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Abstract: Brown and beige adipocytes have multilocular lipid droplets, express uncoupling protein
(UCP) 1, and promote energy expenditure. In rodents, when the stimulus of browning subsides,
parkin-dependent mitophagy is activated and dormant beige adipocytes persist. In humans, however,
the molecular events during the beige to white transition have not been studied in detail. In this
study, human primary subcutaneous abdominal preadipocytes were differentiated to beige for
14 days, then either the beige culture conditions were applied for an additional 14 days or it was
replaced by a white medium. Control white adipocytes were differentiated by their specific cocktail
for 28 days. Peroxisome proliferator-activated receptor γ-driven beige differentiation resulted in
increased mitochondrial biogenesis, UCP1 expression, fragmentation, and respiration as compared
to white. Morphology, UCP1 content, mitochondrial fragmentation, and basal respiration of the
adipocytes that underwent transition, along with the induction of mitophagy, were similar to control
white adipocytes. However, white converted beige adipocytes had a stronger responsiveness to
dibutyril-cAMP, which mimics adrenergic stimulus, than the control white ones. Gene expression
patterns showed that the removal of mitochondria in transitioning adipocytes may involve both
parkin-dependent and -independent pathways. Preventing the entry of beige adipocytes into white
transition can be a feasible way to maintain elevated thermogenesis and energy expenditure.

Keywords: obesity; beige adipocytes; mitophagy; thermogenesis; uncoupling protein 1; parkin

1. Introduction

The prevalence of obesity has dramatically increased worldwide in recent decades [1]
and can be linked with many factors, including metabolic, genetic, environmental, and be-
havioral impacts [2,3]. Obesity significantly enhances the risk of many diseases, including
metabolic syndrome, type 2 diabetes [4], nonalcoholic fatty liver disease [5], cardiovascular
diseases, and certain types of tumors [6], which are leading causes of death [7]. Recently,
obesity was recognized as an independent risk factor for mortality from severe acute respi-
ratory syndrome coronavirus (SARS-CoV)-2 infections [8,9]. The available treatments are
of diet, exercise, or lifestyle interventions and bariatric surgery [10,11]; however, effective
anti-obesity therapeutic strategies are limited.
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Brown adipose tissue (BAT), which contains thermogenic brown and beige adipocytes [12],
is capable of energy dissipation through the production of heat [13], mainly mediated by
Uncoupling protein (UCP) 1-dependent proton leak, which uncouples oxidative phospho-
rylation from ATP generation in the mitochondria [14]. BAT plays a key role in maintaining
the constant core body temperature through nonshivering thermogenesis [15] and might
open up promising therapeutic opportunities to combat obesity [16]. BAT can be found
in six anatomical regions (cervical, supraclavicular, axillary, mediastinal, paraspinal, and
abdominal) in adult humans, which amount to 4.3% of total fat and 1.5% of total body
mass [17]. Based on mathematical predictions, BAT can oxidize around 4 kg fat per year in
adult humans and its thermogenic activity can contribute up to 5% of the basal metabolic
rate [18].

White adipocytes function as long-term energy storage, contain few mitochondria
and a single large lipid droplet, and express a low level of UCP1 [19,20]. Brown and beige
adipocytes originate from distinct precursor cells, characterized by multilocular small lipid
droplets, a high mitochondrial content, and a detectable level of UCP1 expression [21,22].
Beige and white adipocytes are derived from the same mesenchymal precursors and beige
cells can be found in a masked condition in subcutaneous white adipose tissue (WAT)
depots [21]. Beige adipocytes contain a low amount of UCP1 in basal conditions, and have
to be activated, e.g., by the cold, for thermogenesis, which is mainly mediated through
β-adrenergic stimulation [23]. However, the regulation of beige adipocyte maintenance
and inducibility (the process is often called “browning”) in humans has remained elusive.

Autophagy is a well-described intracellular catabolic process, in which cargoes, such
as protein aggregates or damaged organelles, are delivered by double-membrane-bound
structures, termed autophagosomes, to the lysosomes for degradation and their compo-
nents are recycled [24,25]. Many highly conserved autophagy-related (ATG) proteins are
responsible for the biogenesis of autophagosomes [26]. Upon the induction of autophagy,
the cytosolic form of Microtubule-associated protein 1A/1B-light chain 3 (LC3)-I is conju-
gated to phosphatidylethanolamine to generate the lipidated LC3-II, which is then recruited
to autophagosomal membranes. LC3 is a well-accepted autophagosome marker, and LC3-II
content is an indicator of the amount of autophagosome formation [27]. Detecting the
conversion of LC3-I to LC3-II by immunoblotting is a commonly used method to follow
autophagy activity [28].

Damaged or unwanted mitochondria can be removed by selective autophagy, termed
mitophagy, which is considered a crucial mechanism of mitochondrial quality control [29].
In the adapter-mediated, ubiquitin-dependent mitophagy pathway, mitochondrial depolar-
ization initiates the accumulation of phosphatase and tensin homolog–induced putative
kinase (PINK) 1 in the outer mitochondrial membrane, resulting in the recruitment of
parkin from the cytosol, which ubiquitinates the outer mitochondrial proteins. The se-
lective autophagy adapter proteins, such as Calcium Binding and Coiled-Coil Domain
2/Nuclear Domain 10 Protein 52 (CALCOCO2/NDP52), Optineurin (OPTN), Neighbor
of BRCA1 Gene (NBR) 1, and p62 (encoded by SQSTM1 gene) link the parkin ubiquiti-
nated mitochondrial proteins and LC3, leading to the sequestration of mitochondria into
autophagosomes [30,31]. Furthermore, the adapter-independent, ubiquitin-independent
mitophagy process is characterized by direct interaction between LC3 and mitochondria-
localized proteins, such as BCL2 Interacting Protein (BNIP) 3, BNIP3 Like/NIP3-Like
Protein X (BNIP3L/NIX), or FUN14 Domain Containing (FUNDC) 1 [32,33]. We have
considerable knowledge about selective mitophagy; however, many questions remain
unanswered, such as the extent to which mitochondrial clearance is regulated in a cell type-
or tissue-specific manner.

Recent publications proved the significance of autophagy in the regulation of beige
adipocyte thermogenesis [34]. In rodents, Kajimura et al. showed the role of parkin-
dependent mitophagy in the beige to white adipocyte transition as a result of the removal of
β-adrenergic stimulus, which resulted in inactive but reactivation-capable beige adipocytes
with white morphology [35,36]. However, this process has not been characterized in hu-
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mans so far. Recently, our research group described how cyclic adenosine monophosphate
(cAMP)-driven thermogenic activation regulates mitophagy in human masked and ma-
ture beige adipocytes ex vivo. Our data indicated continuous mitochondrial clearance
in these adipocytes, which was rapidly repressed in response to short-term adrenergic
stimulus, pointing to a fast regulatory mechanism to provide high mitochondrial content
for thermogenesis [37].

In this study, we follow up the autonomous transition of human primary subcutaneous
abdominal beige adipocytes to white and investigate whether mitophagy is activated during
this process. The transition, which involved both parkin-dependent and independent
pathways, resulted in characteristic gene expression, morphological, and functional features
of the white adipocytes; however, the converted cells could be strongly activated by a cell-
permeable cAMP analogue. Our results translate previously obtained rodent data to a
human ex vivo system, which provides a model for further research to characterize beige
to white transitioned human adipocytes in the near future.

2. Results
2.1. Thermogenic Competency of Human Abdominal Subcutaneous Derived Adipocytes Is Induced
following Continuous Peroxisome Proliferator-Activated Receptor (PPAR) γ Stimulation and
Subsides as a Result of Beige to White Transition

To study the adipogenic potential of primary human adipose-derived stromal cells
(hASCs) and the thermogenic competency of differentiated adipocytes, our research group
optimized previously published white [38] and brown/beige [39] adipogenic differentiation
protocols. These regimens contain diverse compositions of hormones [40,41], in which the
PPARγ agonist rosiglitazone is the key driver of browning [42]. As expected, abdominal
subcutaneous hASCs expressed the major functional marker gene and protein of thermoge-
nesis, UCP1, at the limit of detection. Moderate UCP1 expression was found in adipocytes
that were differentiated up to 28 days to white ex vivo (Figure 1A,B). Consistent with
previous results, continuous PPARγ stimulation resulted in a marked increase in gene and
protein expression of UCP1 in adipocytes differentiated to beige compared with white ones.
UCP1 was further upregulated when beige differentiation was carried out for three or four
weeks. When the beige cocktail was replaced by the white and rosiglitazone was omitted at
the fourteenth day of differentiation, UCP1 gene and protein expression tended to elevate
in the following week, similarly to those adipocytes that were continuously exposed to
the beige regimen. After two weeks of rosiglitazone withdrawal, UCP1 gene and protein
expression was significantly decreased as compared to beige adipocytes (Figure 1A,B) and
showed a gene expression level that was comparable to white adipocytes (Figure 1A). The
decline in UCP1 expression was slower at the protein level (Figure 1B) than at the mRNA
level (Figure 1A). The expression of another thermogenic marker gene, Cell Death Inducing
DFFA-Like Effector A (CIDEA) [43] (Figure 1C), followed the pattern of UCP1 mRNA
expression (Figure 1A). In contrast, the LEP gene, which encodes the white adipokine, lep-
tin [44], was expressed at a low level in both preadipocytes and beige adipocytes; however,
it was strongly upregulated when adipocytes were constantly differentiated in the presence
of the white cocktail or when the beige regimen was replaced by the white (Figure 1D).

As expected, white adipocytes gained a few large lipid droplets in a time-dependent
manner. By contrast, beige differentiation resulted in numerous smaller droplets. However,
the droplets merged and enlarged when the beige protocol was replaced by the white
(Figure 2A). The quantification of this phenomenon was performed by texture sum variance,
which separated the white and beige adipocyte populations well in several previous cellular
models [40,41,45,46], is shown in Figure 2B. To investigate the mitochondrial morphology,
we performed immunostaining for translocase of outer mitochondrial membrane (TOM)
20 [37,47] (Figure 2A; see the secondary antibody control in Figure S1). Consistent with the
literature, the number of fragmented mitochondria that reflect thermogenic potential [48]
was higher during beige compared to white differentiation. However, the number of
fragmented mitochondria was decreased to the same as that of the white adipocytes within
a week when the beige regimen was discontinued, followed by the white (Figure 2A,C).
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The changes in UCP1 content and morphological features of the adipocytes suggest that
they strongly increase their thermogenic competency, for up to four weeks, as a result of
PPARγ agonist; however, they could undergo beige to white transition in response to the
removal of the browning inducer.
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Figure 1. Expression of thermogenic markers was elevated following long-term rosiglitazone treat-
ment and subsided upon beige (B) to white (W) transition. Human primary abdominal subcutaneous
preadipocytes were differentiated to B for 14 days (B14), then either the B culture conditions were
applied for an additional 14 days (B21 and B28) or were replaced by a W differentiation medium
(B14W7 and B14W14). As a negative control, W adipocytes were differentiated by their specific
cocktail (W14, W21, and W28). UCP1 (A) gene, (B) protein, (C) CIDEA, and (D) LEP gene expression.
Gene expression was normalized to GAPDH and protein expression to β-actin. Data are presented as
mean ± SD. n = 6. * p < 0.05, ** p < 0.01. We carried out statistics using Friedman’s test with Dunn’s
multiple comparison test (A) or one-way ANOVA with Tukey’s post hoc test (B–D).

2.2. Elevated Mitochondrial Content, Respiration, and Extracellular Acidification of Beige
Adipocytes Disappear after Their Transition to the White Phenotype

As a next step, we investigated the mitochondrial content and function during dif-
ferentiation and transition. As expected, the mitochondrial DNA (mtDNA) number was
higher in beige compared to white differentiated adipocytes and subsequently decreased
as a result of beige to white transition (Figure 3A). White and beige differentiation resulted
in the same expression level of the mitochondrial biogenesis master regulator, PPARγ
coactivator (PGC) 1α [49]. In response to transition, PGC1α tended to be downregulated;
however, this effect did not reach the level of statistical significance. Undifferentiated
progenitors expressed PGC1α only at the limit of detection (Figure 3B).



Pharmaceuticals 2022, 15, 363 5 of 21
Pharmaceuticals 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Mitochondrial fragmentation was elevated following long-term rosiglitazone treatment 
and subsided upon beige (B) to white (W) transition. Human primary abdominal subcutaneous 
preadipocytes were differentiated as in Figure 1. (A) Representative confocal microscopy images of 
TOM20 immunostaining; nuclei are labeled with propidium iodide (PI), and BF represents bright-
field image; scalebars represent 10 μm. (B) Texture sum variance quantified from BF images. (C) 
Fragmented mitochondrial content quantified based on TOM20 immunostaining normalized to per 
cell. Data are presented as mean ± SD. n = 50 cells from three donors. ** p < 0.01. We carried out 
statistics using one-way ANOVA with Tukey’s post hoc test (B) or Friedman’s test with Dunn’s 
multiple comparison test (C). 

2.2. Elevated Mitochondrial Content, Respiration, and Extracellular Acidification of Beige Adi-
pocytes Disappear after Their Transition to the White Phenotype 

As a next step, we investigated the mitochondrial content and function during dif-
ferentiation and transition. As expected, the mitochondrial DNA (mtDNA) number was 
higher in beige compared to white differentiated adipocytes and subsequently decreased 
as a result of beige to white transition (Figure 3A). White and beige differentiation resulted 
in the same expression level of the mitochondrial biogenesis master regulator, PPARγ co-
activator (PGC) 1α [49]. In response to transition, PGC1α tended to be downregulated; 
however, this effect did not reach the level of statistical significance. Undifferentiated pro-
genitors expressed PGC1α only at the limit of detection (Figure 3B). 

Then we carried out an extracellular flux analysis to reveal the functional parameters 
of differentiated adipocytes [41,50,51]. In agreement with previously reported data 
[40,51], the basal oxygen consumption rate (OCR) of beige adipocytes was higher than 
that of white ones. Adipocytes undergoing two weeks of transition had significantly 
higher basal OCR than the white, but lower than the beige adipocytes, which were differ-
entiated for the same period of time. As expected, the cell-permeable cAMP analogue, 

Figure 2. Mitochondrial fragmentation was elevated following long-term rosiglitazone treatment
and subsided upon beige (B) to white (W) transition. Human primary abdominal subcutaneous
preadipocytes were differentiated as in Figure 1. (A) Representative confocal microscopy images of
TOM20 immunostaining; nuclei are labeled with propidium iodide (PI), and BF represents brightfield
image; scalebars represent 10 µm. (B) Texture sum variance quantified from BF images. (C) Frag-
mented mitochondrial content quantified based on TOM20 immunostaining normalized to per cell.
Data are presented as mean ± SD. n = 50 cells from three donors. ** p < 0.01. We carried out statistics
using one-way ANOVA with Tukey’s post hoc test (B) or Friedman’s test with Dunn’s multiple
comparison test (C).

Then we carried out an extracellular flux analysis to reveal the functional parameters
of differentiated adipocytes [41,50,51]. In agreement with previously reported data [40,51],
the basal oxygen consumption rate (OCR) of beige adipocytes was higher than that of white
ones. Adipocytes undergoing two weeks of transition had significantly higher basal OCR
than the white, but lower than the beige adipocytes, which were differentiated for the same
period of time. As expected, the cell-permeable cAMP analogue, which mimics adrenergic
stimulus-driven activation of thermogenesis, promptly increased the OCR of each type
of adipocytes. Proton leak respiration of cAMP-stimulated adipocytes, which positively
correlates with UCP1 activity, could be assessed after the inhibition of the ATP synthase
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complex by oligomycin [50,52]. Beige adipocytes had elevated stimulated and proton
leak OCR compared to the white ones. After the transition, these parameters remained
comparable to those observed in beige adipocytes (Figure 3C). Consistent with previous
results [41,51], the basal extracellular acidification rate (ECAR) was increased in beige
compared to white adipocytes, while the transition had a significant suppressing effect
on this parameter. Although cAMP stimulated the ECAR of each adipocyte type, fully
differentiated and converted beige adipocytes showed a greater response to the thermogenic
cue than white ones (Figure 3D). In summary, our data suggest that adipocytes that undergo
the beige to white transition appear as a cell population with distinct features as compared
to fully differentiated white or beige cells.
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Figure 3. Functional parameters of mitochondrial biogenesis and thermogenesis in white (W) and
beige (B) adipocytes, and in response to transition. Human primary abdominal subcutaneous
preadipocytes were differentiated as in Figures 1 and 2. Quantification of (A) total mitochondrial
DNA content (n = 6) and (B) PGC1α gene expression (n = 6). (C) Representative oxygen consumption
rate (OCR) curve, followed by quantification of basal, stimulated, and stimulated proton leak OCR
(n = 4). (D) Representative extracellular acidification rate (ECAR) curve, followed by quantification of
basal and stimulated ECAR (n = 4). Gene expression was normalized to GAPDH. Data are presented
as mean ± SD. * p < 0.05, ** p < 0.01. We used one-way ANOVA with Tukey’s post hoc test.
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2.3. Autophagy Is Increased at Beige to White Transition

In rodents, it was proven that the withdrawal of cold or β3-adrenergic stimuli acti-
vates mitophagy and mediates the beige to white transition in vivo [35]. Primarily, we
investigated the expression of ATG genes, which orchestrate autophagosome formation.
In response to transition, ATG5 tended to be upregulated in the second week; however,
this difference did not reach statistical significance (Figure 4A). The mRNA expression of
ATG7 (Figure 4B) and ATG12 (Figure 4C) was significantly increased in the first week of
transition compared to beige adipocytes. The ATG genes investigated were expressed less
in undifferentiated preadipocytes and at a greater rate, but to the same extent, in white and
beige adipocytes (Figure 4A–C).
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Figure 4. General autophagy markers showed a decreasing trend following long-term rosiglitazone
treatment and were increased upon beige (B) to white (W) transition. Human primary abdominal
subcutaneous preadipocytes were differentiated as in Figures 1–3. (A–C) Quantification of ATG5,
ATG7, and ATG12 gene expression; (D) representative immunoblot and densitometry analysis of
LC3-II/LC3-I protein ratio. Gene expressions were normalized to GAPDH. Data are presented as
mean ± SD. n = 6. * p < 0.05. We used one-way ANOVA with Tukey’s post hoc test.

To assess the ongoing autophagy, we examined the specific autophagy marker, the
conversion of LC3-I to LC3-II, in adipocytes that were fully differentiated to white or beige
or underwent transition. Quantification of this process by immunoblotting is a widely
accepted method to monitor autophagy rate [53]. We found a continuous elevation of
the LC3-II/LC3-I ratio in white adipocytes differentiated up to 28 days, which indicated
high autophagy activity. In beige adipocytes, the activity remained at a moderate level,
significantly lower than with the white cells, after four weeks of differentiation. When the
beige protocol was replaced by white, the autophagy level was significantly increased after
two weeks, as compared to the fully differentiated beige adipocytes (Figure 4D). This was
confirmed when the subcellular distribution of LC3 was visualized by immunostaining
(Figure 5A; see secondary antibody control in Figure S1). As expected, white adipocytes,
which were differentiated after three or four weeks, contained more LC3 punctae per cell
than beige ones. In addition, the beige to white transition significantly increased the number
of LC3 punctae, as compared to the beige adipocytes (Figure 5B). Our data demonstrated
that general autophagy was induced in a cell-autonomous manner during the ex vivo beige
to white transition of human subcutaneous adipocytes.
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Figure 5. Mitophagy was repressed following long-term rosiglitazone treatment and increased upon
beige (B) to white (W) transition. Human primary abdominal subcutaneous preadipocytes were
differentiated, as in Figures 1–4. (A) Representative confocal microscopy images of LC3 and TOM20
immunostaining; nuclei are labeled with propidium iodide (PI), and BF represents brightfield image;
scalebars represent 10 µm. (B) Quantification of LC3 punctae normalized to per cell (n = 50 cells from
three donors), (C) Quantification of mitophagy as co-localization of LC3 and TOM20 immunostaining
(n = 50 cells from three donors). Data are presented as mean ± SD. * p < 0.05, ** p < 0.01. We used
one-way ANOVA with Tukey’s post hoc test.
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2.4. Beige Differentiation Represses, while Transition to White Increases, Mitophagy Involving
Selective Autophagy Adapters

We performed co-immunostaining of TOM20 and LC3 (Figure 5A; see secondary
antibody control in Figure S1) to follow autophagosome formation and the delivery of mito-
chondria for degradation [47]. Then we quantified the colocalization of the autophagosome
and mitochondrial markers using Pearson correlation coefficient (PCC) values. Consistent
with the increased autophagy activity (Figure 4), we found elevated PCC values during
white adipogenesis for four weeks compared with beige adipocytes. The colocalization
was stronger in adipocytes that underwent transition than in fully differentiated beige cells
(Figure 5C).

Parkin, an E3 ubiquitin ligase encoded by the PARK2 gene, is one of the key regulators
of mitophagy [54]. Parkin was expressed at a low extent in preadipocytes at both the mRNA
(Figure 6A) and protein levels (Figure 6B). The applied adipogenic protocols similarly
upregulated its expression. The transition did not alter the expression of parkin at the gene
(Figure 6A) or protein levels (Figure 6B). Next, we investigated the abundance of selective
autophagy adapter proteins that are consumed, building a molecular link between the
target organelles and LC3-II of the autophagosomes during ongoing mitophagy [55]. The
NBR1 protein content of white adipocytes was comparable to that of the undifferentiated
progenitors and showed a decreasing trend after up to 28 days of differentiation (Figure 6C).
The p62 protein was detectable at constant, moderate levels in preadipocytes and white
adipocytes (Figure 6D). In beige adipocytes, significantly more of the aforementioned
adapters could be detected. This further supports the low activity of selective autophagy in
beige adipocytes. After the removal of the browning inducer from differentiation media,
the NBR1 (Figure 6C) and p62 (Figure 6D) amount declined significantly after one or
two weeks, respectively. Our data suggest that the selective autophagic degradation of
mitochondria is enhanced during the beige to white transition.

Next, we assessed the expression of other marker genes related to the adapter and parkin-
dependent mitophagy pathway, OPTN (Figure 6E) and CALCOCO2/NDP52 (Figure 6F). Both
genes were expressed at a low level in preadipocytes. OPTN was expressed to the same ex-
tent in white and beige adipocytes and tended to be upregulated in a time-dependent man-
ner, but the transition did not influence the mRNA level (Figure 6E). CALCOCO2/NDP52
expression was increased during white adipogenesis and transition compared with fully dif-
ferentiated beige adipocytes (Figure 6F); this suggests the possibility of enhanced removal
of the mitochondrial mass by the NDP52-dependent pathway.

2.5. Parkin-Independent Mitophagy-Related Genes Are Induced during Transition

Finally, to study whether parkin-independent mitophagy contributes to beige to white
transition, we investigated the expression of several genes that are involved in this path-
way, FUNDC1, BNIP3, BNIP3L/NIX, FKBP Prolyl Isomerase 8 (FKBP8), and BCL2 Like
13 (BCL2L13) (Figure 7). The aforementioned markers were expressed to a low extent in
undifferentiated progenitors. BNIP3L/NIX, FKBP8, and BCL2L13 expression tended to
increase during white adipogenesis, in a time-dependent manner. Similar expression levels
of FUNDC1 and BNIP3 were found during white or beige differentiation. After four weeks
of differentiation, the expression of BNIP3L/NIX, FKBP8, and BCL2L13 was repressed in
beige compared to white adipocytes. Two weeks following the replacement of a beige
protocol with white, the investigated parkin-independent mitophagy markers were signifi-
cantly upregulated (Figure 7). This suggests that the parkin-independent pathway plays an
important role during the beige to white transition of human subcutaneous adipocytes.
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Figure 6. Expression of parkin-dependent mitophagy markers in white (W) and beige (B) adipocytes,
and in response to transition. Human primary abdominal subcutaneous preadipocytes were differ-
entiated as in Figures 1–5. Quantification of parkin (A) gene and (B) protein expression. Protein
expression of (C) NBR1 and (D) p62. Gene expression of (E) OPTN and (F) NDP52. Gene expression
was normalized to GAPDH and protein expression to β-actin. Data are presented as mean ± SD. n = 6.
* p < 0.05, ** p < 0.01. We performed a Friedman’s test with Dunn’s multiple comparison test (A,B,D)
or a one-way ANOVA with Tukey’s post hoc test (C,E,F).
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Figure 7. Expression of parkin-independent mitophagy markers in white (W) and beige (B)
adipocytes, and in response to transition. Human primary abdominal subcutaneous preadipocytes
were differentiated as in Figures 1–6. Quantification of gene expression for FUNDC1, BNIP3,
BNIP3L, FKBP8, and BCL2L13. Gene expressions were normalized to GAPDH. Data are presented as
mean ± SD. n = 6. * p < 0.05. We used one-way ANOVA with Tukey’s post hoc test.

3. Discussion

BAT plays a central role in the energy homeostasis of mammals that are constantly ex-
posed to cold challenge [13]. Following the detection of active BAT depots by nuclear imag-
ing approaches in adult humans [56–58], a strong negative correlation between obesity and
the amount of active BAT was revealed [59,60]. Independent studies have suggested that
BAT depots in adult humans are predominantly composed of beige cells [12,61,62]. Trans-
plants of human beige adipocytes improved diet-induced obesity and systemic metabolism
in mice, which highlights the possibility of the therapeutic application of beige cell implan-
tation in the treatment of obesity and metabolic syndrome [63,64]. This inspired researchers
to characterize beige adipogenesis and thermogenic activation in distinct human cellular
models. To our knowledge, however, the majority of these ex vivo studies have covered the
differentiation period for a maximum of two weeks. Of note, the potential application of
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beige adipocyte activation or transplantation assumes that the applied cells maintain their
energy expenditure for a significant period of time. Although abdominal subcutaneous
WAT of human adults is not highly enriched in thermogenic adipocytes [17], it contains
progenitors that can give rise to beige cells [65,66]. Due to its relative accessibility, hASCs
isolated from stromal–vascular fractions (SVFs) of abdominal subcutaneous fat biopsies or
aspirations are frequently used for research and in regenerative medicine [67].

In this study, we followed the white and beige adipocyte differentiation of primary
abdominal subcutaneous-derived hASCs for four weeks. The extension of the PPARγ-
driven beige differentiation resulted in further upregulation of UCP1, both at the mRNA
(Figure 1A) and protein (Figure 1B) level, and the CIDEA gene (Figure 1C), while in
white adipocytes they were expressed constantly at a moderate level. This phenomenon
was reproduced by our research group in Simpson–Golabi–Behmel syndrome (SGBS)
adipocytes [41], a cell line that is an accepted and widely used model of human white
and beige adipogenesis [68,69]. Consistent with our previous findings [40,41], the size and
locularity of lipid droplets were different in the two cell populations during the entire
differentiation (Figure 2A,B).

In beige and brown adipocytes, mitochondria are critical for thermogenesis and
energy metabolism. Mitochondria are fragmented in response to an adrenergic cue in
rodent brown adipocytes, contributing to support uncoupled respiration and enhanced
energy expenditure [70,71]. Pisani et al. have shown that UCP1-positive human adipocytes
contain mitochondria mostly with a fragmented morphology [48]. Recently, we found that
cAMP-driven thermogenic stimulation resulted in increased mitochondrial fragmentation
in human masked and mature beige adipocytes, which were differentiated from the same
progenitor populations for two instead of four weeks [37]. When we sustained the beige
differentiation, more mitochondria were fragmented in contrast to white adipocytes, in
which these dynamic organelles remained elongated (Figure 2C).

The regulation of mitochondrial biogenesis and clearance is important for energy
homeostasis and maintaining the optimal number of mitochondria [32]. Mitochondrial bio-
genesis is controlled by several nuclear-coded transcriptional regulators, such as PGC1α [72].
Although the expression of PGC1α at mRNA tended to be elevated in the early phase of
beige differentiation, it did not differ between white and beige adipocytes to a statistically
significant degree (Figure 3A). However, the amount of mtDNA showed an increasing
tendency during the long-term beige adipogenesis (Figure 3B). The functional extracel-
lular flux assay detected high basal, cAMP-stimulated, and proton leak OCR and more
prominent extracellular acidification, both in basal and activated conditions, in the case of
beige adipocytes that were differentiated in the presence of rosiglitazone for four weeks.
Respiration and extracellular acidification were significantly repressed in white adipocytes;
however, they could be effectively stimulated in response to the cell-permeable cAMP
analogue, suggesting that some of the adipocytes that were differentiated in the presence
of the white cocktail are masked beige cells (Figure 3C,D).

The activation of beige cells, for example by cold exposure or β-adrenergic receptor
agonists, is required for maintaining high UCP1 expression. Cold exposure induces nore-
pinephrine release from the sympathetic nervous system, which binds the β3-adrenergic
receptor [13]. The β-adrenergic signaling cascade is mediated through adenylate cyclase
activation by Gs proteins, which leads to the production of cAMP for protein kinase A
(PKA) activation. This promotes lipolysis, the breakdown of triglycerides, resulting in free
fatty acid release that activates UCP1 [23]. PKA has several downstream targets, including
cAMP Response Element Binding Protein (CREB), members from MAP kinase pathways
(Erk1/2, p38, JNK), and hormone-sensitive lipase (HSL), which facilitate the enhance-
ment of thermogenesis by upregulating thermogenic gene expression and/or mobilizing
substrates to fuel thermogenesis [73,74].

PPARγ is well known as a master regulator of both white and brown adipocyte
differentiation. Some synthetic PPARγ agonists, such as rosiglitazone, function as inducers
of the beige fat gene transcription program in white adipocytes, which is mediated by SIRT1,
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PRDM16, C/EBPa, and PGC1α-dependent mechanisms [75]. PPARγ directly regulates
the expression of many genes, which are involved in the central functions of adipocytes,
such as lipid transport, lipid metabolism, insulin signaling, and adipokine production [76].
PPARγ target genes can control processes such as lipid transport (FABP4), fatty acid uptake
(LPL, FATP/SLC27A1, OLR1), the recycling of intracellular fatty acids (PEPCK/PCK1, GK,
AQP7) [77], and lipolysis (GPR81) [78]. In addition, PPARγ regulates insulin sensitivity via
the expression of adipokines [79].

Elevated mitochondrial fragmentation, mtDNA, and OCR raise the possibility of
suppressed mitophagy in beige adipocytes. When the same progenitors were differentiated
for two weeks, irrespective of the applied protocol, a few hours of cAMP treatment not
only upregulated thermogenesis-related genes but also quickly downregulated mitophagy
via PKA, resulting in more mitochondria and increased UCP1 levels [37]. In a long-term
differentiation setting, sustained rosiglitazone administration also resulted in a moderate
suppression of mitophagy, shown by attenuated LC3-I to LC3-II conversion (Figure 4D), the
appearance of LC3-positive punctae (Figure 5B), colocalization of punctae and mitochondria
(Figure 5C), and the degradation of adapter proteins (Figure 6C,D). More research is needed
to explore the underlying molecular mechanisms of how mitophagy is kept at a moderately
low level in beige adipocytes.

Altshuler-Keylin et al. induced beigeing of WAT in male mice by intraperitoneal
administration of the β3-adrenergic agonist, CL 316,243 for seven consecutive days. Low
autophagy activity was observed in newly differentiated beige adipocytes [35], which is
consistent with the ex vivo results presented here (Figures 4 and 5). After the withdrawal of
this stimulus, they found that beige adipocytes lost their morphological and thermogenic
characteristics and were converted to “white-like” adipocytes, triggered by mitochondrial
clearance via mitophagy. During the beige to white adipocyte transition, the expression
of autophagy-related ATG5 and ATG12 genes was upregulated, the number of Green
Fluorescent Protein (GFP)-LC3 punctae and the colocalization of GFP-LC3 and TOM20
were significantly increased, the protein level of LC3-II was elevated, and in parallel the
selective autophagy adapter proteins, NBR1 and p62, were degraded, compared to in mice
that were chronically treated with the β3-adrenergic agonist during the entire experimental
period [35].

In our experiments, we applied the human primary subcutaneous abdominal derived
adipocyte ex vivo model to characterize the beige to white transition process in the context
of mitophagy. UCP1 (Figure 1A,B), CIDEA (Figure 1C), and LEP (Figure 1D) expression, the
morphology of the lipid droplets (Figure 2A,B), mitochondrial fragmentation (Figure 2A,C),
and the basal respiration (Figure 3C) of the adipocytes were significantly altered as a
result of the transition; therefore, these cells gained several features characteristic of white
adipocytes. A similar phenomenon was observed recently when we carried out a 28-day
differentiation, in parallel with the replacement of beige protocol to white on the 14th
day in the SGBS preadipocyte line [41]. In contrast to our previous observations in SGBS
adipocytes and the data presented here, Guennoun et al. observed a temporarily high
UCP1 content of 14-day-differentiated SGBS adipocytes, even in response to the white
differentiation protocol in the absence of any browning inducers. Interestingly, when the
white differentiation of SGBS cells was extended for two additional weeks, the expression
of UCP1 significantly decreased [80]. The contribution of autophagy to this surprising
finding has not been investigated so far.

Our data, shown in Figures 4 and 5, are consistent with the results of the in vivo
study by Kajimura’s group [35] and suggest that the autophagy pathway is activated for
the clearance of beige adipocyte mitochondria during the adaptive transition induced by
the removal of the browning inducer, thereby regulating the entry of beige adipocytes
into a thermogenically inactive dormant state. However, beige adipocytes that under-
went transition ex vivo responded more effectively to the adrenergic stimulus mimicking
dibutyril-cAMP by the activation of OCR, proton leak respiration (Figure 3C), and ECAR
(Figure 3D) than the white ones. Of note, a significant amount of UCP1 protein remained
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expressed after two weeks of transition (Figure 1B), which could underlie why converted
adipocytes had higher stimulated and proton leak OCR compared to white ones. The
observed functional differences suggest that converted beige and white adipocytes can
be classified into two distinct cell populations. Systematic studies are needed to further
explore the molecular signatures of the thermogenically active beige, converted beige, and
white adipocytes in humans.

As a final step, we sought to clarify how the selective removal of mitochondria is
mediated during the transition process. In the literature, contradictory data have been
published about the involvement of parkin in the maintenance of murine beige adipocytes.
During the adipogenesis of 3T3-L1 adipocytes, increased parkin expression was observed,
whereas its expression decreased as a result of rosiglitazone treatment [81]. Lu et al. found
that parkin expression was induced during mouse beige adipocyte differentiation; more-
over, they demonstrated the retention of mitochondria-rich beige adipocytes even after the
elimination of adrenergic stimuli in PARK2 knockout mice [36]. In contrast to these findings,
Corsa and colleagues found that parkin deletion in mouse adipocytes did not affect adipo-
genesis, beige to white transition, and the maintenance of beige adipocytes [82]. Recently,
we reported that parkin-dependent and -independent mitophagy-associated genes were
expressed in human masked and mature beige adipocytes, and the cAMP-driven thermo-
genic stimulus resulted in decreased expression of parkin-dependent mitophagy-related
genes [37]. In the current study, we have found that the gene and protein expression
of parkin was not affected during beige to white transition (Figure 6A,B). However, the
level of selective adapter proteins, NBR1 (Figure 6C) and p62 (Figure 6D) significantly
decreased and the expression of CALCOCO2/NDP52 (Figure 6F) and the investigated
parkin-independent mitophagy-related genes (Figure 7) was significantly elevated during
transition, compared to fully differentiated beige adipocytes. In summary, our data suggest
that both parkin-dependent and -independent mitophagy pathways are involved in the
regulation of mitochondrial elimination during beige to white adipocyte transition.

p62 is a multifunctional protein involved in several signaling pathways affecting various
cellular processes, such as inflammation, cell death, tumorigenesis, and metabolism [83,84]. It
has been reported that whole-body p62 knockout mice show an obese phenotype due to
increased adiposity and reduced energy expenditure [85]. Furthermore, the mitochondrial
function of BAT in adipocyte-specific p62−/− mice was impaired, resulting in BAT becom-
ing unresponsive to β3-adrenergic stimuli [86]. This suggests that p62 plays a significant
role in the regulation of thermogenesis in BAT. A recent paper has demonstrated that NBR1
is required for the repression of adaptive thermogenesis via decreasing the activity of
PPARγ in BAT of p62-deficient mice; thereby, the inhibitory role of NBR1 in thermogenesis
in the presence of p62 inactivation was identified [87]. Based on these studies, further
investigations may reveal the role of p62 and NBR1 in the thermogenesis of human brown
and beige adipocytes.

Individuals with obesity possess less active BAT but more “brownable” fat than lean
ones [17]. These “brownable” depots might contain a large number of beige adipocytes
undergoing transition, in which autophagy and mitophagy are highly active. This is
supported by the fact that ATG and autophagosome-related genes are highly expressed
in the visceral and subcutaneous WAT of patients with obesity [88,89]. In the future,
well-established molecular markers and histological or cell sorting methods are necessary
to discriminate between white, active beige, and dormant beige adipocytes in distinct
anatomical areas. This might allow researchers to analyze gene expression changes during
conversion in individual cells, which might reveal the novel molecular targets that control
this process. More investigations are needed to use the inhibition of autophagy to cure
diseases but there are feasible findings that show practicable perspectives. For example,
García-Pérez et al. summarized that targeting autophagy in the early stage of SARS-
CoV-2 infections can be a potential therapeutic strategy against viral replication and in
the regulation of the exacerbated inflammatory response [90]. A better understanding
of the key molecular events that determine the entry into beige to white transition may
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offer new opportunities for specifically preventing this process in order to maintain active
heat-producing adipocytes; they may be pharmacologically activated or transplanted, for
instance, in humans for improving energy metabolism and combatting obesity.

4. Materials and Methods
4.1. Materials

All chemicals were obtained from Sigma Aldrich (Munich, Germany) unless stated
otherwise.

4.2. Isolation, Maintenance, and Differentiation of hASCs

hASCs were obtained and isolated from SVFs of human subcutaneous abdominal adi-
pose tissue of healthy donors undergoing planned surgeries, as previously described [37,40].
The absence of mycoplasma was ascertained by a PCR Mycoplasma kit (PromoCell,
Heidelberg, Germany). hASCs were seeded in six-well plates (Costar, Corning, NY, USA)
and differentiated for 14, 21, and 28 days as indicated, following the white [37,40,41]
or beige [37,39–41] adipogenic differentiation protocols. White differentiation was initi-
ated by using a serum-free DMEM-F12 medium supplemented with 33 µM biotin, 17 µM
pantothenic acid, 100 U/mL penicillin/streptomycin, 10 µg/mL human apo-transferrin,
20 nM human insulin, 200 pM triiodothyronine, 100 nM cortisol, 2 µM rosiglitazone
(Cayman Chemicals, Ann Arbor, MI, USA), 25 nM dexamethasone, and 500 µM 3-isobutyl-
1-methylxanthine (IBMX). Four days later, rosiglitazone, dexamethasone, and IBMX were
removed. The beige protocol was initiated for four days, applying serum-free DMEM-F12
containing 33 µM biotin, 17 µM pantothenic acid, 100 U/mL penicillin/streptomycin,
10 µg/mL apo-transferrin, 0.85 µM human insulin, 200 pM triiodothyronine, 1 µM dex-
amethasone, and 500 µM IBMX. Then 500 nM rosiglitazone was added to the cocktail,
while dexamethasone and IBMX were omitted. Where indicated, after a 14-day beige
differentiation period, the transition was made to a white differentiation protocol for a
further seven or 14 days, respectively. The transition was initiated by the addition of 100 nM
cortisol and the removal of 500 nM rosiglitazone, the key driver of beige differentiation.
The concentration of human insulin decreased by 42.5-fold at the induction of transition.
Cells were incubated at 5% CO2 and 37 ◦C, and media were replaced at an interval of
four days.

4.3. Nucleic Acid Isolation, RT-PCR, and qPCR

Cells were collected in Trizol reagent (Thermo Fisher Scientific, Waltham, MA, USA),
followed by manual isolation of RNA and DNA by chloroform extraction and isopropanol
or ethanol precipitation, respectively. RNA quality was evaluated by Nanodrop (Thermo
Fisher Scientific), and cDNA was generated by a TaqMan reverse transcription reagent
kit (Thermo Fisher Scientific) followed by qPCR analysis [37,91]. Gene expression was
normalized to GAPDH. A list of all the probes is provided in Table S1. Quantification of
mtDNA was performed by qPCR as previously described [37,46].

4.4. Antibodies and Immunoblotting

Sample separation was performed by SDS-PAGE, followed by transfer to a PVDF
membrane. The membrane was blocked by 5% skimmed milk solution [37,91]. The fol-
lowing primary antibodies were used: anti-UCP1 (1:750, R&D Systems, Minneapolis, MN,
USA, MAB6158), anti-p62 (1:5000, Novus Biologicals, Centennial, CO, USA, NBP1-49956),
anti-LC3 (1:2000, Novus Biologicals, NB100-2220), anti-Parkin (1:750, Santa Cruz Biotech-
nology, Dallas, TX, USA, sc-32282), anti-NBR1 (1:1000, Novus Biologicals, NBP1-71703),
and anti-β-actin (1:5000, A2066). HRP-conjugated goat anti-rabbit (1:10,000, Advansta,
San Jose, CA, USA, R-05072-500) or anti-mouse (1:5000, Advansta, R-05071-500) IgG was
used as secondary antibodies. Immunoreactive proteins were visualized, followed by
densitometry by FIJI ImageJ software (National Institutes of Health (NIH), Bethesda, MD,
USA) as previously described [37].
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4.5. Immunostaining and Image Analysis

hASCs were plated and differentiated in eight-well Ibidi µ-chambers (Ibidi GmbH,
Gräfelfing, Germany) for the indicated number of days. Cells were washed once with PBS
and fixed by 4% paraformaldehyde, followed by permeabilization with 0.1% saponin and
blocking with 5% skimmed milk [37]. Primary antibody incubations were kept overnight
with anti-TOM20 (1:75, WH0009804M1) and anti-LC3 (1:200, Novus Biologicals, NB100-
2220). Secondary antibody incubation was for 3 h with Alexa Fluor 647 goat anti-mouse
IgG (1:1000, Thermo Fisher Scientific, A21236) and Alexa Fluor 488 goat anti-rabbit IgG
(1:1000, Thermo Fisher Scientific, A11034). Propidium iodide (PI, 1.5 µg/mL, 1 h) was
used for nuclei labeling. Images were obtained with an Olympus FluoView 1000 (Olympus
Scientific Solutions, Tokyo, Japan) confocal microscope and FluoView10-ASW (Olympus
Scientific Solutions) software version 3.0, as previously described [37,46]. For the excitation
of Alexa Fluor 488, the 488 nm line of an argon ion laser was used, while for Alexa Fluor 647,
a 633-nm He–Ne laser was used; for PI, a 543-nm He–Ne laser was used. The fluorescence
emissions of Alexa Fluor 488 and Alexa Fluor 647 were detected through 500–530 nm and
655–755 nm bandpass filters, respectively, while detection of the fluorescence of PI was
achieved with a 555–625 nm bandpass filter. Images were taken in sequential mode to
minimize crosstalk between the channels. Images of approximately 1-µm-thick optical
sections, each containing 512 × 512 pixels (pixel size: ~137 nm), were obtained with a 60×
UPLSAPO oil immersion objective (NA 1.35).

LC3 and TOM20 immunostaining images were converted to binary form, followed by
processing with FIJI. The LC3 punctae count was determined by size (pixel2) 50–infinity AU
with circularity 0–1 AU. Fragmented mitochondria were analyzed from the binary TOM20
immunostaining images with size (pixel2) 0–100 AU and circularity 0–1 AU. The optimum
size values for the LC3 punctae and fragmented mitochondria were determined based on
an analysis of all immunostaining images and manual verification of the counting accuracy
by checking the outlines of counts. Both LC3 punctae and fragmented mitochondria
content were normalized to per nucleus for individual images [37,46]. Colocalization of
LC3 and TOM20 was evaluated by calculation of the PCC [37]. Texture sum variance was
calculated using iCys companion software (iNovator Application Development Toolkit
version 7.0, CompuCyte Corporation, Westwood, MA, USA), Cell Profiler, and Cell Profiler
Analyst (The Broad Institute of MIT and Harvard, Cambridge, MA, USA) as previously
described [40,45].

4.6. Determination of Cellular OCR and ECAR

Cells were seeded and differentiated on XF96 assay plates (Seahorse Biosciences, North
Billerica, MA, USA) and differentiated for 28 days with white, beige, or beige to white
transition protocols, followed by the measurement of OCR and ECAR with XF96 oximeter
(Seahorse Biosciences). cAMP-stimulated OCR, ECAR, and stimulated proton leak OCR
were measured as previously described [51]. Antimycin A (10 µM) was used for baseline
correction. The OCR was normalized to protein content.

4.7. Statistics and Figure Preparation

All measured values are expressed as mean ± SD for the number of independent repe-
titions indicated. The normality of the distribution of data was tested by the Kolmogorov–
Smirnov (n = 5 or more) or Shapiro–Wilk (n = 4) test. One-way ANOVA with a Tukey’s
post hoc test was used for multiple comparisons of groups when the dataset followed
normal distribution. Friedman’s test and Dunn’s multiple comparison test were used
for multiple comparisons of groups when the dataset did not follow normal distribu-
tion. GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) was used for figure
preparation and statistics.
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5. Conclusions

Although the concept of beige to white adipocyte transition is not novel, the underlying
transcriptional and cell biological changes have not been investigated in human primary
cell models so far. We successfully modeled the white and beige differentiation of human
abdominal subcutaneous adipocytes for up to 28 days and observed the beige to white
transition ex vivo for the first time to our knowledge. Beige adipocytes had elevated
mitochondrial biogenesis, UCP1 expression, fragmentation, and oxygen consumption
compared to white adipocytes. In adipocytes that underwent the beige to white transition,
these parameters were similar to those observed in white cells. During the transition,
both parkin-dependent and -independent mitophagy marker genes were induced. The
direct functions of individual elements of the mitophagy machinery need to be investigated
through experiments involving pharmacological inhibitors and gene silencing, deletion,
or overexpression. In our opinion, inhibiting the transition of beige to white adipocytes
may be a way to maintain their high energy expenditure. This could potentially lead to
more active BAT instead of “brownable” fat. An in-depth understanding of the molecular
mechanisms behind this process could help to develop new methods to treat obesity in
the future.
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