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Abstract

Aims: Previous studies showed that abnormal mitochondrial structure and function 
were involved in the pathological process of diabetic nephropathy (DN). The dynamic 
mitochondrial processes, including fusion and fission, maintain the mass and quantity of 
mitochondria. Podocyte injury is a critical factor in the development and progression of 
DN. The present study evaluated the mitochondrial fission of podocytes in patients  
with DN.
Methods: We recruited 31 patients with biopsy-confirmed DN. A quantitative analysis 
of the mitochondrial morphology was conducted with electron microscopy using a 
computer-assisted morphometric analysis application to calculate the aspect ratio 
values. Immunofluorescence assays were used to evaluate protein colocalization in the 
glomeruli of patients.
Results: The urine protein level was significantly increased in DN patients compared to 
non-DN patients (P < 0.001), and the mitochondria in the podocytes from DN patients 
were more fragmentated than those from patients without DN. The mitochondrial 
aspect ratio values were negatively correlated with the proteinuria levels (r = −0.574, 
P = 0.01), and multiple regression analysis verified that the mitochondrial aspect ratio 
was significantly and independently associated with the urine protein level (β = −0.519, 
P = 0.007). In addition, Drp1, a mitochondrial fission factor, preferentially combines with 
AKAP1, which is located in the mitochondrial membrane.
Conclusions: In the podocytes of DN patients, mitochondrial fragmentation was increased, 
and mitochondrial aspect ratio values were correlated with the proteinuria levels. The 
AKAP1-Drp1 pathway may contribute to mitochondrial fission in the pathogenesis of DN.

Introduction

As a severe type of diabetic microangiopathy, diabetic 
nephropathy (DN) is considered the most common cause 
of end-stage renal disease (ESRD) worldwide (1). In China, 
there are 113.9 million people with diabetes, and the 
estimated number of patients with chronic kidney disease 
(CKD) related to diabetes is 24.3 million, which accounts 
for 21.3% of all individuals with CKD (2). Hence, DN has 
become the leading cause of CKD in China.

Persistent proteinuria, which indicates podocyte 
injury, is an important clinical feature of DN.  

Podocytes, also known as glomerular visceral epithelial 
cells, are located outside the glomerular basement 
membrane. The finger-like foot processes of podocytes 
closely intertwine to form the slit diaphragm (SD), 
which constitutes the most important component of 
the glomerular filtration barrier (3). With complex 
structural functions, podocytes play a key role in many 
renal diseases, and their injury/loss is considered to be a 
vital step in the progression of DN (4, 5), although the 
underlying molecular mechanism remains unclear.
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Previous studies have shown that abnormalities in 
mitochondrial structure and function are involved in 
the pathogenesis of DN (6, 7). High glucose induction 
leads to abnormal mitochondrial biosynthesis, which 
causes a reduction in ATP synthesis and an increase in 
the generation of reactive oxygen species (ROS) (8, 9); 
therefore, mitochondrial dysfunction occurs before 
proteinuria and renal pathology (10). Furthermore, 
mitochondria are considered dynamic organelles that 
periodically divide (fission) and fuse (fusion) (11). These 
dynamic processes maintain stable mitochondrial mass 
and quantity (12). It was reported that hyperglycaemia 
results in increased expression of mitochondrial fission 
protein and decreased expression of mitochondrial fusion 
protein in renal tissue (10, 12). Podocyte-specific deletion 
of dynamin-related protein 1 (Drp1), which is a key 
factor in mitochondrial fission, mitigates the progression 
of DN (13). Our previous studies confirmed that high 
levels of glucose cause mitochondrial ROS production 
and increases the podocyte apoptosis rate (14, 15). 
However, whether mitochondrial dynamics contribute to 
the development and progression of DN in patients has 
not yet been fully elucidated. Thus, to assess the role of 
mitochondrial dynamics in the pathological progression 
of DN, we collected renal biopsies from DN patients and 
analysed the morphological changes in mitochondria in 
podocytes. The results supported the close association of 
mitochondrial dynamics and DN.

Materials and methods

Study population

Thirty-one eligible patients with renal biopsy-confirmed 
DN were selected in the Division of Nephrology, Renmin 
Hospital of Wuhan University from 2016 to April 2018. The 
control group included six patients with renal neoplasm, 
and normal kidney tissues were obtained from these 
patients by nephrectomy. The study protocol was approved 
by the Ethics Committee of Renmin Hospital of Wuhan 
University. All experiments were performed in accordance 
with the approved guidelines of Wuhan University. The 
study complied with the Declaration of Helsinki. Written 
informed consent was obtained from the patients for the 
publication of this study and any accompanying images.

Mitochondrial morphology analysis

Digital images of the mitochondria were obtained using 
transmission electron microscopy (HITACHI, Japan).  

A quantitative analysis of the mitochondrial morphology 
was conducted using a computer-assisted morphometric 
application to calculate the aspect ratio values (16). Three 
podocytes were observed in each specimen. The acquired 
images of the mitochondria were analysed using ImageJ 
software. The aspect ratio values were derived from the 
lengths of the major and minor axes, and the average 
aspect ratio values were calculated for statistical analysis. 
The value 1 indicates a perfect circle. As mitochondria 
elongate and become more elliptical, the aspect ratio 
values increase.

Immunofluorescence assay

Frozen kidney sections were blocked with 5% bovine 
serum albumin (BSA) for 30 min at 37°C. The sections 
were incubated with a mixture of primary antibodies 
(AKAP1 rabbit monoclonal antibody, 1:100, Cell Signaling 
Technology; Drp1 rabbit monoclonal antibody, 1:100, 
Abcam) overnight at 4°C. FITC/TRITC-conjugated IgG was 
used as a secondary antibody and was incubated with the 
sections at 37°C for 90 min in the dark. All microscopic 
images were recorded using a confocal microscope 
(Olympus).

Statistical analysis

The data were expressed as the mean ± standard deviation, 
and the statistical analyses were performed using SPSS, 
version 19.0 (Chicago). Independent t-tests were performed 
to compare the variables between the DN and non-DN 
groups. Pearson’s correlations were used to characterize 
the associations between various characteristics and 
the mitochondrial aspect ratio value. Multiple linear 
regression analysis was used to evaluate the contribution 
of each confounding factor to the mitochondrial aspect 
ratio value. The results were considered statistically 
significant at P < 0.05.

Results

Clinical characteristics

Thirty-one patients with DN were enrolled in this study. 
Six non-DN individuals (patients with renal neoplasm) 
were recruited as the control group. Their demographic, 
baseline clinical and biochemical data are summarized 
in Table 1. No differences were observed between groups 
regarding gender, age, diastolic BP or haemoglobin values 
(P > 0.05). The systolic BP, and levels of albumin, urea, 
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uric acid, serum creatinine, urine protein and cholesterol 
were higher in the DN group than in the non-DN group 
(P < 0.05), which indicated the damage inflicted on the 
kidneys by hyperglycaemia. In particular, the level of 
protein in the urine was significantly increased in the 
experimental group compared with the control group 
(P < 0.001), which suggested that podocyte injury occurred 
in DN patients.

Determination of the podocyte mitochondrial 
aspect ratio

Renal tissues were obtained from renal biopsies (the 
experimental group) and nephrectomy (the control 
group). Ultrastructure examination of the mitochondria 
in the podocytes from diabetic glomeruli revealed 
more rounded and circular mitochondria, whereas the 

mitochondria from the control group were elongated 
(Fig. 1). The aspect ratio values indicated significant 
fragmentation of the mitochondria in DN patients 
(P < 0.05, Table 2), suggesting that mitochondrial fission 
was occurring in the podocytes in DN patients.

The podocyte mitochondrial aspect ratio was 
associated with proteinuria in DN patients

The relationships between the podocyte mitochondrial 
aspect ratio values and the clinical parameters are 
summarized in Table 3. The mitochondrial aspect ratio had 
a significant positive correlation with haemoglobin values 
(r = 0.407, P = 0.023) and a significant negative correlation 
with urea values (r = −0.412, P = 0.021). Notably, Fig. 2 
shows that the mitochondrial aspect ratio values had a 
strong negative correlation with the proteinuria levels 

Table 1 General and clinical characteristics of patients.

Variable Non-DN DN P value

Patients (n) 6 31 –
Males/females (n) 3/3 19/12 0.140
Age (years) 57.8 ± 3.7 49.9 ± 2.5 0.113
Systolic BP (mmHg) 126 ± 8 145 ± 20 0.033
Diastolic BP (mmHg) 75 ± 5 84 ± 10 0.059
Haemoglobin (g/L) 132 ± 18 115 ± 25 0.098
Albumin (g/L) 41 ± 3 33 ± 7 0.002
Urea (mmol/L) 4.85 ± 0.90 7.75 ± 2.48 <0.001
Uric acid (µmol/L) 294 ± 31 388 ± 15 0.019
Serum creatinine (µmol/L) 70 ± 9 108 ± 8 0.043
Urine protein (g/L) 0.08 ± 0.02 5.40 ± 0.70 <0.001
Cholesterol (mmol/L) 3.69 ± 0.71 5.14 ± 1.25 <0.001

The values are the means ± standard deviation. P values for trends in DN and non-DN patients.
Diastolic BP, diastolic blood pressure; DN, diabetic nephropathy; Systolic BP, systolic blood pressure.

Figure 1
The effect of hyperglycaemia on mitochondrial 
fragmentation in podocytes. (A) Mitochondrial 
fragmentation in the glomerular podocytes of DN 
patients. Representative images from electron 
microscopy showing elongated mitochondria in 
the glomerular podocytes of non-DN patients and 
fragmented mitochondria in the glomerular 
podocytes of DN patients (original magnification, 
×5000). Scale bar, 1 μm.
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in DN group (r = −0.574, P = 0.01). Furthermore, multiple 
regression analysis verified that the mitochondrial aspect 
ratio was significantly and independently associated with 
urine protein levels (β = −0.519, P = 0.007).

Renal AKAP1 and Drp1 expression in DN patients

Drp1 is considered a key molecule in mitochondrial 
dynamics. Akap1 is located in the mitochondrial outer 
membrane and is closely related to mitochondrial 
function. As shown in Fig. 3, confocal microscopy 
revealed that AKAP1-Drp1 colocalization was increased 
in the glomeruli of DN patients compared with control 
patients. These findings indicated that proteins important 
in mitochondrial dynamics were involved in the DN 
process and podocyte injury, which was consistent with 
our previous studies that showed that mitochondrial 
fission occurs in podocytes from DN patients.

Discussion

Mitochondria are called the ‘powerhouses’ of the cell; 
they also produce the greatest amount of ROS in cells (17). 

After stimulation with high glucose levels, mitochondria 
hyperpolarization leads to abnormal ATP synthesis and 
excessive ROS production, causing cell damage (18). In 
diabetic animals, increased renal ROS levels are mainly 
generated by the podocytes (19). In DN patients, urinary 
exosomes and renal biopsy metabolomics analysis 
revealed that the expression of multiple regulatory 
factors associated with mitochondrial metabolism 
were decreased, such as the mitochondrial biosynthesis 
factor PGC1α (peroxisome proliferators activated 
receptor gamma co-activator-1α) (20). These results 
indicate metabolic abnormalities in the mitochondria. 
To meet the energy metabolism requirements of tissues 
and organs, mitochondria may alter their shape and 
movement. Thus, mitochondria undergo membrane 
remodelling through cycles of fusion and division and 
form a dynamic interconnected intracellular network 
(12, 21). After stimulation with a high level of glucose, 
the mitochondria in renal tubular cells become short and 
rounded, and the cristae swell and partly disintegrate (22, 
23). Consistent with this observation, our study showed 
that mitochondria in the podocytes from the glomeruli 
of DN patients were rounded and circular, whereas 
mitochondria from non-DN patients were elongated. The 
mitochondrial aspect ratio analysis indicated significant 
mitochondrial fission in podocytes from DN patients.

Podocytes have been confirmed to play an important 
role in the development of the pathological changes that 
characterize DN, including podocytopenia, hypertrophy, 
glomerulosclerosis and apoptosis (24). Related to 
the generation of proteinuria, podocyte injury is an 
independent risk factor for the progression of DN (4). 
In this study, we found that the proteinuria level was 
significantly higher and the mitochondrial aspect ratio 
value was lower in the DN group than in the non-DN group; 
the mitochondrial aspect ratio value had a significantly 
negative correlation with the proteinuria level in DN 
group. Our observations indicated that hyperglycaemia 
led to podocyte mitochondrial fission, which caused 
podocytopenia and proteinuria in DN patients.

Previous studies have confirmed that abnormal 
mitochondrial dynamics, which cause an imbalance 
between mitochondrial fission and fusion, are linked 
to a number of diseases (25, 26). High glucose levels 
induce the expression of mitochondrial fission proteins 
(10). The dynamin family is a key component of 
mitochondrial fission (27). Among the dynamin family 
members, dynamin-related protein 1 (Drp1) is an 
important factor. Drp1 is an evolutionarily conserved 
protein that can self-assemble into large multimeric 

Table 2 Comparison of mitochondrial aspect ratio in 
glomerular podocytes between DN and non-DN patients.

Group n Mitochondrial aspect ratio

Non-DN 6 3.05 ± 0.80
DN 31 1.31 ± 0.54
P value <0.001

Values are means ± standard deviation. P values for trends in DN and 
non-DN patients.

Table 3 Relationship between the clinical characteristics and 
mitochondrial aspect ratio in the podocytes of patients.

Variable

Pearson’s 
correlation

Multiple linear 
regression

R P value β P value

Age (years) −0.224 0.225 −0.201 0.334
Systolic BP (mmHg) 0.139 0.475 0.185 0.356
Diastolic BP (mmHg) 0.136 0.467 −0.189 0.396
Haemoglobin (g/L) 0.407 0.023 −0.143 0.888
Albumin (g/L) 0.287 0.117 −0.054 0.815
Urea (mmol/L) −0.412 0.021 −0.214 0.420
Uric acid (µmol/L) −0.252 0.172 −0.206 0.288
Serum creatinine 

(µmol/L)
−0.172 0.354 −0.119 0.611

Urine protein (g/L) −0.574 0.001 −0.519 0.007
Cholesterol (mmol/L) −0.247 0.181 −0.316 0.089

r, Pearson’s correlation coefficient; β, standardized coefficient.
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spirals, mediating mitochondrial fission through GTP-
dependent constriction of the mitochondria (28). 
Under physiological conditions, Drp1 is located in the 
cytoplasm. When activated by phosphorylation, Drp1 
is recruited to the mitochondrial outer membrane, 
where it promotes mitochondrial division (29, 30).  

Drp1 phosphorylation during ischaemia/reperfusion 
induces renal injury, which leads to a reduction in ATP 
synthesis in the renal tubular cells (31). In the podocytes 
of diabetic mice, mitochondrial fission is apparently 
active; deleting podocyte Drp1 results in significantly 
decreased mitochondrial division, decreased proteinuria 
and improved podocyte morphology (13). Hence, Drp1 
was confirmed to be involved in high glucose level-
induced abnormalities in mitochondrial dynamics and 
podocyte injury. However, the molecular mechanism 
by which Drp1 regulates these mitochondrial dynamics 
remains unclear. Furthermore, the role of Drp1 in DN 
patients has rarely been reported.

Our recent study found that high glucose levels 
stimulate AKAP1 expression in cultured podocytes 
(data not shown). AKAP1 is the first member of the A 
kinase-anchoring protein (AKAP) family. The protein 
contains a mitochondrial guide peptide sequence, which 
mediates AKAP1 localization in the mitochondrial outer 
membrane. In addition, the carboxy terminus of AKAP1 
binds mitochondrial ATP synthesis-related messenger 
RNA (32). In rat hippocampal neuronal cells, DPN, which 
is an oestrogen receptor hormone agonists, inhibits 
mitochondrial division via the AKAP1 pathway (33). 
AKAP1 binds to the mitochondrial outer membrane  
Na+/Ca2+ transporter Ncx3, thereby stabilizing 
mitochondrial calcium flux and alleviating cellular 
damage caused by hypoxia (34). Deleting AKAP1 increases 

Figure 2
Relationship between the mitochondrial aspect ratio and the urine 
protein level in DN group. r, Pearson’s correlation coefficient.

Figure 3
Expression of AKAP1 and Drp1 in the glomeruli of patients. Double immunofluorescence staining of glomerular AKAP1 and Drp1 in the different groups 
(original magnification, ×400). Scale bar, 20 μm.
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mitochondrial ROS production and aggravates myocardial 
infarct size in mouse cardiomyocytes (35). These 
studies suggest that AKAP1 is involved in the regulation 
of mitochondrial division in diseases. Our present 
study demonstrated that AKAP1-Drp1 colocalization 
was increased in the glomeruli of patients with DN, 
suggesting that AKAP1 is a candidate for involvement in 
the regulation of the function of Drp1 to further mediate 
mitochondrial fission during the pathogenesis of DN. 
However, due to the limited number of clinical biopsy 
specimens, more mechanistic studies of mitochondrial 
dynamics have not been carried out in DN patients, and 
the role of the AKAP1-Drp1 pathway in mitochondrial 
dynamics and podocyte injury needs to be explored in 
future studies.

In summary, our study showed that abnormal 
mitochondrial dynamics arise in the podocytes of DN 
patients. Mitochondrial fragmentation was increased, 
and mitochondrial aspect ratio values were correlated 
with the proteinuria levels. Further studies are needed 
to determine the specific molecular mechanism 
underlying mitochondrial fission and the function of the  
AKAP1-Drp1 pathway in the pathogenesis of DN.
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