many
months or years before the clinical disease is apparent. These autoantibodies are rheuma-
toid factors (directed against the Fc fragment of immunoglobulins) and anti-citrullinated
protein antibodies (ACPA) [4,5].
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In RA, the synovial lining, which normally is comprised of 1–3 cell layers, becomes
remarkably thickened. This is due to an invasion of macrophage-like cells and the pro-
liferation of resident synovial fibroblasts. The degree of synovial hyperplasia correlates
with the severity of cartilage erosion, resulting in inflammatory pannus formation that
attaches to, and invades, joint cartilage, while osteoclast activation leads to parallel bone
destruction [6]. The interaction between synovial resident cells and cells of the innate and
adaptative immune system leads to the production of many pro-inflammatory cytokines
(TNF-α, interleukine-1 (IL-1), IL-6), proteolytic enzymes, and inflammatory molecules [1].

Treatment algorithms involve measuring disease activity with composite indices
and applying a treatment-to-target strategy, with disease modifying antirheumatic drugs
(DMARDs) to maintain stringent remission or at least low disease activity and reduce
articular destruction and disability [7]. There are two major classes of DMARDs, namely
synthetic (sDMARDs) and biological (bDMARDs) [8].

Despite all of the advances made over the last two decades, and given that remission
or at least low disease activity are the current therapeutic goals for RA patients, a significant
proportion of patients still do not reach this target. There is a need for new treatments or
local treatments to control some resistant synovitis.

In recent years, promising results have been achieved using non-invasive treatments
such as anti-tumor necrosis factor drugs [9], Janus kinase inhibitors [10], and photodynamic
therapy (PDT) [11]. The latter involves a photoactive compound, termed the photosensitizer
(PS), which is excited by suitable light radiation. Subsequently, the excitation energy gives
rise to radical oxygen species (ROS) from oxygen present in the medium [12,13]. ROS
show a high cytotoxicity, but also a short lifetime and reduced radius of action [14], so it
is possible to treat the inflamed zone without affecting the surrounding tissue, avoiding
damage to healthy structures. Accordingly, PDT could be an effective solution for cases of
RA with refractory synovitis and failure of local steroid injection.

Since the late 1990s, PDT began to demonstrate its potential as a less invasive treatment
for RA. Trauner and colleagues [15] reported the in vivo efficacy of this technique in rabbits
with an antigen-induced arthritis model, using benzoporphyrin derivative monoacid ring
A (one of the first-generation PSs) and intra-articular irradiation. Later, with the new
generation PSs, in vivo results remained promising, such as the use of ATX-S10.Na (II)
in collagen antibody-induced arthritis in mice [16]. Recently, it has been reported that
the combined use of photothermal therapy and PDT using Cu7.2S4 nanoparticles under
NIR laser in mice, improves anti-inflammatory effects and reduces cartilage and bone
damage [17].

The simplicity of the technique makes PDT an ideal treatment to alleviate the pain
or disability caused by RA. Unfortunately, even considering the enormous potential of
PDT, conventional PSs often have some drawbacks mainly related to their chemical and
structural features, as well as undesirable side effects in some cases, such as light hyper-
sensitivity [18]. Most recent studies have focused on solving the poor solubility of PSs in
biological media using soluble carriers [19] such as nanoparticles or by adding a soluble
functional group in the PS structure [20]. We believe that it may be possible to solve the
poor water solubility of PSs using another approach: ruthenium-based carriers (Figure 1).
These organometallic complexes are soluble in biological media and have an inner cavity
in which a PS can be lodged. Such metallacages have already been tested in vitro on cancer
cells, demonstrating their potential in cells [21,22].

For the first time, we showed that such carriers can be used as PDT agents in fibroblast-
like synoviocyte cells (FLS) from RA patients. We also demonstrated that commercially
available PSs (Figure 2), namely 21H,23H-porphine (G1), Mg(II)-porphine (G2), 29H,31H-
phthalocyanine (G3), and zinc(II)-phthalocyanine (G4), can be encapsulated in the cavity
of the metallacages and, after being released, become effective PSs against RA. We have
hosted these basic PSs in different ruthenium-based assemblies, showing the importance
of the carrier in delivering the PS. The in vitro evaluation of these PS-metallacages in
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human RA FLS cells is promising. The anti-proliferative assays are excellent, providing
new avenues for the treatment of RA by PDT.
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Figure 2. Photosensitizers used in this work. From left to right, 21H,23H-porphine (G1), Mg(II)-porphine (G2), 29H,31H-
phthalocyanine (G3) and Zn(II)-phthalocyanine (G4).

2. Materials and Methods
2.1. Synthesis of Compounds

Despite the fact that the hosts M1-M6 (Figure 3) and the guests G1-G4 are known,
several host–guest systems are new, except for G1⊂M2, G1⊂M3, G2⊂M1, G2⊂M4, and
G2⊂M6. The complexes [Ru2(p-cymene)2(2,5-dioxydo-1,4-benzoquinonato)Cl2], [Ru2(p-
cymene)2(5,8-dioxydo-1,4-naphthoquinonato)Cl2], [Ru2(p-cymene)2(6,11-dioxydo-5,12-
naphthacenedionato)Cl2] [23], and the ligands 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine [24],
1,3,5-tris{2-(pyridin-4-yl)vinyl} benzene [25], and 1,2,4,5-tetrakis{2-(pyridine-4-yl)vinyl}
benzene [26] were prepared following reported methods. The metallacages M1 and M4
with G1 inside [21], M4 with G3 and G4, M5 and M6 with G1, G3, and G4 [27] were
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synthesized according to the literature. The photosensitizers G1 and G2 were synthe-
sized as reported in the literature [28], while G3 and G4 were bought from Sigma-Aldrich.
Dichloromethane, diethyl ether, methanol, d3-acetonitrile, and d6-DMSO were purchased
from Sigma-Aldrich and used as received. NMR spectra were measured on a Bruker Avance
Neo Ascend 600 MHz spectrometer. The acquired spectra were processed using the Mnova
NMR software package (v.14.2.0, MestReLab Research, Santiago de Compostela, Spain).
The 1H and 13C resonances of the deuterated solvents were used as internal references. The
following abbreviations are used for describing the signals in the NMR spectra: s (singlet), d
(doublet), m (multiplet), br (broad), q (quaternary). All described in vitro experiments were
carried out under aseptic conditions. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) and L-glutamine were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Dimethyl sulfoxide (DMSO) was bought from Acros Organics (Geel, Belgium). All
solvents, reagents, and products described above were used without prior treatments or
purifications. IR spectra of the compounds were performed on a Frontier Perkin Elmer
spectrometer (600–4000 cm−1), Thermo Fisher Scientific, Waltham, MA, USA. Fluores-
cence spectra were performed on a FLS980 spectrometer from Edinburgh instruments
(550–800 nm) using 5,10,15,20-tetraphenylporphin (TPP) as an internal reference in toluene
and the compounds were dissolved in DMSO (10 nM concentration). UV-vis spectra were
acquired on a SI Analytics model UvLine 9400 (Xenon lamp) spectrophotometer, using
1.5 mL polystyrene cuvettes (wavelength range 280–800 nm) and diluting the compounds
in DMSO (10 µM and 10 nM).

Synthesis of G1⊂M2. In a 250 mL round bottom flask, 50.0 mg (0.069 mmol) of
[Ru2(p-cymene)2(5,8-dioxydo-1,4-naphthoquinonato)Cl2] and 35.5 mg (0.138 mmol) of
AgCF3SO3 were dissolved in 20 mL of MeOH and stirred for 2 h at room temperature.
Next, silver chloride was filtered off. To the remaining solution, 14.6 mg (0.046 mmol)
of 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine and 7.1 mg (0.023 mmol) of G1 were added, and
the solution was refluxed and stirred for 18 h. The solvent was then removed at reduced
pressure, and the resulting oily, dark green solid was dissolved in 20 mL of CH2Cl2.
The solution was concentrated to approximately 3 mL, and 5 mL of Et2O was added
dropwise. The resulting precipitate was filtered and dried under vacuum. Yield 52%
(45 mg). 1H NMR (CD3CN, 25 ◦C, 600 MHz): δ 9.17 (d, 3JHH = 6.0 Hz, 12H, CHnaphce),
8.44 (d, 3JHH = 4.1 Hz, 12H, CHnaphce), 8.24 (d, 3JHH = 6.3 Hz, 12H, CHpy), 8.00 (s, 4H,
CHporphine), 6.89 (s, 8H, CHporphine), 5.91 (d, 3JHH = 6.4 Hz, 12H, CHpy), 5.87 (d, 3JHH

= 5.9 Hz, 12H, CHcym), 5.57 (d, 3JHH = 5.8 Hz, 12H, CHcym), 2.95 (m, 6H, CHiPr), 1.97
(overlapped singlet, 18H, CH3), 1.32 (d, 3JHH = 7.0 Hz, 36H, CH3 iPr). 13C NMR (CD3CN,
25 ◦C, 150 MHz): δ 170.4 (C-O), 164.3 (Cq), 152.1 (CHpy), 140.7 (Cq), 134.6 (CHnaphce), 130.1
(CHporph), 128.4 (CHnaphce), 122.8 (Cq), 122.3 (CHpy), 120.7 (Cq), 107.9 (Cq), 104.4 (Ccym),
103.3 (CHporph), 100.3 (Ccym), 84.9 (CHcym), 83.0 (CHcym), 31.0 (CHiPr), 22.0 (CH3 iPr), 17.3
(CH3). ESI-MS, m/z, 1120 [M2+G1-3OTf]3+. UV/vis (DMSO), λ, nm (ε, M−1·cm−1): 454
(132400), 488 (117700), 567 (54300), 648 (62900). FT-IR (ATR, solid, cm−1): ν; br s (3700–3100),
s (2995), s (1524), s (1516). Spectra in Supplementary Materials (Figures S1–S9).

Synthesis of G1⊂M3. In a 250 mL round bottom flask, 50.0 mg (0.060 mmol) of
[Ru2(p-cymene)2(6,11-dioxydo-5,12-naphthacenedionato)Cl2] and 31.0 mg (0.120 mmol)
of AgCF3SO3 were dissolved in 20 mL of MeOH and stirred for 2 h at room temperature.
Next, silver chloride was filtered off. To the remaining solution, 12.5 mg (0.040 mmol)
of 2,4,6-tri(pyridine-4-yl)-1,3,5-triazine and 6.2 mg (0.020 mmol) of G1 were added, and
the solution was refluxed and stirred for 18 h. The solvent was then removed at reduced
pressure, and the resulting oily, dark green solid was dissolved in 20 mL of CH2Cl2. The
solution was concentrated to approximately 3 mL, and 5 mL of Et2O was added dropwise.
The resulting precipitate was filtered and dried under vacuum. Yield 76% (62 mg). 1H
NMR (CD3CN, 25 ◦C, 600 MHz): δ 8.68 (s, 4H, CHporphine), 8.21 (d, 3JHH = 6.3 Hz, 12H,
CHpy), 7.92 (s, 12H, CHnaph), 7.71 (s, 8H, CHporphine), 6.12 (d, 3JHH = 5.7 Hz, 12H, CHpy),
5.68 (d, 3JHH = 5.8 Hz, 12H, CHcym), 5.43 (d, 3JHH = 5.9 Hz, 12H, CHcym), 2.84 (m, 3JHH =
6.8 Hz, 6H, CHiPr), 1.99 (s, 18H, CH3), 1.33 (d, 3JHH = 6.9 Hz, 36H, CH3 iPr). 13C NMR
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(CD3CN, 25 ◦C, 150 MHz): δ 171.9 (C-O), 164.5 (Cq), 152.3 (CHpy), 140.9 (Cq), 138.9 (CHnaph),
130.9 (CHporph), 124.9 (Cq), 122.8 (CHpy), 122.5 (CHpy), 120.7 (Cq), 112.5 (Cq), 104.4 (Ccym),
103.9 (CHporph), 100.3 (Ccym), 85.0 (CHcym), 83.7 (CHcym), 31.0 (CHiPr), 21.9 (CH3 iPr),
16.8 (CH3). UV/vis (DMSO), λ, nm (ε, M−1·cm−1): 489 (53700), 573 (40200), 623 (62900).
FT-IR (ATR, solid, cm−1): ν; br s (3700–3100), br s (3092), s (2992), s (2915), s (1531), s (1502).
Spectra in Supplementary Materials (Figures S10–S17).
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Synthesis of G2⊂M1. In a 250 mL round bottom flask, 50 mg (0.074 mmol) of [Ru2(p-
cymene)2(2,5-dioxydo-1,4-benzoquinonato)Cl2] and 37.8 (0.148 mmol) mg of AgCF3SO3
were dissolved in 20 mL of MeOH and stirred for 2 h at room temperature. Next, sil-
ver chloride was filtered off. To the remaining solution, 15.4 mg (0.049 mmol) of 2,4,6-
tri(pyridin-4-yl)-1,3,5-triazine and 8.1 mg (0.025 mmol) of G2 were added, and the so-
lution was refluxed and stirred for 18 h. The solvent was then removed at reduced
pressure, and the resulting oily, dark green solid was dissolved in 20 mL of CH2Cl2.
The solution was concentrated to approximately 3 mL, and 5 mL of Et2O was added
dropwise. The resulting precipitate was filtered and dried under vacuum. Yield 64%
(59 mg). 1H NMR (DMSO-d6, 25 ◦C, 600 MHz): δ 10.42 (s, 4H, CHMg-porphine), 9.61 (s,
8H, CHMg-porphine), 8.57 (m, 24H, CHpy), 5.62 (d, 3JHH = 6.1 Hz, 12H, CHcym), 5.98 (d,
3JHH = 6.1 Hz, 12H, CHcym), 5.91 (s, 6H, CHbz), 2.82 (m, 6H, CHiPr), 2.08 (s, 18H, CH3),
1.28 (d, 3JHH = 6.9 Hz, 36H, CH3 iPr). 13C NMR (DMSO-d6, 25 ◦C, 150 MHz): δ

184.1 (C-O), 169.4 (Cq), 154.5 (CHpy), 149.3 (Cq), 144.6 (Cq), 132.7 (CHMg-porphine),
129.2 (Cq), 126.5 (Cq), 124.8 (CHpy), 122.2 (Cq), 120.0 (Cq), 105.9 (CHMg-porphine), 103.8 (Ccym),
101.8 (CHbz), 99.7 (Ccym), 84.1 (CHcym), 81.9 (CHcym), 31.1 (CHiPr), 22.4 (CH3 iPr),
17.9 (CH3). Elemental analysis: Calcd. For C140H126F18MgN16O30Ru6S6 + 6H2O: C, 44.42;
H, 3.67; N, 5.92. Found: C, 45.23; H, 4.08; N, 6.09. ESI-MS, m/z, 770 [M1+G2-4OTf]4+.
UV/vis (DMSO), λ, nm (ε, M−1·cm−1): 500 (140700), 535 (130400). FT-IR (ATR, solid,
cm−1): ν; s (3093), s (2977), s (2911), s (2804), s (1508). Spectra in Supplementary Materials
(Figures S18–S26).

Synthesis of G2⊂M4. In a 250 mL round bottom flask, 50 mg (0.069 mmol) of [Ru2(p-
cymene)2(5,8-dioxydo-1,4-naphthoquinonato)Cl2] and 35.5 mg (0.138 mmol) of AgCF3SO3
were dissolved in 20 mL of MeOH and stirred for 2 h at room temperature. Next, silver
chloride was filtered off. To the remaining solution, 16.81 mg (0.034 mmol) of 1,2,4,5-
tetrakis{2-(pyridine-4-yl)vinyl} benzene and 5.7 mg (0.017 mmol) of G2 were added, and
the solution was refluxed and stirred for 18 h. The solvent was then removed at reduced
pressure, and the resulting oily, dark green solid was dissolved in 20 mL of CH2Cl2. The
solution was concentrated to approximately 3 mL, and 5 mL of Et2O was added dropwise.
The resulting precipitate was filtered and dried under vacuum. Yield 59% (52 mg). 1H
NMR (CD3CN, 25 ◦C, 600 MHz): δ 10.02 (s, 4H, CHMg-porphine), 9.13 (s, 8H, CHMg-porphine),
8.18 (d, 3JHH = 5.1 Hz, 16H, CHpy), 7.49 (d, 3JHH = 15.1 Hz, 8H, CH=C), 7.20 (m, 40H,
CHnaph, CHpy, CH=C), 6.90 (s, 4H, CHar), 5.60 (d, 3JHH = 4.46 Hz, 16H, CHcym), 5.41 (d,
3JHH = 3.1 Hz, 16H, CHcym), 2.76 (m, 3JHH = 6.9 Hz, 8H, CHiPr), 2.03 (overlapped singlet,
24H, CH3), 1.25 (d, 3JHH = 6.9 Hz, 48H, CH3 iPr). 13C NMR (CD3CN, 25 ◦C, 150 MHz): δ
171.4 (C-O), 152.3 (CHpy), 149.9 (Cq), 147.7 (Cq), 138.1 (CHpy), 128.6 (CH=C), 127.6 (CH=C),
123.6 (CHnaph), 122.8 (Cq), 112.1 (Cq), 104.1 (Ccym), 99.7 (Ccym), 84.7 (CHcym), 83.7 (CHcym),
31.0 (CHiPr), 21.9 (CH3 iPr), 16.9 (CH3). ESI-MS, m/z, 880 [M4+G2-5OTf]5+. UV/vis
(DMSO), λ, nm (ε, M−1·cm−1): 536 (137900), 572 (80300), 610 (64600). FT-IR (ATR, solid,
cm−1): ν; s (3089), s (2947), s (2911), s (2861), s (1619), (1554). Spectra in Supplementary
Materials (Figures S27–S35).

Synthesis of G2⊂M6. In a 250 mL round bottom flask, 50 mg (0.069 mmol) of [Ru2(p-
cymene)2(5,8-dioxydo-1,4-naphthoquinonato)Cl2] and 35.5 mg (0.138) of AgCF3SO3 were
dissolved in 20 mL of MeOH and stirred for 2 h at room temperature. Next, silver chloride
was filtered off. To the remaining solution, 17.8 mg (0.046 mmol) of panel ligand 1,3,5-tris{2-
(pyridin-4-yl)vinyl}benzene and 7.6 mg (0.023 mmol) of G2 were added, and the solution
was refluxed and stirred for 18 h. The solvent was then removed at reduced pressure, and
the resulting oily, dark green solid was dissolved in 20 mL of CH2Cl2. The solution was
concentrated to approximately 3 mL, and 5 mL of Et2O was added dropwise. The resulting
precipitate was filtered and dried under vacuum. Yield 61% (56 mg). 1H NMR (CD3CN,
25 ◦C, 600 MHz): δ 10.29 (s, 4H, CHMg-porphine), 9.41 (s, 8H, CHMg-porphine), 8.57 (d,
3JHH = 5.7 Hz, 12H, CHpy), 7.50 (s, 6H, CHar), 7.33 (d, 3JHH = 5.7 Hz, 12H, CHpy), 7.26
(s, 12H, CHnaph), 7.22 (overlapped doublet, 6H, CH=C), 6.98 (d, 3JHH = 16.1 Hz, 6H,
CH=C), 5.69 (d, 3JHH = 5.9 Hz, 12H, CHcym), 5.48 (d, 3JHH = 4.2 Hz, 12H, CHcym), 2.84
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(m, 3JHH = 7.0 Hz, 6H, CHiPr), 2.10 (s, 18H, CH3), 1.33 (d, 3JHH = 7.0 Hz, 36H, CH3 iPr).
13C NMR (CD3CN, 25 ◦C, 150 MHz): δ 171.3 (C-O), 152.3 (CHpy), 147.9 (Cq), 138.0 (CHpy),
137.0 (CHnaph), 135.1 (CHnaph), 132.5 (CHMg-Porphine), 127.4 (CH=C), 125.2 (CH=C), 123.1
(CHar), 120.6 (Cq), 112.0 (Cq), 105.9 (CHMg-porphine), 104.0 (Ccym), 99.7 (Ccym), 84.6 (CHcym),
83.5 (CHcym), 31.0 (CHiPr), 21.9 (CH3 iPr), 16.9 (CH3). Elemental analysis: Calcd. For
C170H150F18MgN10O30Ru6S6 + 6CH2Cl2: C, 46.49; H, 3.62; N, 3.06. Found: C, 45.47; H,
3.51; N, 3.88. ESI-MS, m/z, 1177 [M6+G2-3OTf]3+. UV/vis (DMSO), λ, nm (ε, M−1·cm−1):
446 (150800), 536 (110500), 573 (53500), 610 (47100). FT-IR (ATR, solid, cm-1): ν; s (3101), s
(2979), s (2914), s (1604), s (1522). Spectra in Supplementary Materials (Figures S36–S43).

2.2. Preparation of Human Synovial Cells

RA synoviocytes were isolated from fresh synovial biopsies obtained from four RA pa-
tients undergoing finger arthroplasty. All patients fulfilled the 1987 American Rheumatism
Association criteria for RA [29]. The mean age of the patients was 67.4 ± 3.2 years (range
53–81 years). The mean disease duration was 8.7 ± 2.3 years. At the time of surgery, the
disease activity score (DAS 28) was greater than 3.2. These activities were approved by local
institutional review boards, and all subjects gave written informed consent. Synovia were
minced and digested with 1.5 mg/mL collagenase-dispase for 3–4 h at 37 ◦C as previously
described [30]. After centrifugation, cells were resuspended in DMEM supplemented with
10% FCS, 4.5 g/L D-glucose, 25 mM Hepes, 100 U/mL penicillin, and 100 µg/mL strepto-
mycin (Gibco BRL) in a humidified atmosphere containing 5% (v/v) CO2 at 37 ◦C. After
48 h, nonadherent cells were removed. Adherent cells (macrophage-like and FLS) were
cultured in complete medium, and, at confluence, cells were trypsinized and only the FLS
were passed. These cells were used between passages 4 and 8, when they morphologically
resembled FLS after an indirect immunofluorescence study (see Culture of human RA
FLS). RA FLS were cultured 45–60 days before experimentation. This delay allowed for
the elimination of all possible interactions resulting from any preoperative treatment (with
nonsteroidal anti-inflammatory drugs, analgesics, disease-modifying antirheumatic drugs,
or steroids).

2.3. Culture of Human RA FLS and Treatment

Between passages 4 and 8, RA FLS were trypsinized. Cell count and viability were
determined, and cells were plated in culture plates or flasks (Falcon, Oxnard, CA, USA).
Viability, measured by trypan blue dye exclusion [31] at the start and the end of culture,
was always greater than 95%. FLS (105) from RA patients were used for an indirect
immunofluorescence study [32]. The following monoclonal antibodies were used: 5B5
(anti-prolyl hydroxylase) for fibroblasts at a 1/50 dilution (Dako, Burlingame, CA, USA),
JC/70A (anti-CD31), for endothelial cells at 1/50 (Dako), and RMO52 (anti-CD14) for
macrophages at 1/50 (Immunotech). The negative control was a mouse antibody of the
same isotype (Immunotech). Incubations were performed at room temperature for 30 min.
Binding of monoclonal antibodies was visualized using fluorescein (DTAF)-conjugated
goat anti-mouse antibody (Immunotech) at a 1/50 dilution.

2.4. Antiproliferative Assays

RA FLS cells were trypsinized in fresh DMEM culture medium. Homogeneous
solutions were prepared in 10 mL of medium with 700,000 cells. In a 96-well plate, 100 µL
of the solution (7000 cells per well) was poured and the cells were incubated for 24 h at
37 ◦C and 5% CO2. Subsequently, 100 µL of PS solution in increasing concentration was
poured per row in the plate and incubated for 24 h in the same conditions. The compounds
were dissolved in DMSO (1 mM) just before use and then added to the culture medium in
the desired concentrations. The concentration of DMSO in the cell medium was never more
than 0.05%. After incubation, the medium was removed and 100 µL of complete medium
without red phenol was added per well. At that point, irradiation was carried out using
a red-light source, CureLight®, PhotoCure ASA at 630 nm, at a dose of 40 mW/cm2 for
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30 min. After the irradiation, the wells plates were put in the incubator for 18 h. After this
time, 10 µL of MTT solution (5 g/L) was added and the plates were again placed inside the
incubator for 4 h. Next, the media was removed and 200 µL of DMSO was added per well,
stirring the plate softly for 3 min. Absorbance after the MTT assay was measured at 540 nm
by a Dynex Triad Multi Mode Microplate Reader, Dynex Technologies. The assays were
executed in triplicate. Cytotoxicity evaluations in the dark were carried out by repeating
this entire protocol without the irradiation dose. ·cm−1

2.5. Protein Extraction and Western-Blot Analysis

For total protein extraction, RA FLS were washed in PBS, and the total cell pool was
centrifuged at 200 g for 5 min at 4 ◦C and homogenized in RIPA lysis buffer (50 mM HEPES,
pH 7.5, 150 mM NaCl, 1% sodium deoxycholate, 1% NP-40, 0.1% SDS, and 20 mg/mL of
aprotinin) containing protease inhibitors (CompleteTM Mini, Roche Diagnostics) according
to the manufacturer’s instructions. Proteins (60 µg) were separated by electrophoresis
on 10% SDS–PAGE gels and transferred to polyvinylidene fluoride (PVDF) membranes
(Amersham Pharmacia Biotech, Saclay, France), which were then probed with a COX-2
human primary antibody (Cayman Chemical, Bertin Pharma, Montigny le Bretonneux,
France). After incubation with a secondary antibody (Dako France S.A.S., Trappes, France),
blots were developed using the ECL Plus Western Blotting Detection System (Amersham
Pharmacia Biotech) and G: BOX system (Syngene, Ozyme, Saint Quentin en Yvelines,
France). Membranes were then reblotted with human anti-β-actin (Sigma-Aldrich, Saint
Quentin Fallavier, France) used as a loading control.

2.6. Assay of COX-2 Activity

RA FLS were maintained in DMEM supplemented with 10% (v/v) FCS, 4.5 g/L D-
glucose, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells were grown in
a humidified incubator at 37 ◦C and 5% CO2. Next, 2.106 RA FLS cells were seeded in
a 25 cm2 flask and incubated for 24 h. Then, the IC50 of each PS was added and the
cells were incubated for 24 h. The medium was removed and a medium without red
phenol was added. Immediately, cells were irradiated under the same conditions expressed
in the MTT assays and incubated for 18 h. The non-irradiated cells were kept in the
incubator. After this, LPS (1 µg/mL) was added to the medium of both irradiated and
non-irradiated cells, and the cells were incubated for 4 h. Cells were trypsinized and
the culture medium supernatant was isolated. The PGE2 levels were quantified in the
culture media supernatants from treated and control cells by enzyme immunoassay using
an ELISA Kit (Cayman Chemical) [33]. The results were expressed as the average of three
independent experiments.

2.7. Assay of IL-1β Production

The IL-1β levels were quantified in the culture media supernatants, isolated by the
same protocol described for PGE2, from treated and control cells by ELISA Kit (Thermo
Fisher Scientific). The results were expressed as the average of three independent experiments.

2.8. Statistical Analysis

All quantitative results are expressed as the mean ± 3 standard deviations (SEM) of
separate experiments using Excel (Microsoft Office, Version 2019). Statistical significance
was evaluated by the two-tailed unpaired Student’s t-test, p-value < 0.001 (***).

3. Results and Discussion
3.1. Phototoxicity Tests

Although it is the first time that these PS–metallacage systems have been tested to
treat RA using PDT, two of the fifteen systems described here (Figure 3) have already
been tested in cancer (HeLa, Me300, A2780, A2780cisR, and A549) [21]. Specifically, the
prismatic metallacage M1 and the cubic M4, both with G1 in their internal cavity. In
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cancer cells, a total absence of cytotoxicity was demonstrated prior to cell internalization.
Once inside the cells, the PS is released from the cage and can be irradiated giving rise
to photocytotoxicity. Two mechanisms have been suggested to explain the releasing of
the PS from the metallacage: (i) from a partial or total rupture of the cage; or (ii) through
an aperture [21,22]. Furthermore, intracellular ruthenium contents [22] and fluorescence
studies [21] have confirmed the ability of these metallacages to cross cell membranes.
Fluorescence studies also reveal that, once inside the cell and after the PS leaves the cavity
of the metallacage, both are positioned in different cellular areas, which did not include
the nucleus.

In this work, we wanted to demonstrate the efficacy and potential of these systems in
another pathology, RA, looking for a treatment that is fairly non-invasive. In addition, we
have synthesized cages with structural variations to evaluate how the different elements of
the metallacage influence its PDT effect (Figure 3). Moreover, we have evaluated new PSs,
such as G2, G3, and G4, in addition to G1 which have been evaluated to treat RA by PDT.

First, these metallacages can be differentiated by their two main elements: the panel
ligand and the dinuclear ruthenium clips. The panel ligand is a flat organic compound
with three or four pyridine substituents, which give rise to prismatic or cubic cages,
respectively. In this work, we used 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine, 1,3,5-tris{2-(pyridin-
4-yl)vinyl}benzene, or 1,2,4,5-tetrakis{2-(pyridine-4-yl)vinyl} benzene. Dinuclear arene
ruthenium(II) complexes are the edges of the cage, whose two metal atoms are linked by
2,5-dioxydo-1,4-benzoquinonato, 5,8-dioxydo-1,4-naphthoquinonato, or 6,11-dioxydo-5,12-
naphthacenedionato ligands (Figure 3).

The results of the photocytotoxicity tests after PDT in RA FLS were excellent (Table 1).
MTT assays showed 50% inhibition concentrations (IC50) lower than those seen in cancer
cells [21]. The latter was to be expected, since RA FLS are primary cells and their growth is
not accelerated, unlike cancer cells. As we anticipated, the structural variation in the cages
gave rise to significant differences in the PDT effect.

Table 1. Results of the MTT assays. Irradiation after 24 h of incubation with G ⊂ M, λ = 630 nm,
40 mW/cm2 for 30 min. IC50 values were calculated fitting the curve to a second degree polynomial
± 3 sigma deviations. The maximum concentration tested was 1.5 µM. Quantum yield (ΦF) was
calculated using TPP as an internal standard in DMSO at 25 ◦C.

Entry G ⊂⊂⊂ M IC50 (nM) Light IC50 (nM) Dark ΦF (%)

1 G1 ⊂ M1 211.7 ± 5.8 >1500 -
2 G1 ⊂ M2 95.0 ± 5.9 >1500 -
3 G1 ⊂ M3 53.6 ± 4.3 >1500 -
4 G1 ⊂ M4 48.1 ± 9.7 >1500 -
5 G1 ⊂ M5 35.4 ± 4.7 >1500 0.8
6 G1 ⊂ M6 31.7 ± 6.6 >1500 1.1
7 G2 ⊂ M1 302.6 ± 5.2 >1500 -
8 G2 ⊂ M4 100.7 ± 5.8 >1500 -
9 G2 ⊂ M6 91.8 ± 8.3 >1500 2.0

10 G3 ⊂ M4 >1500 >1500 -
11 G3 ⊂ M5 53.4 ± 4.5 >1500 0.11
12 G3 ⊂ M6 47.4 ± 6.3 >1500 -
13 G4 ⊂ M4 >1500 >1500 -
14 G4 ⊂ M5 66.0 ± 2.6 103.8 ± 2.9 1.6
15 G4 ⊂ M6 64.4 ± 4.4 163.8 ± 17.1 -

First, we have observed that when the size of the panel ligand is bigger, the photocyto-
toxicity is higher. For example, the structures of cages M2, M4, and M6 differ only by the
panel ligand, 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine, 1,3,5-tris{2-(pyridin-4-yl)vinyl}benzene,
and 1,2,4,5-tetrakis{2-(pyridine-4-yl)vinyl} benzene, respectively. When the IC50 values
obtained with porphine as the PS are compared (entries 2, 4, and 6 in Table 1), we observed
that cage M2, with the smallest panel, needed a higher concentration than M4 and M6
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(triple when compared to M6). This difference becomes more evident if we compare
cage M1 and M5, which have panels 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine and 1,3,5-tris{2-
(pyridin-4-yl)vinyl}benzene, respectively. With G1 as the PS, the IC50 of M1 is six times
higher than that observed in M5 (entries 1 and 5 in Table 1). This coincides with what has
been reported in cancer cells [21]. A larger panel gives rise to larger apertures that facilitate
the release of the PS once inside the cell, producing more ROS and, subsequently, more
photocytotoxicity. This result is consistent with the other three PSs tested (Table 1).

The second of the structural elements of the cages that we can modify, the dinuclear
ruthenium clip, also showed significant differences, as we expected. When the volume of
the ruthenium complex is bulkier, we observed that the IC50 is lower, which translates into
a better PDT effect. For instance, cages M1, M2, and M3 contain the same panel ligand and
differ only in the dinuclear ruthenium “edges”, being 2,5-dioxydo-1,4-benzoquinonato, 5,8-
dioxydo-1,4-naphthoquinonato, and 6,11-dioxydo-5,12-naphthacenedionato respectively.
With G1 as the PS, the result obtained with M3 was four times lower than the IC50 obtained
in M1 (entries 1 and 3 in Table 1), while the IC50 of M2 (entry 2 in Table 1) shows an
intermediate value. These results are consistent with the structure of the metallacages,
which suggest the release of the PS through an aperture [22]. Indeed, when the metallacage
is smaller, the host–guest system is stabilized, making it difficult for the PS to escape, which
translates into lower ROS production and a lower PDT effect. The same result, although in
a lesser proportion, is observed with the other PSs tested (Table 1).

Finally, the four PSs tested have shown significant differences. First, it is worth noting
the presence or absence of a metal in the center of the tetrapyrrole. In all cases, using the
same cage, the PSs without a metal showed a better PDT effect (Table 1). The cause of this
result is directly related to fluorescence [34]. When the PS is irradiated, part of the energy
is absorbed and the PS reaches the excited singlet state. The PS can then return to the
minimum energy state by releasing that energy, producing fluorescence, or the energy can
pass through an intermediate excited triplet state. From this last state, the PS can return to
the ground state, giving rise to phosphorescence, or interact with O2 to give rise to singlet
oxygen and, in turn, ROS [12,13]. Therefore, since the derivate with Zn and Mg give rise
to higher fluorescence (Figure 4), lower ROS production would be expected than their
equivalents without metal. This corroborates the obtained results, that is, the presence
of Mg or Zn favor fluorescence and therefore reduce ROS production and PDT efficiency.
Calculating the quantum yields (Table 1), we observed the same result as expected, that is,
higher quantum yield equates to less of a PDT effect.
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Regarding the differences between porphine (G1) and phthalocyanine (G3), the re-
sults show that G1 works better as a PS than G3 when carried in the same metallacage
(Table 1). However, the IC50 for G3 is still excellent, with both showing great potential as
PSs. Surprisingly, one of the results was unexpected. When G3 or G4 is transported by
the cubic metallacage (M4), no effect on RA FLS is observed (Table 1), even at the highest
concentration tested. This also suggests a stronger binding affinity between the host and
the guest, thus supporting that the PS is released through an aperture, rather than having a
breakage of the metallacage [22].

Another excellent result is the total absence of cytotoxicity in the dark for all com-
pounds, except for those with G4 in their cavity, which show dark toxicity (Figure 5).
Therefore, this result suggests that G4 is not a good PS, although it is something we
could have anticipated since other zinc tetrapyrrole derivatives have already been re-
ported to show toxicity in the dark [35,36]. Another intriguing result comes from the
metallated photosensitizers (G3 and G4) encapsulated in the 1,2,4,5-tetrakis{2-(pyridine-4-
yl)vinyl} benzene derivative (M4) (entries 10 and 13, Table 1). In both systems (G3⊂M4
and G4⊂M4), no phototoxicity and no toxicity is observed, suggesting the absence of a
photo-response from the photosensitizers in these particular cases. When compared to the
other G⊂M systems, the most plausible explanation is that the presence of Mg or Zn in
the core of the PS generates a stronger interaction between the host and the guest, thus
shielding the PS and blocking their release.
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3.2. Inflammatory Evaluation

The synovial membrane encapsulates the joint, providing structural support, lubricat-
ing the tissues, and providing nutrients to the cartilage. FLS are part of the inner lining
layer of the synovial membrane. One of the main functions of FLS is the production of cy-
tokines [37]. One of the cytokines involved in the inflammatory response is the interleukin
(IL) family. IL-1 can express cyclooxygenase-2 (COX-2), an enzyme that acts as a catalyst
in the production of prostaglandin E2 (PGE2) from arachidonic acid [38–41]. PGE2 causes
vasodilation in the synovial tissue, leading to inflammation in the area [42]. To evaluate in
RA FLS the in vitro inflammatory activity after PDT, we decided to measure the production
of PGE2 and IL-1β in the supernatant, in addition to the expression of COX-2 in both the
irradiated and non-irradiated treated cells.
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The determination of COX-2 expression reveals that treated RA FLS with our systems
by PDT generates an overexpression of this enzyme (Figure 6), when the cells were irradi-
ated. This result was expected, since multiple examples of COX-2 overexpression after PDT
have been reported. For instance, other porphyrin-based PSs such as PpIX-polyamine [43]
or Photofrin [44] increased COX-2 expression. Additionally, this not only happens with PSs
based on porphyrins, but also with other PSs used in PDT [45,46]. It should be noted that
most of the systems with a lower IC50 (Table 1) show less intensity in the COX-2 expression
band (Figure 6). For instance, the compounds that obtained the lowest IC50, entries 4, 5, 6,
11, and 12 (Table 1), showed a COX-2 band with the lowest intensity.
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Cells (2 × 106) were cultured in DMEM medium (FBS 10%, L-glutamine 1%, penicillin 100 U/mL, Streptomycin 100 µg/mL)
for 24 h and treated with the corresponding system G⊂M. After 24 h, the medium was replaced by a DMEM medium
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(1 µg/mL) was added to the medium to stimulate the expression of COX-2, and 4 h later the trypsination was carried out.
COX-2 expression was determined by Western Blot and β-actin was used as a protein loading control. All experiments were
done in triplicate.

As expected, an overexpression of COX-2 generates a greater production of PGE2 [43],
which may lead to an increase in inflammation. That is what we see in the results obtained
in the determination of PGE2 (Table 2). As with COX-2, it can be seen that when the
IC50 is lower, the production of PGE2 is also lower, which again points out that reducing
the required concentration of PS could reduce the adverse effects of PDT. However, it is
possible to minimize the expression of COX-2 and, consequently, the production of PGE2
by using a COX-2 inhibitor, such as NS-398 during PDT treatment [43,47].

On the other hand, IL-1β is known to be a pro-inflammatory cytokine that leads to
the expression of COX-2, among other functions [48]. Since our experiments showed an
overexpression of COX-2 and the production of PGE2, we anticipated the presence of this
cytokine as a response to the PDT treatment. Unexpectedly, the determination of IL-1β
indicates that its presence after PDT is insignificant (Table 2). It is even below the standard
of lower concentration and their values were not significantly different from the control
samples. This indicates that, in vitro, when RA FLS are treated with our systems by PDT,
IL-1β is not generating more COX-2 than what is already present in the cells, so it is not
involved in the detected overexpression. However, also in synovial tissues, other cases have
been reported in which IL-1β was not involved in the overexpression of COX-2 [49–51],
indicating that other cytokines like IL-6 or IL-8 were responsible [51].



Pharmaceutics 2021, 13, 2104 13 of 16

Table 2. PGE2 and IL-1β results. The assays were performed using the protocol provided by the
ELISA kit in triplicate. The data were treated as explained in this protocol. The cells tested were
treated by PDT with each of the indicated compounds as described in the experimental section.
The control sample was treated exactly as the cells tested, that is, 18 h after the irradiation dose,
1 µg/mL of LPS was added to the medium and the cells were incubated for 4 h, then trypsinized
and the cells and supernatant were isolated. The results are expressed by the average of three
independent experiments. After testing the photocytotoxic activity, we chose the systems with the
greatest potential to be used in PDT against RA and evaluated their inflammatory activity. Of these
fifteen systems, we obviously ruled out those that did not work (cubic cage M4 + phthalocyanines)
and the systems that generated toxicity in the dark.

Entry G ⊂⊂⊂ M PGE2 (pg/mL) IL-1β (pg/mL)

Ctrl - 286.6 ± 0.1 1.8 ± 0.7
1 G1 ⊂ M1 460.8 ± 4.3 2.3 ± 1.2
2 G1 ⊂ M2 471.2 ± 3.4 1.9 ± 1.0
3 G1 ⊂ M3 445.1 ± 4.7 2.8 ± 0.1
4 G1 ⊂ M4 378.3 ± 14.2 3.2 ± 0.4
5 G1 ⊂ M5 407.4 ± 14.5 2.1 ± 0.2
6 G1 ⊂ M6 439.2 ± 10.1 1.6 ± 0.1
7 G2 ⊂ M1 476.8 ± 3.4 1.9 ± 0.6
8 G2 ⊂ M4 473.6 ± 7.5 1.4 ± 0.2
9 G2 ⊂ M6 430.6 ± 1.4 2.2 ± 0.2
10 G3 ⊂ M5 368.2 ± 26.5 2.4 ± 0.4
11 G3 ⊂ M6 425.2 ± 2.7 0.1 ± 0.1

4. Conclusions

A series of photosensitizers (G) encapsulated in arene ruthenium metallacages (M)
have been synthesized and characterized. The PDT effect of these host–guest systems
(G⊂M) has been evaluated on fibroblast-like synoviocyte cells (FLS). With the exception of
the zinc phthalocyanine derivatives (G4⊂M5 and G4⊂M6), all G⊂M compounds show
no toxicity in the dark at the highest concentration tested (1.5 µM). When under light, the
most photoactive compounds appear to be those with the largest cavity and the smallest
guest, suggesting that the release of the photosensitizers from the host occurs without
any breakage of the metallacage. However, when G4 is encapsulated in the metallacages
built with 1,3,5-tris{2-(pyridin-4-yl)vinyl} benzene panels (M5 and M6), the difference
between phototoxicity and toxicity is limited. On the other hand, when the metallated
photosensitizers (G3 and G4) are encapsulated in the 1,2,4,5-tetrakis{2-(pyridine-4-yl)vinyl}
benzene derivative (M4), no phototoxicity is observed, suggesting a strong interaction
between the host and guest, which shields the photosensitizer. Nevertheless, in all systems,
PDT gives rise to the overexpression of COX-2 and PGE2. However, we have also observed
that when a lower concentration of the drug is used, this overexpression is significantly
reduced. Surprisingly, IL-1β does not seem to be involved in this COX-2 overexpression,
despite being previously reported. This indicates that other cytokines are responsible
for this overexpression of COX-2. With a few exceptions, all systems show encouraging
results, and further in vitro investigations should be performed and other host–guest
systems evaluated in order to validate our strategy; however, we think our results show
an interesting method for the treatment of RA by PDT. This work, added to those already
reported in the last three decades, both in vitro and in vivo, show the inherent potential
that PDT could have in the treatment of RA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122104/s1, Figure S1: 1H NMR spectrum of G1⊂M2 in CD3CN at
25 ◦C, Figure S2: 13C NMR spectrum of G1⊂M2 in CD3CN at 25 ◦C, Figure S3: 1H-1H COSY
NMR spectrum of G1⊂M2 in CD3CN at 25 ◦C, Figure S4: DOSY NMR spectrum of G1⊂M2 in
CD3CN at 25 ◦C, Figure S5: 1H-13C HSQC NMR spectrum of G1⊂M2 in CD3CN at 25 ◦C, Figure
S6: 1H-13C HMQC NMR spectrum of G1⊂M2 in CD3CN at 25 ◦C, Figure S7: ESI-MS spectrum
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of G1⊂M2, Figure S8: UV-vis absorbance spectrum of G1⊂M2 (10 µM in DMSO), Figure S9: ATR
FT-IR spectrum of G1⊂M2, Figure S10: 1H NMR spectrum of G1⊂M3 in CD3CN at 25 ◦C, Figure
S11: 13C NMR spectrum of G1⊂M3 in CD3CN at 25 ◦C, Figure S12: 1H-1H COSY NMR spectrum
of G1⊂M3 in CD3CN at 25 ◦C, Figure S13: DOSY NMR spectrum of G1⊂M3 in CD3CN at 25 ◦C,
Figure S14: 1H-13C HSQC NMR spectrum of G1⊂M3 in CD3CN at 25 ◦C, Figure S15: 1H-13C HMQC
NMR spectrum of G1⊂M3 in CD3CN at 25 ◦C, Figure S16: UV-vis absorbance spectrum of G1⊂M3
(10 µM in DMSO), Figure S17: ATR FT-IR spectrum spectrum of G1⊂M3, Figure S18: 1H NMR
spectrum of G2⊂M1 in DMSO-d6 at 25 ◦C, Figure S19: 13C NMR spectrum of G2⊂M1 in DMSO-d6
at 25 ◦C, Figure S20: 1H-1H COSY NMR spectrum of G2⊂M1 in DMSO-d6 at 25 ◦C, Figure S21:
DOSY NMR spectrum of G2⊂M1 in DMSO-d6 at 25 ◦C, Figure S22: 1H-13C HSQC NMR spectrum of
G2⊂M1 in DMSO-d6 at 25 ◦C, Figure S23: 1H-13C HMQC NMR spectrum of G2⊂M1 in DMSO-d6 at
25 ◦C, Figure S24: ESI-MS spectrum of G2⊂M1, Figure S25: UV-vis absorbance spectrum of G2⊂M1
(10 µM in DMSO), Figure S26: ATR FT-IR spectrum spectrum of G2⊂M1, Figure S27: 1H NMR
spectrum of G2⊂M4 in CD3CN at 25 ◦C, Figure S28: 13C NMR spectrum of G2⊂M4 in CD3CN at
25 ◦C, Figure S29: 1H-1H COSY NMR spectrum of G2⊂M4 in CD3CN at 25 ◦C, Figure S30: DOSY
NMR spectrum of G2⊂M4 in CD3CN at 25 ◦C, Figure S31: 1H-13C HSQC NMR spectrum of G2⊂M4
in CD3CN at 25 ◦C, Figure S32: 1H-13C HMQC NMR spectrum of G2⊂M4 in CD3CN at 25 ◦C, Figure
S33: ESI-MS spectrum of G2⊂M4, Figure S34: UV-vis absorbance spectrum of G2⊂M4 (10 µM in
DMSO), Figure S35: ATR FT-IR spectrum spectrum of G2⊂M4, Figure S36: 1H NMR spectrum of
G2⊂M6 in CD3CN at 25 ◦C, Figure S37: 13C NMR spectrum of G2⊂M6 in CD3CN at 25 ◦C, Figure
S38: 1H-1H COSY NMR spectrum of G2⊂M6 in CD3CN at 25 ◦C, Figure S39: 1H-13C HSQC NMR
spectrum of G2⊂M6 in CD3CN at 25 ◦C, Figure S40: 1H-13C HMQC NMR spectrum of G2⊂M6 in
CD3CN at 25 ◦C, Figure S41: ESI-MS spectrum of G2⊂M6, Figure S42: UV-vis absorbance spectrum
of G2⊂M6 (10 µM in DMSO), Figure S43: ATR FT-IR spectrum spectrum of G2⊂M6.
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