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Application of a Systems Pharmacology-Based Placebo
Population Model to Analyze Long-Term Data of
Postmenopausal Osteoporosis

J Berkhout1,2, JA Stone3, KM Verhamme1, BH Stricker4,5, MC Sturkenboom1, M Danhof2 and TM Post6

Osteoporosis is a progressive bone disease characterized by decreased bone mass resulting in increased fracture risk. The
objective of this investigation was to test whether a recently developed disease systems analysis model for osteoporosis
could describe disease progression in a placebo-treated population from the Early Postmenopausal Intervention Cohort
(EPIC) study. First, we qualified the model using a subset from the placebo arm of the EPIC study of 222 women who had
similar demographic characteristics as the 149 women from the placebo arm of the original population. Second, we applied
the model to all 470 women. Bone mineral density (BMD) dynamics were changed to an indirect response model to describe
lumbar spine and total hip BMD in this second population. This updated disease systems analysis placebo model describes
the dynamics of all biomarkers in the corresponding datasets to a very good approximation; a good description of an
individual placebo response will be valuable for evaluating treatments for osteoporosis.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 516–526; doi:10.1002/psp4.12006; published online on 22 August 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � A complete mechanism-based model describing osteo-
blast and osteoclast activity has been reduced in order to apply it in a population approach. It was shown that the model
reduction did not jeopardize the dynamical properties of the model. The reduced model was successfully applied to
describe responses in treatment with various doses of tibolone and/or calcium in postmenopausal women. • WHAT
QUESTIONS DID THIS STUDY ADDRESS? � Can the current disease systems analysis model be used to describe the
disease progression in another external placebo-treated population? • WHAT THIS STUDY ADDS TO OUR KNOWL-
EDGE � The developed placebo model could describe the data of this new population to a very good approximation,
showing the strength of a population systems pharmacology approach. • HOW THIS MIGHT CHANGE CLINICAL PHAR-
MACOLOGY AND THERAPEUTICS � The effect of a drug involves understanding of the progression of the disease
and the effect of placebo. The developed model will therefore allow for a better understanding of disease progression of
osteoporosis in treated and untreated patients.

Osteoporosis is defined as a progressive systematic skele-

tal disorder that is characterized by the loss of bone tissue,

disruption of bone architecture, and bone fragility that leads

to an increased risk of fractures.1 Removal and formation

of bone occurs in a continuous remodeling cycle, which is a

carefully regulated process involving many local and sys-

temic factors.2 Both men and women lose bone mass when

they age. However, in postmenopausal women, mainly due

to the decline in estrogen levels during menopausal transi-

tion: 1) the activity of osteoclasts (cells responsible for

resorbing mineralized bone) increases compared to the

activity of osteoblasts (cells responsible for synthesis of

new bone matrix); 2) osteoblast activity also increases, but

with a delay. The combination of the two processes result

in higher bone turnover. The rapid (menopause) and slow

(aging) components of disease progression underlie ele-

vated fracture rates in vertebrae and hip joints, increased

mortality, and significant healthcare costs.3,4 Various treat-

ments exist that aim to either promote bone formation or

inhibit bone resorption, yet postmenopausal osteoporosis

still represents an ongoing clinical challenge with decreases

in quality of life and increase in healthcare costs. Addition-

ally, given the rapidly aging population (both men and

women) the burden of this disease is expected to increase.
Disease systems analysis models are used to study

treatment effects on disease progression within the context

of interacting networks.5 By doing so, these models allow

for the comparison of effectiveness and safety of different

treatment options. In order to estimate the actual treatment

effect it is essential to account for the time course of the

drug and/or placebo effects and disease progression.5,6

Although it is sometimes difficult to differentiate the placebo

response and the underlying disease progression, this

distinction is important for designing clinical trials and

interpreting results. Furthermore, one of the premises of

mechanism-based disease systems analysis models is that
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the model structure and the values of the system-specific
parameters would ultimately be independent of the type of
treatment. Therefore, in principle, they provide the opportu-
nity to predict disease progression in another comparable
population than the population that was used for model
development and parameter fitting. In this study we will use
the term “disease progression” for disease progression of
the placebo arm of the Early Postmenopausal Intervention
Cohort (EPIC) study in which all subjects took (at least)
500 mg calcium per day.

The objective of this study was to test whether a current

disease systems analysis model for postmenopausal osteo-

porosis can adequately describe disease progression in a

placebo-treated population of postmenopausal women. To

this end, we focused on the contribution of the postmeno-

pausal transition in combination with the placebo effect

(i.e., calcium effect) on the osteoblast and osteoclast activ-

ity. For the current model, the placebo effect captures the

response to daily calcium intake and the underlying disease

progression. Variation in placebo response within and

among clinical trials can substantially affect conclusions

about the efficacy of new medications. Developing a robust

population model to describe the placebo arm is of interest

to enable quantification of drug effects, and eventually to

guide the design of clinical trials for osteoporosis treatment.

This outcome of the placebo arm is the result of individual

placebo response (including the eventual effect of calcium

intake) and progression of the disease.
For osteoporosis, different models have been proposed.

The group of Peterson and Riggs have published a

physiology-based mathematical representation of integrated

calcium homeostasis and bone remodeling,7 which they

later extended to show nonlinear changes in lumbar spine

(LS) bone mineral density (BMD) upon denosumab treat-

ment, a monoclonal antibody that decreases bone resorp-

tion,8 and to describe the impact of progressive loss of

kidney function.9 This group has also described estrogen-

related changes in bone and calcium balance through men-

opause transition10,11 with an extension to fracture risks.12

In their current form these extensive physiology-based

models are challenging to apply in a population approach,

which captures the existing variability in addition to the

structural dynamics. In order to do so, Danhof and col-

leagues have shown that a full mechanism-based model of

interacting osteoblast and osteoclasts can be reduced to a

simpler model, which can describe the dynamics of the full

model13 to a very good approximation (for details on the

simplification, see Ref. 14). The reduced model was then

applied to clinical data from postmenopausal women receiv-

ing calcium and tibolone.15 This reduced systems disease

model ensures parameter identifiability and could describe

the dynamics of biomarkers that respond at widely different

timescales to drug treatment. Even though the Peterson

and Riggs model describes cellular through organ level

aspects involved in bone and calcium homeostasis, it also

contains a high number of differential equations and param-

eters to be estimated. Due to this model complexity, we will

here focus on the disease systems analysis model devel-

oped by Post et al.15

In this study, we applied an osteoporosis disease sys-

tems analysis model15 to the placebo arm of a clinical study

from the EPIC study.16 It should be noted that the EPIC

study was intended as an osteoporosis prevention study.17

As such, patients enrolled were thought to be at risk of

osteoporotic bone loss, but they did not meet the usual cri-

teria for low bone BMD that would define osteoporosis (see

Methods). The range of “years since menopause” (YSM) in

the EPIC study population (0.5–27 years) is larger than in

the population of the tibolone study (1–4 years). A charac-

teristic of the disease systems analysis model is that the

timescale of the disease process is incorporated rather

than the timescale relative to the start of the study. There-

fore, this systems pharmacology approach allowed us to 1)

qualify the disease systems analysis model using an exter-

nal dataset; 2) develop a robust placebo model; 3) chal-

lenge the model with data over a longer time after the

onset of the disease (e.g., the start of the menopause); 4)

relate various timescales (short- and long-term biomarkers);

and 5) directly address and describe the covariate YSM

instead of it being a covariate at baseline. The latter was

possible because YSM and not study time was used as the

timescale in the model.

METHODS
Subject population and study design
Data for the current analysis were obtained from the EPIC

study, a clinical trial of oral alendronate in 1,609 postmeno-

pausal women who were randomly assigned in a double-

blind manner to receive alendronate, placebo, or open-label

estrogen-progestin in order to evaluate the potential to pre-

vent osteoporosis. In this study we only used data from the

placebo arm (n 5 470). Briefly, all participants were

between 45 and 59 year of age and at least 6 months past

menopause at baseline, were in good general health, and

had no clinical or laboratory evidence of confounding sys-

temic disease.1 Four study centers (two in the United

States and two in Europe) were involved in this trial. To

ensure that most women who entered the study did not yet

have osteoporosis, only 10% of the women enrolled at

each center were allowed to have an LS-BMD below 0.8 g/

cm2, as measured by dual-energy x-ray absorptiometry. All

women adhered to therapy (had taken at least 80% of the

prescribed number of tablets, confirmed by tablet count).

Dietary calcium intake was estimated at baseline and annu-

ally during the study on the basis of a food-frequency

questionnaire.

Measurement of BMD and biochemical markers of

bone turnover
BMD of LS and total hip (TH, defined as the femoral neck

plus trochanter and intertrochanteric area) was measured

by dual-energy x-ray absorptiometry (model 2000, Hologic,

Waltham, MA) twice at baseline and annually thereafter.

BMD is reported in g/cm2. Blood and morning second-void

urine samples were collected after an overnight fast at

baseline and every 6 months thereafter. Bone resorption

was estimated by using urine N-telopeptide cross-links

of type I collagen (NTX) (Osteomark, Ostex, Seattle, WA).
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NTX is reported as nmol bone collagen equivalents (bce)
and corrected for creatinine excretion (nmol bce/mmol cr).
In addition, the serum level of bone-specific alkaline phos-
phatase (BSAP) was measured at baseline and at months
6, 12, 24, 36, 42, and 48 in a random sample of 205
women to estimate bone formation (Ostase, Hybritech, San
Diego, CA). BSAP is reported in ng/mL.

Mechanism-based disease systems analysis model
In an earlier publication it was demonstrated that the com-
pletely mechanistic bone cell interaction model proposed by
Lemaire et al.,13 which involves responding but not yet
active osteoblasts (R), active osteoblasts (B), and active
osteoclasts (C), can be mathematically reduced while main-
taining its dynamic properties.14 The reduced model is
shown in Figure 1 and only involves active B and C, which
is given by the following system of equations:

dy
dt
¼ kB r zð Þ2yf g

dz
dt
¼ 1

11zs

2
11f tð Þr2 zð Þ y � PCa2r zð Þz
� �

r zð Þ ¼ 11zsð Þ z
z1zs ; zs ¼ Cs

C0

8>>>>>>>>><
>>>>>>>>>:

(1)

where y and z are defined as y=B/B0 and z=C/C0 or, in
other words: the activity of the osteoblast (B) and osteo-
clast (C) relative to their baseline values, B0 and C0,
respectively. kB is the apoptosis rate of active osteoblasts.
Cs is the value of C for which approximately half of the
transforming growth factor-b (TGF-b) receptors are occu-
pied.13 The function f(t) models disease progression. We
used the function as proposed by Post et al.:15

f tð Þ ¼ e2kestrogen t (2)

where kestrogen is the first-order rate constant of disease
progression. In Eq. 1 PCa is the placebo effect that starts at
tstart and the effect of placebo is assumed to wear off over
time with rate constant kCa:

PCa tð Þ ¼
1 0 < t < tstart

12Pmax 12e2kCa t2tstartð Þ� �
� e2kCa t2tstartð Þ t > tstart

(

(3)

where Pmax is a measure for the calcium-induced inhibition
of the RANK- RANKL-OPG through parathyroid hormone
(PTH),7,13,18 which we take to be unity (100%).

The mechanistic core model (Eq. 1) is linked to the corre-
sponding biomarkers (Figure 1) using the following trans-
ducer functions:

NTX ¼ NTX0 � zqNTX

BSAP ¼ BSAP0 � yqBSAP
(4)

These transducer functions involve 1) a baseline parame-
ter (NTX0, BSAP0), which links the relative cell activity to
the baseline value of the marker, and 2) a positive trans-

duction parameter (q), which links relative changes in cell

activity to those in the corresponding bone turnover

markers.
In comparison to the biomarkers NTX and BSAP,

changes in LS-BMD and TH-BMD are relatively slow and

have dynamics and timescales of their own, which were

described by the zeroth-order process (15):

dLS2BMD
dt

¼ kLS � 12SqBMDð Þ

dTH2BMD
dt

¼ kTH � 12SqBMDð Þ
; S ¼ z

y
(5)

At baseline (healthy bone status), y 5 1 and z 5 1 and

hence S 5 1. In light of Eq. 5 this means that if y and z

stay at baseline, then LS-BMD and TH-BMD do not change

with time. However, if either or both y and z change the

overall change in BMD depends on S.
Body composition is known to induce changes in bone

morphology.19 Body mass index (BMI) was incorporated

as a fraction of the baseline of LS-BMD (LS-BMD0) and

baseline TH-BMD (TH-BMD0) using the median BMI of

25.2 kg/m2.
In order to initialize the model at a healthy normal state

(z, y, and S 5 1), individual timescales were normalized

using time-since-onset-of-menopause as the characteristic

time frame (Figure 2). Due to this normalization, individual

subject’s disease trajectories are harmonized to an identical

start point and allowed to set the onset of menopause for

the entire population at t 5 0. When combining the individ-

ual disease trajectories in a population approach, the over-

all population’s disease trajectory can then be defined and

the need for a disease status covariate on baseline is not

required as its influence on the variability is already

described.

Data analysis
Description of the data analysis, including the model file,

can be found in the Supplementary Information.

RESULTS
Comparison of baseline demographic characteristics
Before applying the model, the baseline demographic char-

acteristics for the placebo arms of the tibolone (originator)

and EPIC studies were compared (Table 1). Data from the

EPIC study were split into two different datasets: EPIC 1,

which only includes women with YSM between 1 and 5 years

(n 5 222), and EPIC 2, which contains the entire range of

YSM (n 5 470). EPIC 1 was created to have demographic

characteristics as close as possible to the tibolone study and

was used for qualification of the disease systems analysis

model. EPIC 2 was used to challenge the model for a longer

time after the onset of the menopause. This led to mean

YSM for EPIC 1 and EPIC 2 that were, respectively, compa-

rable and higher when compared to the tibolone study. Fur-

thermore, mean age was somewhat lower in EPIC 1 but

similar for EPIC 2 in comparison to the tibolone study. There

was no meaningful difference between the two clinical stud-

ies in terms of BMI. Additionally, for EPIC 1 and EPIC 2 we
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Figure 2 Normalization of individual timescales based on years since menopause (YSM). (a) Typical imaginary disease progression
curve for osteoporosis (black solid line). Disease progression is plotted as relative fraction of healthy status (51) vs. years since meno-
pause. Five subjects (no real data) are shown that have different YSM at the start of the study. For these subjects we assume that
they complete the study duration of 4 years as indicated by the colored lines. At the start of the study, these five subjects are thus at
different locations on the disease progression curve. The shaded gray area represents the exclusion criteria for YSM. The range of
YSM for EPIC 1 (1�YSM�5) and for EPIC 2 (all YSM) is indicated by the black arrows. (b) Normalization based on study time for the
five subjects (same colors as in a). This normalization harmonizes the individual subjects disease trajectory to an identical study start-
ing point.

Figure 1 Schematic representation of the mechanism-based disease systems analysis model. Active osteoblast and osteoclast cells
and the indicated interactions form the mechanism-based core (shown in gray) of this model, which are linked to the biomarkers, NTX,
BSAP, LS-BMD, and TH-BMD as shown in the dotted area. PTH stands for parathyroid hormone, TGF-b for transforming growth
factor-b, OPG for osteoprotegerin, RANK for receptor activator of NF-jB, and RANKL for receptor activator of NF-jB ligand. RANKL
binds to RANK and promotes osteoclast differentiation, while OPG inhibits this differentiation by binding RANKL. Figure and legend
were adapted from Ref. 15.
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observed a lower mean value for LS-BMD and TH-BMD. The

biomarker for resorption, NTX, was higher in the two EPIC

studies than in the tibolone study. NTX, a specific collagen

degradation product, is produced by osteoclastic bone

resorption. When bone resorption is accelerated, which is

known to happen in response to estrogen deficiency,20 NTX

levels in urine increase as well. BSAP, on the other hand, was

measured using two different assays and is reported in differ-

ent units. To account for these different units a scaling

parameter was introduced (assuming a linear relation

between U/L and ng/mL, see below).

Qualification of the disease systems analysis model

using EPIC 1
Previous studies have indicated that most women have a

rapid phase of bone loss following menopause, followed by

a protracted period of slower bone loss (age-related) that

continues into old age.18,19 The model takes the timescale

of the disease process into account (i.e., YSM, see Meth-

ods and Figure 2).
Due to the design of the tibolone study (see Supplemen-

tary Information), only the effect on disease progression

between years 1 and 4 after menopause could be ana-

lyzed. Therefore, to qualify the disease systems analysis

model we first analyzed the results using data from EPIC 1

(Table 1). In order to apply the model (see Methods) to

this dataset two modifications were applied: first, a scaling

parameter was introduced to account for the different units

for BSAP in the two clinical studies. The baseline value for

BSAP was fixed at the value found in the tibolone study (in

units U/L) and we only estimated the value of the scaling

parameter. This scaling parameter (kBSAP,0) affects the

baseline value of BSAP:

BSAP ¼ BSAP0 � 11kBSAP;0
� �

� yqBSAP (6)

Second, the placebo effect during treatment with calcium

was implemented using a separate calcium elimination rate

constant (kCa) for the onset and offset of the placebo

function:

PCa tð Þ ¼
1 for 0 < t < tstart

12Pmax 12e2kCa;onset t2tstartð Þ� �
� e2kCa;offset t2tstartð Þ fort > tstart

(

(7)

This adaptation in placebo function allows for a pla-

cebo effect that wears off over time much more slowly
than the original model, something we also observed dur-

ing data analysis of the placebo response for the EPIC
study.

Since it was our aim to qualify the model, we fixed the

system-specific parameters and estimated the parameters
related to the placebo function, transducer functions for
bone turnover markers, and BMD as well as the interindi-

vidual (IIV) and residual variability observed for the bone
turnover markers and BMD (see Table 2). All parameter

values were in accordance with the original values or with
the available data and could be estimated with good preci-

sion. Goodness of fit plots indicated that there were no
underlying trends of model misspecifications. Overall, we

found that the disease systems analysis model was able to
satisfactorily predict the course of the changes for all four
measurements in this external dataset.

Application of disease systems analysis model to all

data in the placebo arm of the EPIC study
The change in LS-BMD and TH-BMD is described by a
zeroth-order process (Eq. 5), which can be viewed as a

simplification of classical turnover models in which the loss
term is omitted. For EPIC 1 (and the original tibolone study)

this zeroth-order process turned out to be a good approxi-
mation. However, when analyzing all 470 women in the pla-

cebo arm of EPIC 2 a large deviation between model
predictions and observed values was found for LS-BMD
and TH-BMD, but not for the resorption (NTX) and forma-

tion (BSAP) markers. Likely this is due to the fact that a
longer disease trajectory is being looked at. Therefore, we

used an indirect response model for the BMD dynamics
proposed by others.8,23 Changes in BMD are described

with osteoblasts and osteoclasts stimulating the production
and degradation processes as:

Table 1 Comparison of demographic characteristics of the placebo arms from the tibolone and EPIC study. The EPIC study was split up in two groups (EPIC

1 and EPIC 2) based on the years since menopause (YSM)

Placebo arm of EPIC study

Characteristic Placebo arm of tibolone study EPIC 1 1<YSM<5 EPIC 2 All YSM

Subjects, n 149 222 470

Mean age at baseline 6 SD, years 53.0 6 3.3 50.3 6 3.3a 53.3 6 3.7c

Mean BMI at baseline 6 SD, kg/m2 25.3 6 3.8 25.2 6 3.5a 25.2 6 3.6a

Mean time since menopause at baseline 6 SD, years 2.3 6 0.9 2.5 6 1.4c 5.7 6 5.4b

Mean LS-BMD at baseline 6 SD, g/cm2 1.04 6 0.16 0.93 6 0.12b 0.94 6 0.12b

Mean TH-BMD at baseline 6 SD, g/cm2 0.89 6 0.13 0.84 6 0.11d 0.85 6 0.12d

Mean BSAP at baseline 6 SD (U/Le and ng/mlf) 106.7 6 29.6 11.2 6 4.4b 11.1 6 4.4b

Mean NTX at baseline 6 SD, nmol bce/mmol cr 50.1 6 23.0 67.1 6 38.1b 88.0 6 45.0b

aNot significant when either of the two EPIC datasets is compared to tibolone study, using two-sample Student’s t-test assuming equal variance.
bP< 0.001 when either of the two EPIC datasets is compared to tibolone study using Welch’s t-test.
cP< 0.05 when compared to tibolone study using Welch’s t-test.
dP< 0.001 when either of the two EPIC datasets is compared to tibolone study using two-sample Student’s t-test assuming equal variance.
eDetermination of BSAP activity was based on selective inhibition of the three common isoenzymes of alkaline phosphatase (bone, liver, and a third group of

isoenzymes from intestinal mucosa, placenta, and neoplastic tissue that are sensitive to l-phenylalanine) and reported in U/L.22

fDetermination of BSAP activity was based on a solid phase, monoclonal antibody immunoenzymetric assay and is reported in ng/mL.16
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Table 2 Comparison of the population parameter estimates for the placebo arm of the tibolone model and the models applied to of EPIC 1 and EPIC 2

Parameter (unit) Description

Value (%CV)

tibolone study

Value (%CV)

EPIC 1 1 £ YSM £ 5

Value

(%CV) EPIC

2 All YSM

System-related parameters

zs (fraction) Constant in r(z) fixed at 0.659

kB (day21) Elimination rate constant

of osteoblast

fixed at 0.0109

kestrogen (day21) Estrogen elimination rate constant fixed at 0.00763

DA (day21) Osteoclast apoptosis rate constant Could not be estimated, fixed at 1

b (%) Status of the disease

process at baseline

Could not be estimated, fixed at 1

Placebo-related parameters

kCa (day21) Calcium elimination rate constant 0.00237 (14.43) NA NA

kCa,onset (day21) Calcium elimination rate

constant for onset

NA 0.00128 (7.2) 0.0009 (12.4)

KCa,offset (day21) Calcium elimination rate

constant for offset

NA 0.000374 (10.7) 0.000226 (21.9)

Transducer function bone turnover markers

BSAP0 (U/L) BSAP baseline value fixed at 97.4a

kBSAP0 (2) BSAP baseline scaling parameter NA 20.894 (0.4) 20.896 (0.3)

NTX0 (nmol bce/mmol cr) NTX baseline value 35.9 (2.58) 53.4 (2.6) 49.5 (5.7)

qBSAP (2) BSAP transduction parameter fixed at 97.4a

qNTX (2) NTX transduction parameter 0.366 (11.61) 0.564 (7.6) 0.56 (15.6)

Transducer function bone mineral density

kLS (mg/day) Zero-order turnover rate

constant for LS

0.11 (34.45) fixed at 0.11 NA

kin,ls (mg/day) Zero-order production rate

constant for LS-BMD

NA NA 1.13 (22.7)

LS-BMD0 (g/cm2) LS-BMD baseline value 0.97 (0.8) 0.98 (0.8) 0.99 (0.7)

BMI-LS-BMD0 fraction (2) BMI fraction of LS-BMD baseline 0.00792 (14.90) 0.00892 (24.8) 0.0111 (14.5)

kTH (mg/day) Zero-order turnover rate

constant for TH

0.0821 (34.71) fixed at 0.0821 NA

kin,th (mg/day) Zero-order production rate

constant for TH-BMD

NA NA 0.295 (14.7)

TH-BMD0 (g/cm2) TH-BMD baseline value 0.87 (0.8) 0.88 (0.8) 0.88 (0.7)

BMI-TH-BMD0 fraction (2) BMI fraction of TH-BMD baseline 0.0133 (8.95) 0.0118 (22.1) 0.0154 (11.4)

qBMD (2) BMD transduction parameter 0.784 (33.80) fixed at 0.784 NA

DAOB (2) Coefficients for stimulation by

relative osteoblast activity

NA NA 0.121 (6.0)

DAOC(2) Coefficients for stimulation by

relative osteoclast activity

NA NA 0.0456 (10.6)

Interindividual variability

IIV NTX0 (%) IVV NTX baseline 29 (7.1) 39 (5.2) 40 (3.5)

IIV BSAP0 (%) IVV BSAP baseline 25 (5.8) 33 (6.6) 32 (5.6)

IIV corr NTX0-BSAP0 (2) IVV correlation NTX-BSAP baseline 0.48 (10.0) 0.50 (15.7) 0.50 (12.1)

IIV BMDLS,0 (%) IVV LS-BMD baseline 11 (5.5) 12 (4.7) 12 (3.4)

IIV BMDTH,0 (%) IVV TH-BMD baseline 11 (5.7) 12 (4.5) 12 (3.4)

IIV corr BMDLS,0-TH,0 (2) IVV correlation LS-TH-BMD

baseline

0.62 (7.0) 0.59 (2.3) 0.60 (1.4)

Residual variability

eBSAP (SD) Residual variability BSAP 0.164 (2.1) 0.174 (4.4) 0.184 (4.6)

eBSAP,extremes (SD) Residual variability BSAP extremes 0.632 (13.6) 0.536 (22.9) 0.521 (22.8)

eNTX (SD) Residual variability NTX 0.312 (1.8) 0.307 (2.5) 0.314 (2.0)

eNTX, extremes (SD) Residual variability NTX extremes 0.984 (8.1) 0.570 (14.4) 0.511 (19.2)

eLS (SD) Residual variability LS-BMD 0.019 (2.2) 0.024 (3.6) 0.022 (2.7)

eTH (SD) Residual variability LS-BMD 0.015 (3.0) 0.021 (3.5) 0.020 (2.3)

NA: Not applicable.
aFixed at the tibolone value, see main text for explanation.
bCould not be estimated.
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dLS BMD
dt

¼ kinLS � 11DAOB � yð Þ2koutLS � 11DAOC � zð Þ � LS BMD

dTH BMD
dt

¼ kinTH � 11DAOB � yð Þ2koutTH � 11DAOB � zð Þ � TH BMD

(8)

where kinLS(TH) is a zeroth-order production rate con-

stant for LS-BMD (TH-BMD), koutLS(TH) is the first-order

degradation rate constant for LS-BMD (TH-BMD), and

DAOB and DAOC are the coefficients for stimulation by the

relative osteoblast (y) and osteoclast (z) activity. The

model, including the indirect response equations for

BMD, was then applied to EPIC 2. The resulting parame-

ters values are shown in Table 2. The two models

yielded similar values for baseline parameter values and

comparable values for the residual variability. Parameter

estimates for the indirect response equations for BMD

were consistent with physiological values reported in the

literature.23,24

To test the appropriateness of the current model, a visual

predictive check (VPC) and numerical predictive check

(NPC, see Supplementary Information) was performed.

In Figure 3 the relative changes from baseline are shown

on the study timescale for the degradation marker NTX,

bone formation marker BSAP, LS-BMD, and TH-BMD. The

results presented in Figure 3 show that the model

adequately describes all biomarker data as the 5th, 50th,

and 95th percentiles of the real data (red lines) overlap with

the 5th, 50th, and 95th percentiles of the simulated data

(black lines) and lay within the respective prediction inter-

vals (blue and red areas). Furthermore, the 5th, 50th, and

95th percentiles of the model prediction (black lines) follow

that of the real data (red lines). Overall, we conclude that

the model is able to describe the dynamics of the bio-

marker in the entire placebo arm to a very good

approximation.

Sensitivity of the system-specific parameters
As a second level of model qualification, we tested the sen-

sitivity of the system-specific parameters for both models

(EPIC 1 and EPIC 2). To find how these parameters vary,

the model was optimized with all other parameter values

fixed at the values as shown in Table 2, and each system-

specific parameter was estimated one at a time. Parame-

ters values for zs and kB were lower compared to the

tibolone study and could be estimated with acceptable pre-

cision. Kestrogen could not be identified for EPIC 1 and only

with a very high coefficient of variation for EPIC 2 (see

Table 3).

Simulations of BMD dynamics with zeroth-order and

indirect response model
Simulations with both types of BMD equations were per-

formed in order to compare the effect on the dynamics.

The parameter values as shown in Table 2 were used for

these simulations. For both equations the change of BMD

is determined by the balance between the relative changes

in y and z (i.e., S 5 z/y). In Figure 4a it is shown how these

relative quantities evolve as a result of the placebo treat-

ment. Both models evolve towards a similar maximal value

of S. The underlying dynamics for both models is different,
however: the zeroth-order model has reached this maximal
value already after 2 years, whereas the indirect response
model reached this value only after 4 years. Note that S
represents the ratio of relative osteoclast activity over rela-
tive osteoblast activity. Therefore, there is net bone loss if
this ratio is bigger than 1 and net bone formation when it is
smaller than 1. This can also be seen in Figure 4b, where
the change of LS-BMD (gray lines) and TH-BMD (black
lines) over time is plotted and decreases as a result of dis-
ease progression. The difference in the two BMD equations
can be seen from this plot: the zeroth-order response func-
tion (solid lines) has a concave shape, whereas the indirect
response model (dashed lines) has a convex shape. This
implies that right after onset of disease progression (e.g.,
beginning of the menopause) the change in BMD is largest.
In addition, this change is bigger for LS-BMD compared to
TH-BMD. These model predictions were compared to the
available observations. So, for every individual we calcu-
lated the difference between baseline value and the latest
available measurement for LS- and TH-BMD and plotted
this difference vs. YSM. As shown in Figure 4c,d, we also
found the biggest change (i.e., decrease) in BMD at the LS
and TH shortly after onset of menopause, and the absolute
mean change was �25% higher in BMD at the lumbar
spine compared to the total hip.

DISCUSSION

In this study we applied a recently proposed disease sys-
tems analysis model for postmenopausal osteoporosis to
data from another population that was used for model
development and parameter fitting. The model is based on
a mechanistic model describing osteoblast and osteoclast
activity13 that has been reduced in order to apply it in a
population approach. It was shown that the model reduc-
tion did not jeopardize the dynamic properties of the
model.14 The reduced model was successfully applied to
describe responses in treatment with various doses of tibo-
lone and/or calcium in postmenopausal women.15 The cur-
rent systems pharmacology approach allowed us to test
whether the original values of the system-specific parame-
ters allowed for an adequate description of disease pro-
gression in a new (external) population. To this aim, we
used the placebo arm of the EPIC study.16 This led to a
total of 470 women who received placebo treatment for a
period of 4 years. Although others have looked at the mod-
eling of placebo response,25,26 to our knowledge this is the
first attempt to use a systems-pharmacology population
approach for the description of osteoporosis disease pro-
gression in response to placebo treatment in an external
population. Robust descriptions of the placebo response
and disease progression are crucial for the quantification
of treatment effects. The placebo effect, PCA (Eq. 3), was
updated with an onset and offset parameter and was incor-
porated into the model in a mechanism-based manner: as
an inhibitory factor of the RANK receptor occupancy as
calcium promotes its effects on the RANK- RANKL-OPG
system through PTH.13,15
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It should be noted that all subjects in the tibolone study
received 500 mg calcium carbonate once daily. In the EPIC
study, dietary calcium intake from food sources was monitored
using validated dietary questionnaires. Women with a calcium
intake of less than 500 mg per day were advised to increase
their intake (either by diet or supplements). In principle, all

women in the EPIC study should thus also have received at
least 500 mg calcium per day. Since this was monitored at
center visits only via questionnaires, more variation in calcium
intake could be expected for this study. In order to characterize
the true calcium effect, data obtained following the administra-
tion of different doses of calcium would be needed.

Figure 3 Visual predictive check plots of the degradation marker NTX, the bone formation marker BSAP, LS-BMD, and TH-BMD on
the study timescale for the model applied to all women in the placebo arm (EPIC 2). The blue dots represent the percentage change
from baseline of the available observations. The 5th, 50th, and 95th percentiles of the real data in the bins are presented by the red
dashed, red solid, and red dashed line, respectively. The 5th, 50th, and 95th percentiles of the simulated data (n 5 500) in the bins are
presented by the black dashed, black solid, and black dashed line, respectively. The confidence interval for the simulated data 5th,
50th, and 95th percentiles for each of the bins is presented by the blue, red, and blue area, respectively. Note that BSAP was meas-
ured in a random sample of 205 women and not in the entire population.
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The disease systems analysis model is a mathematical

reduced version14 of the cell interaction model as proposed

by Lemaire et al.13 The model reduction did not influence the

model dynamics and bears the advantage that all remaining

parameter values are identifiable despite the fact that the bio-

markers available in this study respond at different timescales

upon treatment with placebo. With all system-specific param-

eter values fixed at their published values, we showed that

the model is able to adequately describe the dynamics of the

biomarkers within the external population. Furthermore, a

sensitivity analysis revealed that, with the exception of

kestrogen, all systemic parameters could be reestimated with

the current data and their values were in the same range as

the previously reported values. Possibly, the heterogeneity in

YSM in the population resulted in the large uncertainty of the

kestrogen parameter. We anticipate that on the basis of individ-

ual serum estrogen levels a better description of the underly-

ing disease dynamics will be feasible.

Table 3 Change in single system-specific parameter values when the disease systems analysis model was optimized with all other parameters fixed according

to the values as shown in Table 2

Parameter

(unit)

Value (%CV)

tibolone study

Value (%CV)

EPIC 1 1 £ YSM £ 5

Fold change

difference

Value (%CV)

EPIC 2 All YSM

Fold change

difference

zs (2) 0.659 (24.0) 0.497 (27.6) 0.75 0.366 (19.9) 0.55

kB (day21) 0.0109 (11.9) 0.0032 (36.5) 0.29 0.0019 (22.4) 0.17

kestrogen (day21) 0.0076 (21.3) (2)** NA 0.018 (201) 2.4

Da (day21) 1*(2) 1*(2) NA 1*(2) NA

b (%) 1*(2) 1*(2) NA 1*(2) NA

*Fixed at 1.

**Could not be estimated.

NA, not applicable.

Figure 4 Comparison of zeroth-order and indirect response model for BMD dynamics. (a) Changes in the net bone cell activity (S 5 z/y)
vs. time for the zeroth-order process (ZO, solid line) and the indirect response model (IR, dashed line). The arrows indicate the start and
end of the placebo treatment in the two studies. (b). Changes in LS-BMD (gray lines) and TH-BMD (black lines) for the zeroth-order pro-
cess (solid line) and the indirect response model (dashed line). Scatterplot showing the change between baseline and the latest observa-
tion available for LS-BMD (c) and TH-BMD (d) vs. years since menopause.
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The most notable difference between the two clinical

studies is the YSM at baseline. In the model the YSM are

incorporated as the timescale of disease progression (Fig-

ure 2). Inclusion of the entire range of YSM in our analysis

required the adaptation of the equation for the BMD

dynamics. The indirect response model23 used in this study

can be seen as a more extensive form of the (originally pro-

posed) zeroth-order process. With this small adaptation we

were able to describe the dynamics in all biomarkers for

the entire range of YSM with good precision. Furthermore,

the fact that the model also accurately describes disease

progression far outside the timeframe compared to the

timeframe that was used originally in the tibolone study pro-

vides evidence for the values of the system-specific param-

eters. These results provide a strong basis for the potential

to use this disease systems analysis model to evaluate the

(comparative) effect of other drugs with different mecha-

nisms (e.g., bisphosphonates, unpublished data), or link the

mechanism-based core of this model to different

biomarkers.
The core model is defined to describe the dynamics as a

relative change related to the information in the dynamics

of the markers linked to it (based on their relationship to

the system). We believe, and this should be tested, that all

types of markers can be linked and inform such a system.

Whether that holds remains to be seen based on available

data. In contrast to the tibolone study, we did not have

measurements on the biomarker osteocalcin available.

Osteocalcin is a biomarker for the combined osteoblast and

osteoclast activity. Osteocalcin is built into bone—when

bone is degraded it will become available again in the sys-

temic circulation so the measurement is a composite of

building and degradation of bone. We found that removal of

osteocalcin from the model did not alter its performance.

This also shows the strength of a disease systems analysis

model; the core remains the same and the markers supply-

ing the required information on the system can change,

which is in contrast to empirical models where (single)

marker(s) are directly linked. On the other hand, it remains

to be seen how this removal will affect future applications

of the model when other drug treatments are considered.
In conclusion, we have shown that a recently proposed

disease systems analysis model for osteoporosis can be

applied to describe the effect of the placebo treatment on

disease progression in a new population. The mechanism-

based model allowed for 1) an adequate description of the

available biomarkers, 2) allowed for the inclusion of the

years since menopause (the characteristic timescale in the

model) that was more than five times longer than in the

original model. These findings can be considered a first

step towards model validation and qualification of this

osteoporosis model, which will be further elaborated by

also applying the model to other therapeutic interventions.
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