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Abstract

The reliability of the insulator has directly affected the stable operation of electric power sys-

tem. The detection of defective insulators has always been an important issue in smart grid

systems. However, the traditional transmission line detection method has low accuracy and

poor real-time performance. We present an insulator defect detection method based on

CenterNet. In order to improve detection efficiency, we simplified the backbone network. In

addition, an attention mechanism is utilized to suppress useless information and improve

the accuracy of network detection. In image preprocessing, the blurring of some detected

images results in the samples being discarded, so we use super-resolution reconstruction

algorithm to reconstruct the blurred images to enhance the dataset. The results show that

the AP of the proposed method reaches 96.16% and the reasoning speed reaches 30FPS

under the test condition of NVIDIA GTX 1080 test conditions. Compared with Faster R-

CNN, YOLOV3, RetinaNet and FSAF, the detection accuracy of proposed method is greatly

improved, which fully proves the effectiveness of the proposed method.

1 Introduction

In modern society, the demand for electricity is increasing day by day, which poses a huge

challenge to the inspection and maintenance of power grid. Daily inspection is a necessary

means to meet this challenge and ensure the safe operation and stable operation of the power

grid [1]. As an indispensable device in the power system, the self-destruction of the insulator

will seriously endanger the safe operation of the power grid system. Therefore, it is particularly

important to conduct state detection and fault diagnosis regularly. With the advancement of

smart grid construction, more and more attention has been paid to UAV inspection. There are

also more applications in power inspection work.

In recent years, the traditional insulator defect detection algorithms were mainly based on

local features of images. Martinez et al. [2] proposed a method of transmission line tower

detection and classification based on HOG feature and MLP neural network. Wang et al. [3]

proposed to combine the shape, color and texture information of insulators for detection,
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which effectively reduces the influence of background texture and lighting. However, the

above method is not effective in detecting occluded objects. Because it is difficult to extract

complete features from the detected image to identify the insulator, it is difficult to achieve the

expected accuracy. Since 2012, deep learning [4] received widely attention. There were two

branches of object detection model: two-stage and one-stage detection model. The two-stage

divides the whole process into two parts, with high detection accuracy, but it takes too long to

achieve real-time detection effect. At present, many improved two-stage algorithms have been

developed, for instance, R-CNN [5], Fast R-CNN [6], Faster R-CNN [7], R-FCN [8], etc. Com-

pared with the two-stage, the one-stage can achieve end-to-end detection and has a faster

detection speed, but its accuracy is reduced, mainly including: YOLO [9], SSD [10], YOLOv2

[11], YOLOv3 [12], CenterNet [13], etc.

Whether it is a two-stage detection model or a one-stage detection model, the information

assistance of a priori box is usually needed to regress to the ground truth. However, the size

and shape of defects change with the environment. Under the circumstances, it is hard to

design suitable anchor frames, and the use of anchor boxes incurs more computational costs.

Since Law and Deng proposed the Cornernet model without anchor boxes [14], some corre-

sponding anchorless frame models have attracted widespread attention from scholars [13, 15–

18]. Most of these detectors take key points, such as corners or centers, as positive samples to

regress to the objects.

Therefore, on the basis of the above research, we propose a defect insulator detection algo-

rithm based on WDSR and CenterNet, which uses ResNet50 as the backbone network. The

WDSR algorithm is used to achieve super-resolution reconstruction. The network then identi-

fies defective insulators. In addition, the generation of data set, the selection of evaluation indi-

cators, the selection of network parameters and so on are deeply analyzed. Experimental

results show that compared with YOLOv3 [12], RetinaNet [19], FSAF [18] and Faster R-CNN

[7], the proposed method has more than 6.45% improvement in AP and more than 3.56%

improvement in F1 score. It is proved that this method has better recognition effect on UAV

detection image.

The following is the arrangement of other parts of the paper: the second section introduces

the principle of the transmission line insulator defect detection and the construction of each

part of the framework. The third section discusses the data set, experimental environment,

result design, evaluation metrics, experimental design and result analysis. Finally, the fourth

section summarizes the paper.

2 Method

This section introduces the defect detection framework for insulators of transmission lines. As

shown in Fig 1. The defective insulator detection process includes image preprocessing and

defective insulator detection.

The specific process of detection are as follows:

1. Divide the original UAV inspection image set into two categories: qualified image set and

low-resolution blurred image set. In this paper, Laplace variance algorithm is used for

image classification.

2. Super-resolution reconstruction via WDSR. The processed image is combined with the

original image to obtain a suitable inspection image set through data enhancement.

3. Adjust the resolution of the new insulator image set to 512 × 512 resolution, and directly

input it into the ResNet50 network to generate a heat map. The peak in the heat map is the

center of the object.
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4. The generation from point to bounding box goes through three parts: center point predic-

tion, center point offset prediction and bounding box prediction.

5. Network output test results.

2.1 Backbone

In order to accelerate the optimization process and alleviate the gradient disappearance, a

residual network is proposed in [20]. Later, many other experiments also proved that the resid-

ual network is very effective. ResNet50, the basic backbone network, is used in this experiment.

However, limited by the amount of data in this experiment, the use of complex convolutional

neural network may produce over fitting. Consequently, we improve the original CenterNet

network with ResNet50 as the backbone.

In view of the characteristics of the insulator data set, such as large observation area, large

amount of information, large difference in object size, few and independent large objects, and

many and concentrated small objects, the attention mechanism is introduced. Attention

mechanism can learn the features of insulator images well, suppress the non-object features,

emphasize the instance information, suppress the background information, and improve the

detection accuracy. In this paper, CBAM [21] is selected to help the model better select

Fig 1. Flow chart of defect insulator detection.

https://doi.org/10.1371/journal.pone.0255135.g001
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intermediate features. CBAM module is a universal and lightweight module, so it can be

inserted into the convolution module of the whole network to achieve end-to-end synchro-

nous training. We basically insert a 7×7 Attention module into the convolution module before

the image is input into the ResNet50 backbone network. This module can improve the detec-

tion accuracy of small objects in the data set, because it helps the network to extract more key

information in the image. The CBAM module is shown in Fig 2.

According to [22], in the first convolutional layer, the down-sampling step may make the

model performance worse, especially for small objects. In response to this situation, we substi-

tute a 7 × 7 convolution layer (step 2) of the original network with three stacked 3 × 3 convolu-

tion layers (step 1). Among them, the channel of each 3×3 convolutional layer is set to 64, the

purpose of which is to save computational cost. At the same time, we easily remove the pooling

layer. The comparison between the original model structure and the improved one is shown in

Fig 3.

2.2 Detecting centers

The process from the bounding box to point is shown in Fig 4. The labeled image is put into

the feature extraction network to obtain the output feature map. Then the key point prediction

branch Y, the center point deviation branch O and the object size branch S share the same fea-

ture extraction network for training respectively.

We use the center heatmap to classify and locate the defective insulators, but in order to

avoid the influence on the foreground prediction score, the background channel is not used.

The resolution of the image is reduced by 4 times through ResNet50, and then the feature map

is up-sampled and restored to its original size. In short, the resolution of the input image is

equal to that of the center heatmap. Assuming that the size of the input image is W×H×3, the

size of the corresponding heatmap is C×W×H, where the C channel represents category C.

Since we only detect insulator self-explosion, C is set to 1. For a defective insulator string, only

the center of its bounding box is positive, with a value of 1. All other positions are negative

with a value of 0. However, this can produce a serious imbalance between positive and negative

samples, which can reduce the generalization ability of the model. Therefore, we use Gaussian

functions [13, 14] to process the points around the center and reduce their contribution to the

loss. The function is given by:

Yxyc ¼ exp �
ðx � �PxÞ

2
þ ðy � �PyÞ

2

2s2
P

 !

ð1Þ

Fig 2. CBAM module structure.

https://doi.org/10.1371/journal.pone.0255135.g002
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where �Px and �Py is the center point coordinate, σ is the variance. The value of σ depends on

the radius r of the region around the center. The parameter r is determined by the method

in [14], that is, the IoU value of the prediction box and the ground truth reaches at least 0.3, so

σ = 1/3r is set.

The center heatmap icon is shown in Fig 5.

Fig 3. Comparison between the original model structure and the improved one.

https://doi.org/10.1371/journal.pone.0255135.g003
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Here, the training loss refers to [14] and it is derived from Focal Loss [19], which is defined

as:

Lcls ¼
� 1

N

XC

c¼1

XH

i¼1

XW

j¼1

ð1 � pcijÞ
a logðpcijÞ ifycij ¼ 1

ð1 � ycijÞ
b
ðpcijÞ

a logð1 � pcijÞ otherwise
ð2Þ

8
<

:

where N is the number of defective insulator pieces. pcij is the predicted score of class C at

point (i, j), and is the corresponding label. α and β are hyperparameters. And β is used to con-

trol the weight of points around the positive sample. Set α = 2 and β = 4.

2.3 Bounding boxes regression

We return to the bounding box through the center point (positive point). Assume defect i has

a label of (ximin,yimin,ximax,yimax). So the bounding box can be expressed as boxi = (ximax−ximin,

Fig 4. Network architecture of CenterNet.

https://doi.org/10.1371/journal.pone.0255135.g004

Fig 5. The center heatmap icon. (a) Original image, (b) Gaussian label.

https://doi.org/10.1371/journal.pone.0255135.g005
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yimax−yimin). Then the training loss we use is L1 loss [6]:

Lreg ¼
1

N

XN

i¼1

smoothL1
ðbox�i � boxiÞ ð3Þ

smoothL1
ðxÞ ¼

0:5x2 if jxj < 1

jxj � 0:5 otherwise

(

ð4Þ

where box�i is the predicted value of the bounding box.

2.4 Implementation details

The resolution of the image in the data set needs to be adjusted to 512 × 512. In order to

improve the sample imbalance, we add more negative samples to some images. In addition,

random clipping, flipping and color dithering are used in the data enhancement part, which

can alleviate the problem of overfitting. We also use the Adam [23] optimizer. The sum of the

losses of the two branches is the total loss.

Loss ¼ aLcls þ bLreg ð5Þ

where α = 1.0, which is the weight of Lcls, and β = 0.1, which is the weight of Lreg. Because the

model structure is relatively simple, so only one GPU can train the model. We can use a batch

size of 16, and train the whole network for 50 epochs with initial learning rate 1.5×10−4.

Among them, the learning rate is reduced to 2.5×10−5 after 30 epochs.

3. Experiment

3.1 Dataset and compared methods

When preparing the training data set for WDSE, we follow the training methods in [24] and

[25]. At the same time, the clear image is processed by the motion blur method, where the blur

radius is set as 7. Finally, the blurred image and the corresponding clear image are combined

into a training pair as a training set. The insulator image after motion blur is shown in Fig 6.

The data set of insulator detection part in this experiment consists of two parts: 1507 network

images and 931 UAV aerial images. The UAV images used in this experiment are all taken from

the inspection of a power company in Guangdong Province. The training set and the test set con-

sist of 1958 and 480 images respectively. A partial image of the dataset is shown in Fig 7.

Fig 6. The insulator image after motion blur. (a) The original image, (b) The image after motion blur.

https://doi.org/10.1371/journal.pone.0255135.g006
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For the convenience of sample management and index, the samples are named XXX_ x. Jpg

format. The labeling diagram of LabelImg is shown in Fig 8.

In this paper, the experimental settings used for comparison are as follows: YOLOv3 [12],

RetinaNet [19] and FSAF [18] are selected as the one-stage detection. The two-stage detection

uses Faster R-CNN [7].

The detection effect of YOLOv3 on small objects is better, because it uses feature pyramid

information for detection. In order to ensure network performance, this experiment chooses

pre-trained darknet-53 as the backbone.

RetinaNet improves the accuracy of two-stage detection because it makes use of Focal Loss

to reduce the weight of a great quantity of simple negative samples in training. This method

requires the input image to be 640×640, and this experiment uses ResNet50 as the backbone.

Fig 7. Partial image set of insulators.

https://doi.org/10.1371/journal.pone.0255135.g007

Fig 8. The labeling diagram of LabelImg.

https://doi.org/10.1371/journal.pone.0255135.g008
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FSAF has two branches: anchor-based branch and anchor-free branch. Each object dynami-

cally selects the best feature layer. After the selection is made, the anchor-based method is used

for subsequent classification and position regress. The basic backbone selected in this experi-

ment is also ResNet50.

The Faster R-CNN detector is very popular due to its high detection accuracy. The method

of Faster R-CNN to obtain candidate boxes is the RPN (Region Proposal Network), and then

the detector classifies these regions. Both parts share ResNet50 as the backbone.

The above comparison experiments using ResNet50 as the backbone, the backbones are all

pre-trained on the MS COCO data set. In 200 epochs of training, we use the Adam [23] opti-

mizer for all methods. Set the initial learning rate to 10–4 in the first 90 epochs, drop to 10–5

in 90 epochs, and 10–6 in 150 epochs. To ensure the comparability of the results, both training

and testing are performed on our data set.

3.2 Evaluation metrics and detection results

Precision, recall and PRC (precision recall curve) [26] are used to measure the performance of

the above methods. The calculation methods of recall and precision are as follows:

Recall ¼
TP

TPþ FN
ð6Þ

Precision ¼
TP

TP þ FP
ð7Þ

where TPs, FPs and FNs represent true positive, false positive and false negative respectively.

AP (average precision), F1 score and FPS (frames per second) are also used as evaluation

indexes. The F1 score represents the golden ratio of precision and recall, that is, the weighted har-

monic average of precision and recall. FPS is detected by using a camera to simulate the video

stream obtained by the UAV under the environment of a single NVIDIA GTX1080 graphics card

in the micro-star deep learning workstation in this paper. The average detection time of 100 images

is calculated to get the inference speed index of this model. The calculation method is as follows:

AP ¼

X
Precision

NumðTotal ObjectsÞ
ð8Þ

F1 ¼ 2�
Precision� Recall
Precisionþ Recall

ð9Þ

The PRCs of all networks are shown in Fig 9. Our results on the defect data are shown in

Table 1. Qualitative comparisons with other methods are shown in Fig 10.

It can be clearly concluded from the figure that our methods perform well in terms of accu-

racy and recall. Specifically, the accuracy rate is only a little higher than other networks, but

the recall rate is far higher than other recall rates. Although Faster R-CNN is a two-stage

model, its recall is surprisingly good. This is due to the fact that the RPN generates a suitable

anchor box for the candidate insulators. The accuracy of YOLOv3 is second only to the

method we proposed, but the price is that its recall is the lowest among the above methods.

Through the visual output of YOLOv3, it can be seen that the reason leading to the lowest

recall rate is that some insulators are selected through the bounding box, but the size and posi-

tion of the bounding box are not accurate enough. RetinaNet is exactly the opposite of

YOLOv3. It has a higher recall but a lower accuracy. Comprehensive comparison, the perfor-

mance of FSAF is the most stable.
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Table 1 shows that the improved method with CBMA obtains the best AP and F1 score. By

improving ResNet50, the AP value of the network reaches 95.48% and the F1 score reaches

92.72%. Moreover, FPS is also fast, ranking second in the above methods, and can be detected

in real-time. In addition, the AP and F1 score reaches 96.16% and 95% respectively after add-

ing the attention mechanism, which is the highest score among the above methods, which

proves the effectiveness of this method. Among all networks compared, the AP of FSAF is clos-

est to our effect. In comparison, FASF performs well in the detection of small defective insula-

tors, and the other three methods perform well in the detection of large defective insulators,

but poorly at detecting small defective insulators and insulators with incomplete shapes.

It can be seen from Fig 10 that compared with other methods, our methods are more robust

to the detection of defective insulators. This is reflected in the detection effect of similar

objects, side-by-side objects and multi-scale objects.

4. Conclusion

Based on ResNet50, we improve the original CenterNet, simplify the whole backbone network

and realize the detection of insulator piece falling off. The experiment shows that the detection

result of the insulator sheet falling off reaches AP (96.16). It is verified that the effect of the

improved CenterNet is excellent, it can also be detected in real-time, and has special practical

significance to improve the power detection technology.

Fig 9. PRC of different methods.

https://doi.org/10.1371/journal.pone.0255135.g009

Table 1. Main detection results.

Method P(%) R(%) AP(%) F1(%) FPS

Faster R-CNN 90.51 89.94 86.96 90.22 5

YOLOv3 93.24 83.81 83.27 87.92 57

RetinaNet 87.90 88.19 86.28 88.04 17

FSAF 91.55 91.36 89.71 91.45 21

Ours CenterNet 90.11 95.48 95.48 92.72 33

Ours CenterNet+CBMA 94.02 96.02 96.16 95.01 30

https://doi.org/10.1371/journal.pone.0255135.t001
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UAV line inspection is the general trend of electric power inspection. Our next step in this

field is to establish a unified insulator database and accurately distinguish the fault types,

including lightning stroke, icing, self-explosion, etc. In this way, not only the fault detection of

insulators can be realized, but also their defects can be classified.
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