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Abstract: The solution electrospinning process (SEP) is a cost-effective technique in which a wide range
of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the
solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication
and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical
and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication,
and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP)
nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization
for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber
diameter), the surface properties (in terms of contact angle) and the mechanical properties under the
tensile mode of the fabricated scaffolds have been investigated and further compared against pristine
PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as
the candidate material for potential future cell culturing.

Keywords: polylactic acid; electrospinning; scaffolds; contact angle; porosity; mechanical properties;
MWCNTs; hydroxyapatite

1. Introduction

The solution electrospinning process (SEP) has been characterized so far as a novel and cost-effective
method for the fabrication of fibrous structures. This method allows the fabrication of fibers with
diameters ranging from a few nanometers up to 1 mm. SEP has a lot of benefits, as it exhibits simplicity
of use, adaptability and versatility [1]. A wide range of polymers can be electrospun, while the
fabricated fibrous structures named scaffolds have shown to excellently mimic the extracellular matrix
(ECM) environment to various degrees during the culture process of various cell types [2–4]. However,
one of the most basic requirements for a scaffold’s functionality is sufficient mechanical properties
(i.e., stiffness and strength), which further provide adequate stability. A scaffold not only provides an
area for cell residence, but also maintains the mechanical stability at the defect point of the host human
body [5]. Based on that, the mechanical properties of a scaffold are of great importance in the tissue
engineering domain. In order for a well-structured scaffold to be effective, it must retain its structural
integrity during handling and implantation at the defect site and provide sufficient biomechanical
support during the regeneration process and the scaffold’s degradation [6].

A variety of polymers, either biodegradable or non-biodegradable, have been utilized so far for
scaffold fabrication (i.e., delivery matrices), and the choice of the desirable polymer depends on each
specific application [7–9]. Polylactic acid (PLA) has attracted the interest of various researchers over
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the past 40 years. PLA is polylactic acid (polylactide), which is a compostable thermoplastic aliphatic
polyester, and is produced by a lactide ring opening polymerization process. It is also biodegradable,
biocompatible, and has good mechanical properties. It can be easily dissolved in common solvents and
decomposes over a reasonable period [10–12]. The decomposition products of PLA are charmless and
fully metabolized by the human organism. A wide range of publications exist in the literature in which
electrospun PLA is utilized as a tissue scaffold material [13–21], and it has been noted that by tuning
the polymer concentration of the solution, scaffolds with different morphologies are obtained [15,21].

Scaffolds’ nanomodification by inorganic particles has been repeatedly reported in the literature.
Noh et al. [22] fabricated PLA nanofibers modified with bioactive glass nanocomponents, which was
proven to be useful for supporting a hard tissue regeneration matrix. Thermal treatments were also
employed to further improve scaffolds’ performances. You et al. [23] enhanced scaffolds’ mechanical
performances after heat treatment, as fibers were thermally bonded. Afifi et al. [24] also observed an
analogous behavior. Lately, various researchers have focused on the nanomodification of electrospun
fibers by carbon nanotubes (CNTs) and hydroxyapatite (HAP) for biomedical applications, including
biosensors, drug delivery and the delivery of cell agents [25–28]. CNTs are long, thin graphene tubes
that possesses unique mechanical and electrical properties that can be exploited to create biomimetic
tailored scaffolds [29]. On the other hand, ceramic scaffolds composed of HAP have also been utilized
so far. Modified scaffolds with HAP present structural similarities to the mineral phase of bone and are
characterized as osteoconductive [28]. HAP is utilized as a bone substitute as it is stiffer and offers
improved mechanical performance to a scaffold [30], but very often, scaffolds modified with HAP are
fragile and have low porosity [31]. These scaffold types (with CNTs or HAP) can be easily fabricated
by the SEP technique.

McCullen et al. [32] developed a multi-walled carbon nanotube (MWCNT)-doped PLA scaffold
intended for tissue engineering. By optimization, it was shown that the appropriate PLA concentration
in a chloroform and dimethylformamide solvent combination was 20% w/w, while by the addition
of the MWCNTs, the fiber diameter was reduced by 70%. Yang et al. [33] investigated the effect
of PLA solution concentration, the solvent effect, and the CNT loadings on the final PLA fibrous
composite structure. According to their experimental results, it was shown that, by using mixed
solvents of chloroform/assistant solvent (v/v 3/1), better morphologies were achieved compared to
using chloroform as a single solvent. On the other hand, by increasing CNT loadings, entangled
bundles along the fiber axis were observed to have a misshapen morphology. Mackle et al. [29] also
fabricated and characterized CNT-loaded electroactive PLA scaffolds. Morelli et al. [28] fabricated
pristine PLA- and HAP-modified ones (with 20% and 50% w/w) for bone tissue engineering purposes.
The obtained scaffolds presented different characteristics in terms of fiber diameter, porosity and
mechanical properties. In addition, the differentiation of human mesenchymal stem cells from bone
marrow in osteoblasts and the osteogenesis in the developed scaffold were investigated.

Herein, pristine PLA scaffolds and nanomodified ones, made by the SEP technique, have been
successfully fabricated using a new solvent combination against other investigations. More precisely,
pristine PLA scaffolds and nanomodified scaffolds with (a) HAP (1% and 2% w/w) and (b) MWCNTs
(1% and 2% w/w) have been fabricated and further investigated. This work is an extension of and
complements the works [27,30,34], in which scaffolds made by different biocompatible materials were
fabricated and further investigated. The scope of this investigation was to fabricate and characterize PLA
electrospun scaffolds (pristine and nanomodified) and study whether their physical and mechanical
properties are improved/altered by nanomodification. Just after fabrication, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) examinations were conducted in order
to determine the mean fiber diameter, the morphology of the fabricated scaffolds, and the nanoparticle
distribution through the fibers’ structure. In addition, the porosity value for all fabricated scaffolds
was calculated. Mean fiber diameter and porosity values are of great interest, as they mainly affect the
mechanical performance and further the cell activity (i.e., during incubation and proliferation) [35,36].
Furthermore, contact angle experiments were conducted to determine the hydrophilicity levels of
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the fabricated structures. Finally, the apparent mechanical properties under tensile loading were
determined. Taking into consideration the experimental work conducted above, the fabricated structure
that exhibited the best performance could be further utilized as a host scaffold structure for bone tissue
regeneration purposes.

2. Materials and Methods

2.1. Raw Materials

The utilized PLA material is a compostable thermoplastic aliphatic polyester polymer and it was
developed by Innofil3D, Hauge, The Netherlands. PLA has a glass transition temperature (Tg) of about
50–60 ◦C and density of about 1240 kg/m3. Tetrahydrofuran (THF, inhibitor-free for HPLC ≥ 99%) and
N, N Dimethylformamide (DMF, anhydrous ≥ 99.8%), which played the solvent role, were utilized
and purchased by Sigma Aldrich, Saint Louis, MO, USA. Regarding the nanofillers, MWCNTs and
a synthetic “needle-like” HAP were utilized. The obtained MWCNTs (identification code: NC7000)
were supplied by Nanocyl, Sambreville, Belgium, and were produced via the Catalytic Chemical Vapor
Deposition (CCVD) process. The typical MWCNTs diameter is between 10 and 20 nm and their aspect
ratio spans were between 50 and 100. The synthetic “needle-like” HAP has an average length and
thickness of 150 nm and 20 nm, respectively, a purity ≥ 97.5%, and it was purchased by Shanghai
Xinglu Chemical Tech., Shanghai, China. In addition, HAP contains many minerals (i.e., Mg ≤ 1.8%,
Na ≤ 0.2%, Fe ≤ 0.08% and Al ≤ 0.1%) according to the given specifications of the supplier.

2.2. Solution Preparation and Solution Electrospinning Process (SEP)

The PLA material was dissolved into a mixture of THF/DMF solvents (80/20 w/w). Such a
balance between the two solvents was proven after optimization to be necessary for obtaining dry
fibrous structures. The utilized solvent combination is applied for the first time, as previous works
that investigated PLA scaffolds chose different ones [13–23,28,29,32,33]. Then, solutions containing
20 wt. % PLA were prepared, leading to a final scaffold structure (after SEP) of (a) pure PLA (b) PLA
with 1% HAP, (c) PLA with 2% HAP, (d) PLA with 1% MWCNTs and (d) PLA with 2% MWCNTs.
All the PLA solutions were characterized by low viscosity and such concentrations are expected to
enhance the mechanical performance of the final scaffolds and to obtain ultrafine fibers by avoiding
electrospinnability problems during SEP. The electrospinnability problems occur due to the increase in
the electrical conductivity value of the solution by introducing the conductive phase into it.

The selected solutions were prepared by stirring for 24 h at room temperature (RT) to achieve
homogeneity. Then, each solution type was loaded into a 3 mL syringe and it was directly electrospun
onto a grounded aluminum foil-covered collector (15 × 15 cm2). The solution flow rate for all samples
was fixed at 2.3 mL/h and the applied voltage was kept constant at 12 kV to achieve continuous jet
formation. The distance between the tip of the nozzle and the collector was set to 14 cm and a metallic,
18 gauge (G18) hypodermic needle (with inner diameter equal to 0.84 mm) was used. The SEP was
carried out at ambient conditions. For the needs of the present study, a lab-made SEP set-up was
utilized, containing a stable flat square aluminum plate as collector.

2.3. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Micro-Structure Analysis

The morphology and micro-structure of the fabricated scaffolds were evaluated by using SEM
and TEM microscopy. For the SEM, square strips with dimensions of 5 × 5 mm2 were machined
and then sputter coated with gold for 30 s. Then, the samples were placed inside the field emission
scanning electron microscopy instrument (FE-SEM, FEI InspectTM F50) by using a scanning electron
(SE) detector. The FE-SEM instrument operated at 5 kV. On the other hand, circular carbon coated
copper grids (200 mesh) with diameter 3.05 mm were utilized for the TEM characterization experiments.
These grids were positioned carefully on the collector’s surface, so that the electrospun fibers could be
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deposited during the SEP. The TEM instrument model was the JEM-2100/ HR-TEM, constructed by the
Japan electron optics laboratory (JEOL), and it operated at 200 kV.

The fiber diameter measurements were obtained by image processing with imageJ software
(NIH, Bethesda, MD, USA). By using different thresholds, the SEM micrographs were converted to
binary images. At least 150 fiber diameters were measured (50 measurements from three different
samples’ images), while the average value and the standard deviation (SSD) were reported. In addition,
the statistical test for the measured values of the fiber diameter was carried out by using the OriginPro
with 95% confidence interval to determine the fiber diameter distribution, which best describes the
experimental data.

2.4. Porosity Calculation

The porosity value of the scaffolds was determined by using the ratio of the measured mass of the
sample to the mass of a fully dense sample of the same size, by measuring the sample’s dimensions
(i.e., length, width and thickness). The thickness of all scaffolds was measured with a thickness gauge
by applying constant force. The porosity was determined by using Equation (1):

P =
M1 −M2

M1
·100 (%) (1)

where P is the porosity, M1 is the mass of a fully dense sample and M2 is the mass of an electrospun
scaffold. All the utilized samples had the same dimensions for comparison reasons.

2.5. Static Water Contact Angle Assay

Having the aim of evaluating the surface hydrophilicity of the fabricated electrospun scaffolds,
static water contact angle experiments were conducted by using a contact angle goniometer apparatus
(identification code: Kruss DSA100). The wetting characterization has a significant effect on bone
mechanics because it constitutes an agent of biocompatibility. The utilized apparatus consists of a
telescope equipped with a protractor to measure the angle of the tangent at the three-phase contact
point of the static drop by using a camera together with a drop-shape analysis software. For the
accurate wetting characterization of the PLA scaffolds, a 29 gauge (G29) stainless-steel needle (with an
inner diameter of 0.184 mm) was controlled by a motor, so as to inspect the volume of the drop and to
avoid unwanted vibration. The measurements were taken at t = 0 s after a single droplet of bi distilled
water (2 µL) came into contact with the surface of the fibrous scaffolds. Four measurements were taken
for each sample and the experiments were performed at RT conditions.

2.6. Uniaxial Tensile Tests

Five rectangular samples of 30 mm length and 10 mm width were punched out from each scaffold
type. The thickness of each specimen was measured to be approximately 0.2 ± 0.01 mm by using
a thickness gauge. For all samples, constant force was applied during the thickness measurements.
Special care was also taken during the preparation to avoid severe damage to the samples. In addition,
duct tape was carefully placed at each edge of the samples to improve the mounting of them on the
metallic grips of the testing device. The uniaxial micro-tensile tests were performed on a minimat 2000
(rheometric scientific) tensile instrument with a 200 N load cell. During the experiments, the span
length was set at 12 mm. All experiments were performed under RT conditions until sample’s failure
at a cross head velocity of 5 mm/min. Prior to the testing, pre-tension was applied to all samples in
order to ensure the extension and the receipt of load at the beginning of each experiment. The apparent
mechanical properties of the scaffolds (apparent stress (σ) and strain (ε)) can be calculated at any time
during the tensile experiments by using the following equations (Equations (2) and (3), respectively):

σ =
F
A

(2)
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ε =
L− Lo

Lo
(3)

where F is the force, A is the cross-sectional area of the sample, L is the displacement and Lo is the span
length. The apparent mechanical properties of the scaffolds, ultimate tensile strength (σmax), young’s
modulus (E) and elongation at break (εmax) were measured and further analyzed.

3. Results and Discussion

3.1. Structural and Morphological Analysis after Solution Electrospinning Process (SEP)

The structure and the morphology of the fabricated PLA scaffolds (pristine and nanomodified
scaffolds with HAP and MWCNTs) were investigated by using the SEM and the TEM microscopies.
Figure 1 shows the fabricated scaffolds in their final form, which macroscopically are characterized
as uniform and homogeneous. All the scaffold types have a characteristic white color apart from
the samples containing MWCNTs, which appear to have light grey color (due to the black color of
the MWCNTs). In the case of the modified PLA scaffolds with 2% MWCNTs, dark spots are evident
on the picture (Figure 1E), which demonstrates the presence of agglomerates in the final scaffold.
On the other hand, the samples containing HAP keep their initial color because the HAP appears to
have the same one as the PLA fibers.Biomimetics 2020, 5, x FOR PEER REVIEW 6 of 14 
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Figure 1. Illustration of the fabricated polylactic acid (PLA) scaffolds for the needs of the current
investigation. (A) Pristine PLA, (B) modified PLA with 1% hydroxyapatite (HAP), (C) modified PLA
with 2% HAP, (D) modified PLA with 1% multi-walled carbon nanotubes (MWCNTs) and (E) modified
PLA with 2% MWCNTs.

Figure 2 provides the SEM images that arose from each scaffold type together with the fiber
diameter distribution histograms, according to specifications described in Section 2.3. Figure 2A–E
corresponds to the pristine PLA (Figure 1A), to the 1% HAP modified (Figure 1B), to the 2% HAP
modified (Figure 1C), to the 1% MWCNTs modified (Figure 1D) and to the 2% MWCNTs modified
(Figure 1E), respectively. Based on the SEM images obtained for all material sets, cylindrical bead-free,
non-woven and smooth fibers were fabricated for all cases, consisting of dense networks with no
particular alignment (due to the SEP technique nature). The average fiber diameter values together
with the standard deviations (SSDs) of them are summarized in Figure 3. According to the histograms
of Figure 2 and the bar chart diagram of Figure 3, it was shown that nanomodification by HAP
led to increased average fiber diameter. More precisely, the average fiber diameter was increased
from 0.85 ± 0.35 µm for the nanofiller-free scaffolds to 1.13 ± 0.39 µm (33% increase) for scaffolds
containing 1% w/w HAP, and to 1.43 ± 0.65 µm (68% increase) for scaffolds containing 2% w/w HAP.
The current behavior observed (i.e., increases in the fiber diameter) is in line with the investigation
of Morelli et al. [28]. On the other hand, the scaffolds containing 1% w/w MWCNTs exhibited higher
average fiber diameter values, which was calculated to be more than doubled to 1.74 ± 0.76 µm
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(104% increase), while the samples containing 2% w/w MWCNTs exhibited slightly decreased values,
by 8%, calculated to be close to 0.78 ± 0.34 µm. This behavior possibly occurred due to the increase
in the electrical conductivity value of the solution, as the MWCNT quantity seems to have exceeded
a threshold. Based on that, during the SEP, the average fiber diameter of the scaffold slightly
decreased against the pristine ones. An analogous behavior was also observed in the investigation of
Repanas et al. [34].
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Figure 2. SEM images of (A) the pristine PLA, (B) the modified PLA with 1% HAP, (C) the modified PLA
with 2% HAP (D) the modified PLA with 1% MWCNTs and (E) the modified PLA with 2% MWCNTs,
together with histograms providing the fiber diameter distribution (red curves: fiber distribution curves).
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Figure 3. Bar chart diagram, providing the average fiber diameter values together with standard
deviations (SSDs) for all scaffold types (pristine and nanomodified).

In the case of the scaffolds containing 2% w/w MWCNTs, the presence of MWCNT nanoparticles
in the PLA solution seems to have led to an electrostatic charge build up during the SEP. As the jet exits
the nozzle, it enhances the effect of the electric field in such a way as to obtain thinner fibers. Such an
MWCNT quantity seems to have led to a lowering of the surface tension of the solution and resulted in
an enhancement of the bending instability during the SEP.

Having the aim to internally investigate the structure of the PLA fibers containing either HAP
or MWCNTs, TEM microscopy examination was conducted according to specifications described in
Section 2.3. Figure 4A–D corresponds to the scaffolds containing 1% w/w HAP (A), 2% w/w HAP (B),
1% w/w MWCNTs (C) and 2% w/w MWCNTs (D), respectively. According to the obtained images,
it was shown that in both cases, by increasing the content of the nanoparticles, aggregates appear
more and more with no particular nanofiller alignment (especially at higher concentrations). The best
nanofiller distribution seems to have been achieved for scaffolds containing 1% w/w MWCNTs, which is
expecting to further improve the mechanical properties of the scaffold.
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3.2. Porosity

Scaffold nanomodification by HAP or MWCNTs in various nanofiller concentrations (1% and
2% w/w) is also expected to have an impact on the porosity value of the final sample. Based on that,
the porosity value for all the scaffold types was calculated according to specifications described in
Section 2.4, and is provided in the bar chart diagram of Figure 5. According to this figure, the general
trend for all the scaffold types is the reduction of the porosity value by nanomodification. More precisely,
the porosity mean value was reduced by 9%, 0.3%, 10.7% and 6.5% for the samples containing 1% w/w
HAP, 2% w/w HAP, 1% w/w MWCNTs and 2% w/w MWCNTs, respectively. The current findings are in
line with the investigations of Kostopoulos et al. [27.30], in which the scaffold nanomodification mainly
contributed to a slight reduction of the porosity value compared to the pristine scaffold. However,
based on Chen et al.’s [37] investigation, the current porosity values are expected to support the
interconnectivity, the interaction and the proliferation procedure of the cells.
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3.3. Static Water Contact Angle Assay

The current section investigates the effect of the nanofiller inclusion and their concentration on
the hydrophilicity levels of the fabricated PLA scaffolds. In this regard, static water contact angle assay
experiments were conducted according to specifications described in the Section 2.5. The bar chart
diagram of Figure 6 provides the static contact angles for all the material sets.
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According to experimental results, it was shown that all the scaffold types presented static contact
angle values above 90◦. Such values indicate the hydrophobic nature of all the scaffolds, but the
nanomodification in its turn resulted in less hydrophobic materials as compared to pristine PLA
scaffolds. Both HAP and MWCNT nanoparticles slightly improved the hydrophilicity levels of the PLA
scaffold. Similar findings were also observed in Kostopoulos et al.’s [27,30] investigations. Based on the
experimental observations, it was shown that the scaffolds containing 1% w/w HAP exhibited slightly
decreased contact angle values, by 5.2% (from 134.76 ± 1.84◦ to 127.70 ± 10.54◦), while for the samples
containing 2% w/w HAP the contact angle value was slightly reduced by 8.8% (from 134.76 ± 1.84◦ to
122.90± 4.95◦). In the presence of MWCNTs, the same behavior was also observed. Scaffolds containing
1% and 2% w/w MWCNTs exhibited slightly reduced contact angle values, by 2.4% (from 134.76 ± 1.84◦

to 131.50 ± 5.94◦) and 5.3% (from 134.76 ± 1.84◦ to 127.56 ± 4.72◦), respectively.

3.4. Mechanical Properties under Tensile Mode

In this section, the effects of the nanofiller type and the concentration on the apparent mechanical
properties of the fabricated scaffolds are investigated by conducting uniaxial tensile tests, according to
the specifications of Section 2.6 The rectangular samples that were machined from each scaffold type
were carefully mounted on the testing cards and gripped to the tensile apparatus.

In Figure 7A, representative stress (σ) vs. strain (ε) % curves for the pristine PLA and nanomodified
scaffolds with HAP and MWCNTs in various concentrations are illustrated. For each scaffold type,
the apparent E, σmax and εmax (%) were calculated and are provided in the bar charts of Figure 7B–D.
The general trend does not present any dramatic difference for all the scaffold types (pristine PLA and
nanomodified). The applied stress increases linearly up to a certain extent, as the initially linear σ-ε
(%) relation is followed by a distinguishable deviation from linearity. Much later, a plateau is formed,
followed by a load drop up to the fracture of the samples. The bar chart of Figure 7B presents average
values of the E value for all the scaffold types. These values were calculated through linear regression
analysis of the the initial linear parts of the σ-εcurves. The average E value of the pristine PLA scaffolds
was calculated to be 62.4 ± 3.9 MPa. The samples containing 1% and 2% w/w HAP exhibited improved E
values by 82% (114 ± 3.4 MPa) and 115% (134.6 ± 4.5 MPa), respectively. In the case of MWCNT-modified
scaffolds, the E values were enhanced by 262% (226± 7.7 MPa) and 31.7% (82.2 ± 4.5 MPa) for the scaffolds
containing 1% w/w and 2% w/w MWCNTs, respectively. In this regard, the σmax values were also improved
by 84.48% (from 2.6 ± 0.9 MPa to 4.8 ± 0.3 MPa) and 117.9% (from 2.6 ± 0.9 MPa to 5.6 ± 0.4 MPa) for
the scaffolds containing 1% w/w and 2% w/w HAP, respectively. The samples containing 1% and 2%
MWCNTs exhibited improved σmax values by 206.6% (from 2.6 ± 0.9 MPa to 7.9 ± 0.3 MPa) and 6.2%
(from 2.6 ± 0.9 MPa to 2.7 ± 0.3 MPa), respectively. Finally, the εmax (%) value was significantly improved
for all the scaffold types, ranging from 30% to 60%.
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Figure 7. (A) Representative stress (σ) vs. strain (ε) % curves for the pristine PLA and nano-modified
scaffolds (with 1% and 2% HAP, and 1% and 2% MWCNTs). Bar chart diagrams providing the tensile
properties of PLA scaffolds that arose from uniaxial tensile tests; (B) Young’s Modulus (E), (C) Tensile
strength (σmax), (D) Elongation at break (εmax) %. For all the tensile properties SSD values are provided.

According to the experimental results provided and discussed above, it was shown that for all
the scaffold types the mechanical properties under tensile mode were improved with the scaffolds
containing 1% w/w MWCNTs, and exhibit the best mechanical performance. According to the TEM
image of Figure 4C, in this type of sample a good dispersion of the MWCNTs seems to have been
achieved. In addition, these scaffolds presented a higher average diameter value and a relatively low
porosity value, which in its turn led to significantly improved tensile properties. For the samples
containing 2% w/w MWCNTs, the strong presence of the aggregates (see Figure 4D), most of which
were found outside the fiber structure, resulted in weaker scaffolds with significantly reduced tensile
properties as compared to the 1% w/w MWCNT-modified scaffolds, but they exhibited slightly
improved behavior if compared to pristine PLA scaffolds. Furthermore, the pristine PLA and 1%
w/w MWCNT-containing scaffolds presented comparable average fiber diameter values. In the case
of scaffolds modified with HAP, it was shown that by increasing the HAP concentration the tensile
properties were enhanced even if the aggregate presence is made stronger by increasing the HAP
concentration (see in Figure 4A,B). Similar findings were also observed in Kostopoulos et al.’s [30] and
Gkermpoura et al.’s [38] investigations, in which various scaffolds were nanomodified with various
nanoparticles. In Figure 8, a snapshot of the tensile testing is illustrated, indicated the ductile nature of
the precise PLA scaffolds.
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4. Conclusions

The current study investigated the effect of nanofiller type and concentration on the PLA scaffold’s
structural, physical and mechanical properties. More precisely, HAP and MWCNTs were employed to
modify pristine PLA scaffolds at various concentrations (i.e., 1% and 2% w/w). After the fabrication
and according to the SEM examinations, it was shown that all the scaffold types presented acceptable
structures for use in supporting cell cultures in future. Beadless cylindrical structures consisting of
non-woven dense networks were fabricated with the 1% w/w MWCNT-containing scaffolds to exhibit
the highest average fiber diameter value and lowest porosity (compared to the pristine scaffolds).
For all the scaffold types it was shown that by increasing the nanofiller content, the nanofiller aggregates
were more and more detectable according to the obtained TEM images. In general, the average porosities
and the contact angle values were reduced by the nanomodification in all the scaffold types. Based on
these, the obtained scaffolds were less hydrophobic against pristine scaffolds (the contact angle values
are still higher than 90◦), while the mechanical properties were improved. According to the tensile
experiments conducted, all the scaffolds presented improved mechanical properties (mainly due to the
nanofiller presence and the lower porosities) with 1% w/w MWCNT-containing scaffolds and exhibited
the best mechanical performance. This scaffold seems to be the most promising one compared to others
as regards supporting cell cultures in future. Finally, this type of scaffold could also be utilized for
other potential applications, such as drug delivery, filtration, batteries and composite materials.
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