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Validation of radiologists’ findings by
computer-aided detection (CAD)
software in breast cancer detection
with automated 3D breast ultrasound:
a concept study in implementation of
artificial intelligence software
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Abstract
Background: Computer-aided detection software for automated breast ultrasound has been shown to have potential

in improving the accuracy of radiologists. Alternative ways of implementing computer-aided detection, such as

independent validation or preselecting suspicious cases, might also improve radiologists’ accuracy.

Purpose: To investigate the effect of using computer-aided detection software to improve the performance of

radiologists by validating findings reported by radiologists during screening with automated breast ultrasound.

Material and Methods: Unilateral automated breast ultrasound exams were performed in 120 women with dense

breasts that included 60 randomly selected normal exams, 30 exams with benign lesions, and 30 malignant cases

(20 mammography-negative). Eight radiologists were instructed to detect breast cancer and rate lesions using

BI-RADS and level-of-suspiciousness scores. Computer-aided detection software was used to check the validity of

radiologists’ findings. Findings found negative by computer-aided detection were not included in the readers’ perfor-

mance analysis; however, the nature of these findings were further analyzed. The area under the curve and the partial

area under the curve for an interval in the range of 80%–100% specificity before and after validation of computer-aided

detection were compared. Sensitivity was computed for all readers at a simulation of 90% specificity.

Results: Partial AUC improved significantly from 0.126 (95% confidence interval [CI]¼ 0.098–0.153) to 0.142 (95%

CI¼ 0.115–0.169) (P¼ 0.037) after computer-aided detection rejected mostly benign lesions and normal tissue scored

BI-RADS 3 or 4. The full areas under the curve (0.823 vs. 0.833, respectively) were not significantly different (P¼ 0.743).

Four cancers detected by readers were completely missed by computer-aided detection and four other cancers were

detected by both readers and computer-aided detection but falsely rejected due to technical limitations of our imple-

mentation of computer-aided detection validation. In this study, validation of computer-aided detection discarded 42.6%

of findings that were scored BI-RADS �3 by the radiologists, of which 85.5% were non-malignant findings.

Conclusion: Validation of radiologists’ findings using computer-aided detection software for automated breast ultra-

sound has the potential to improve the performance of radiologists. Validation of computer-aided detection might be an

efficient tool for double-reading strategies by limiting the amount of discordant cases needed to be double-read.
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Introduction

Population-based breast cancer screening with mam-

mography reduces breast cancer mortality by

31%–48% (1). Nonetheless, in women with dense

breasts, sensitivity is as low as 61% (compared to

86% in non-dense breasts). Moreover a 5–6-fold

increase in interval cancers is seen in women with

extremely dense breasts (2). While modern therapy

regimes for breast cancer have improved the life expec-

tancy of breast cancer patients, detecting breast cancer

at an early stage is still considered vital for patient

survival (3). Women with dense breasts may, therefore,

benefit from supplemental imaging modalities to detect

mammographically occult cancer.
Breast ultrasound with hand-held ultrasound

(HHUS) devices has been shown to help detect

mammography-occult early stage invasive breast can-

cers in women with dense breasts (4–6). However hand-

held devices depend highly on the experience of the

sonographers and the possibility for comparison of

screening exams over time is limited (7). Automated

three-dimensional (3D) breast ultrasound (ABUS)

devices may overcome the operator dependency of

HHUS. The visualization of architectural distortion

(the so-called retraction phenomenon (8)) in the coro-

nal plane improves the characterization and detection

of breast cancer (9). The acquisition protocols are stan-

dardized so that non-sonographers can acquire large

3D whole-breast ultrasound volumes, which can be

stored in, and retrieved from, medical imaging archive

systems, thus enabling temporal comparison and

double-reading strategies. Like supplemental HHUS

screening, supplemental ABUS also improves the sen-

sitivity of screening and may likewise lead to an

increase of unnecessary recalls because of visualization

of benign breast disease that warrants histological eval-

uation (10–13). The number of ABUS images to read

depends on the size of a woman’s breast. A bilateral

ABUS examination may consist of 4–10 3D ABUS

volumes to ensure coverage; as a consequence, reading

ABUS may be a lengthy task and prone to interpreta-

tion errors. Double-reading strategies for ABUS may

help to prevent interpretation errors (11) but require

substantial resources to facilitate.
Computer-aided detection (CAD) systems have

shown promising results in breast imaging as an aid

for radiologists reading screening mammograms, but

in general may lead to an increase in false-positive

recalls that need to be dismissed by radiologists

(14,15). The conventional implementation of CAD is

by marking regions suspicious for cancer in an image

and such software has also been developed for ABUS

(8,16–18). CAD may help to improve sensitivity,

specificity, and/or efficiency of radiologists reading
ABUS when implemented as a conventional
aid (19,20).

However, there are other ways CAD can be imple-
mented in clinical practice. In this study, we propose
using a dedicated ABUS CAD-program to validate
findings reported by radiologists during screening for
breast cancer in ABUS without primary CAD assis-
tance. Radiologists have been shown to have a relative-
ly high false-positive recall rate when using ABUS.
A large proportion of false-positive recalls are caused
by benign lesions and ABUS imaging artefacts (21,22).
The CAD software used in this study appears to per-
form well when differentiating malignancies from
benign lesions and artefacts. We hypothesized that
most recalls for findings that are not recognized as sus-
picious by the CAD system are based upon artifacts
and benign lesions. Therefore, the purpose of this
study is to evaluate the effect on the performance of
radiologists after using CAD software to validate sus-
picious findings as pointed out by breast radiologists
screening for breast cancer in ABUS.

Material and Methods

The need for informed consent for using anonymized
data in this multi-reader-multi-case (MRMC) observer
study was waived by the institutional review board.

We used the data from a previously published
MRMC study for the assessment of the added value
of a CAD system for validation of findings by radiol-
ogists (23). Our previous study (23) reported on the
effect of CAD on the accuracy of radiologists using
ABUS as a conventional aid. This study focuses on
the effect of CAD on radiologists when implemented
as a secondary independent interpreter of the radiolog-
ists’ findings. As reported elsewhere in detail, cases
were extracted from a multi-institutional database con-
taining ABUS examinations from 715 women. In short,
the final dataset consisted of 120 unilateral breast
examinations (a total of 375 views) with 30 malignant
cases, 30 cases containing benign lesions, and 60
normal cases with two years of negative follow-up.
All lesions were annotated by a radiologist in training
with four years of experience with ABUS, drawing an
outline on the lesion edge using in-house built software
based on original pathology and radiology reports.

All cases were read twice by eight independent read-
ers with varying levels of experience with ABUS
(range¼ 0–8 years), once without the aid of a CAD
system in a standard multiplanar hanging and once
with the aid of a commercially developed ABUS
CAD software package (QVCAD, Qview Medical
Inc., Los Altos, CA, USA). This software is designed
to detect suspicious regions in an ABUS volume and
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mark them. Furthermore, this CAD software package
provides an “intelligent” minimum intensity projection
(MinIP) of the breast tissue in a 3D ABUS volume that
was integrated in the multiplanar hanging protocol.
For the current study, only the data from the unassist-
ed readings were used. All readers annotated suspicious
lesions by placing a marker in the lesion center and
provided a BI-RADS score per case, as well as a
level-of-suspiciousness (LOS) score on a linear scale
of 0–100 with given anchor points for each BI-RADS
assessment category (21, 41, 61, and 81 for BI-RADS
category 2, 3, 4, and 5, respectively).

Validation of findings with CAD software

We used the CAD system, using its default setting of an
average of one false-positive CAD region per ABUS
volume, for retrospective validation of the reader anno-
tations in the unaided reading session. For this, we
recorded the 3D voxel coordinates of each CAD
region in the study dataset. At the used threshold, the
sensitivity of the CAD system is approximately 82%.

After correlation to CAD findings, reader findings
were only considered positive when they corresponded
to the location of a CAD region (i.e. positive assessment
of findings by both reader and CAD); all other reader
findings were regarded as negative (readers marked the
finding as positive whereas CAD did not mark the find-
ing). A match was defined as �10mm spherical distance
between CAD region and reader marker.

Evaluation of CAD-rejected findings

To evaluate the type of findings that were rejected with
the CAD system (i.e. the negative reader findings after
CAD validation), a panel of two experienced readers
evaluated in consensus all rejected findings that were
reported as �BI-RADS 3 by the readers. First, the
rejected findings were classified as true negatives (TN)
or false negative (FN). FNs were defined as a reader’s
marking pointing out a malignant lesion that was
rejected by the CAD system. TN findings were findings
that were rejected by the system and were not malig-
nant in nature. TNs were subsequently classified in
consensus as benign, normal breast tissue, or artefacts.

Statistical analysis

The area under the alternative free-response operator
receiving characteristics (AFROC) curve (AUC) was
determined for the unassisted ABUS readings and
after CAD validation for each reader individually and
for all readers pooled. Only the highest rated lesion per
case was included in the analysis. The AFROC analysis
included only the LOS scores. False-positive findings in
malignant cases were omitted from the analysis to avoid

readers and CAD being rewarded while breast cancer
was respectively missed or rejected by CAD, which
would be the result in a normal case-based ROC analy-
sis and therefore AFROC analysis was chosen.

A full AUC represents all trade-offs between sensi-
tivity and specificity of readers independent of the set
of cases and readers. Nevertheless, in screening, a high
specificity is required. For that reason, we also ana-
lyzed the partial AUC (pAUC) for the false-positive
fraction (FPF¼ 1-specificity) interval of 0.0–0.2
(based on the range in which the specificity of supple-
mental ultrasound screening has been reported
(4,6,12,24–26)). Furthermore, sensitivity for all readers
was determined in a simulated sensitivity analysis at a
fixed specificity of 90%. PROPROC curve fitting was
used to approximate the AUC and pAUC, respectively.
MRMC AFROC analysis was performed using
the Obuchowski–Rochette Dorfman–Berbaum–Metz
MRMC software (v. 2.50) that employs ANOVA and
jackknifing (27,28).

Statistical significance was determined if P< 0.05.

Results

Patient characteristics

Patient characteristics are described in detail in our
previous report (23). The average age of women in
our dataset was 45.1 years (age range¼ 26–77 years;
SD¼ 10.4). In the malignant, benign, and normal
subcohorts, the average age was 49.8 years
(age range¼ 26–77 years; SD¼ 12.1), 44.9 years (age
range¼ 30–73 years; SD¼ 9.1), and 43.0 years (age
range¼ 26–62 years; SD¼ 9.5), respectively.

The dataset consisted of 84 cases (including 13
malignant and 15 benign cases) that were derived
from supplemental screening exams and enriched with
36 exams of symptomatic women. Median cancer size
was 14 mm (range¼ 7–55 mm; SD¼ 8.8) and median
biopsied benign lesion size was 12.4mm (range¼ 6–
27mm; SD¼ 5.1). The subset of cancers consisted of
22 invasive ductal carcinomas, three invasive lobular
carcinomas, two invasive intraductal papillary carcino-
mas, two invasive metaplastic carcinomas, and one
invasive apocrine carcinoma. The benign subset con-
sisted of 12 fibroadenomas, two papillomas, three
fibrotic lesions, two adenosis, one complex sclerosing
lesion, five benign cystic lesions, and five other
benign lesions.

Reader performance

Table 1 summarizes the results of the readers before
and after validation of readers’ findings by CAD. The
overall difference in AUC was not statistically
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significant: 0.823 (95% CI¼ 0.730–0.916) for unaided
reading and 0.833 (95% CI¼ 0.747–0.919) for reading
after CAD validation (P¼ 0.743). Validation by CAD
improved the partial AUC for the interval within the
specificity range of 80%–100%. The pAUC improved
significantly from 0.126 (95% CI¼ 0.098–0.153) to
0.142 (95% CI¼ 0.115–0.169) (P¼ 0.037) in this specif-
icity interval. Moreover, all readers showed higher
pAUC after validation with CAD of which two
improved their performance statistically significant.
Due to the large reduction of normal findings all read-
ers showed an improvement in sensitivity in a statistical
simulation using a fixed specificity of 90% for all radi-
ologists. In fact, pooled sensitivity at 90% specificity
was 0.654 (95% CI¼ 0.512–0.796) for standard ABUS
reading and showed improvement to 0.727 (95%
CI¼ 0.598–0.856) after validation by CAD, although
the difference was not statistically significant
(P¼ 0.061). Fig. 1 shows the pooled AFROC curves
for both standard ABUS reading and after validation
by CAD. The AFROC curves cross at approximately
83% and 50% specificity likely due to interpolation
because of a low number of non-suspicious findings
reported after CAD validation.

Rejected findings after CAD validation

Validation by CAD reduced the number of positive
findings, defined as those scored as BI-RADS �3 by
the readers, with on average 42.6% (range¼ 31.9%–
53.8%) (Figs. 2 and 3). Based on the consensus

reading, on average, 49.8% (range¼ 11.6%–73.3%)
of CAD-rejected cases are related to the presence of a
benign lesion, 35.7% (range¼ 13.3%–67.4%) are
caused by acoustic shadowing artefacts in normal

Fig. 1. AFROC curves for both standard ABUS reading and
results of ABUS reading after CAD validation of human-observed
findings. In the higher specificity ranges (false-positive
fraction¼ 1 – specificity) results of reading ABUS with CAD
validation outperform standard ABUS reading. The vertical line
indicates the specificity of the pAUC estimations are in the range
of 80%–100%.

Fig. 2. Example of a true-negative case. A hypoechoic,
parallel-oriented, well-defined mass with posterior acoustic
enhancement and an irregular margin was not marked by the
CAD software. Histopathologic evaluation resulted in a fibroa-
denoma without atypia.

Fig. 3. Example of a true-negative case. A hypoechoic,
well-defined, parallel-oriented mass with posterior acoustic
enhancement, calcifications, and an irregular margin was not
marked by the CAD software. Histopathologic evaluation
resulted in a fibroadenoma without atypia.
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tissue, and 14.4% (range¼ 7.7%–20.9%) are malignant
lesions missed by the CAD system. The majority
(average¼ 47.5%; range¼ 37.5%–53.3%) of the CAD-
rejected findings were scored by the radiologists as
BI-RADS 3, followed by BI-RADS 4 (average¼ 41.3%;
range¼ 26.7%–58.3%) and BI-RADS 5 (average¼
10.4%; range¼ 4.2%–23.2%) (Table 2).

Rejected cancers

Four FN cancers were not marked by CAD at the used
threshold of one false-positive/ABUS volume and
therefore always led to a rejection when accurately
detected by the readers (Fig. 4). Two other FN cancers
were correctly identified by CAD, but the extent of the
tumor was> 10 mm and as a result the radiologists’
markings were “too far” from the CAD marking in
the ABUS volume and therefore did not lead to a pos-
itive validation of the radiologists finding. This led to
incorrect rejection of malignant findings due to the fact
that the spherical distance between reader finding
markers and CAD region markers that was used to
automatically determine whether CAD marks and
reader findings matched was> 10 mm. Finally, two
cancers were visible in multiple ABUS volumes but
only marked by CAD in one ABUS volume, whereas
they were marked by some of the readers in anoth-
er volume.

Discussion

Our study shows that implementing CAD software for
ABUS as a tool to validate radiologists’ findings has
the potential to improve the accuracy of radiologists
who use ABUS to detect breast cancer in women
with dense breasts, albeit at the cost of slightly lowering
sensitivity. Particularly in the highest range of specific-
ities, a significant improvement of the average accuracy
0.126 (95% CI¼ 0.098–0.153) to 0.142 (95% CI¼
0.115–0.169) (P¼ 0.037) is observed. We did not
observe an improvement in the overall pooled AUC.
Nevertheless, it is important in screening for (breast)
cancer to have a method that has high specificity to
minimize false-positive screening outcomes that may
lead to unnecessary anxiety among the screening par-
ticipants and negatively impact the cost-effectiveness.
A post-hoc analysis of significant (BI-RADS �3) but
CAD-rejected findings shows that CAD validation may
discard 42.6% of findings that were scored BI-RADS
�3 by the radiologists and 85.5% of the rejected
findings were non-malignant and thus were
rejected correctly.

Whole breast ultrasound leads to the detection of
mammographically occult breast cancer mainly
because of visualization of cancers that are masked T
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by fibroglandular tissue (4,10,25,29). Cancers detected
by ultrasound tend to be more invasive, node-negative,

and smaller in size compared to mammography-

detected cancers in screening (30), which may have a
positive outcome on patient survival (3). A negative

effect of supplemental breast ultrasound is an increase
in recall rates, while up to 30% of cancers still could

have been detected earlier (31). Choi et al. and Vourtsis

et al. showed ABUS in asymptomatic women may out-
perform hand-held devices in terms of recall rate, but

also in terms of cancer detection (9,32). Recently devel-

oped CAD software for ABUS may improve screening
efficiency, aid radiologists in detecting subtle cancers,

and might improve specificity (19,20,23).
Current CAD systems are designed to be imple-

mented as a tool to assist radiologists during evaluation

of breast imaging. Such CAD systems may, for exam-

ple, have a positive effect on the outcome of breast
cancer patients that underwent mammographic screen-

ing (33). However, CAD systems in mammographic

screening have also been criticized because of
an increased recall rate induced by CAD (34).

Introducing conventional CAD systems into existing

breast imaging routines is challenging and depends on
several factors, such as the intrinsic accuracy of the

CAD system itself and, on a psychological level,

the confidence of radiologists in using CAD (35). The
latter is likely to be of less importance in alternative

ways of CAD implementation such as synthetic lesion

enhancement, pre-selection of normal cases for reduc-
ing workload, and, according to our study, validation
of human observed findings by CAD (36).

Although the CAD system did not detect some of
the cancers detected by the readers, and therefore
excluded those from further analysis, a fraction of
these specific cancers was not rated as very suspicious
by the readers and consequently would only have been
detected at lower specificity according to the AFROC
analyses in this study. In screening, keeping the recall
rate at an acceptable level demands a very high specif-
icity. Therefore, we evaluated the average sensitivity
per reader at a fixed score of 90% specificity (a statis-
tical simulation based on the LOS scores), which we
deem acceptable in screening practice. At a specificity
of 90%, the sensitivity for all readers is on average 7%
higher, thus suggesting that in practice the use of CAD
might allow a higher cancer detection in screening,
based on better selection of recalled cases. In an ideal
situation, radiologists would recall all women with
breast abnormalities with a certain degree of suspi-
ciousness. But population-based screening should be
both accurate and affordable; therefore, some
population-based screening programs have restrictions
on the number of recalls in order to achieve a positive
cost-effectiveness ratio. Our results might imply that
using CAD validation may allow radiologist to recall
more women initially (by lowering their specificity) and
potentially might improve their sensitivity.

In an alternative and clinically more acceptable sce-
nario, CAD validation might be used in a double-
reading strategy. This prevents unwanted rejection of
malignant cases, while still largely reducing the work-
load for the second reader as only discordant cases
need to be reviewed to optimize screening performance.
Fig. 5 shows a schematic workflow of a theoretical
double-reading strategy of ABUS that includes CAD
as a validation tool. The effect of combinations of
CAD and double-reading of discordant cases in
ABUS requires further investigation.

To our knowledge, mammographic screening pro-
grams that offer supplemental ultrasound to women
with dense breasts have not implemented CAD sys-
tems. Wilczek et al. used consensus arbitration of dis-
cordant cases in double-reading to reduce false-positive
recall rates to an acceptable level (11). According to
our results, CAD validation of radiologists’ findings
may positively affect the false-positive recall rate and
thus achieve similar screening sensitivity at higher
screening specificity.

Our study has limitations. The prevalence of both
benign and malignant breast disease was artificially
enhanced to increase power of this study and does
not resemble normal screening practice where disease
prevalence is lower. ABUS and mammography are

Fig. 4. Example of a false-negative case. A small, non-
parallel-oriented hypoechoic lesion with irregular margins, no
posterior acoustic effects, and a strong retraction pattern was
detected and marked correctly by multiple readers, but not by
the CAD software and therefore rejected after CAD validation.
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usually complementary; however, we did not show

mammography to the readers which may have affected

the results either positively or negatively. Furthermore,

readers in our study were unexperienced with batch

reading large quantities of ABUS exams which may

have affected individual recall strategies.
In conclusion, in this paper we presented results of

CAD validation of radiologists’ findings in ABUS

using commercially developed dedicated CAD soft-

ware. CAD has the potential to help radiologists

avoid unnecessary recalls by validating radiologists’

reports in screening. CAD validation may be integrated

into double-reading strategies and consequently might

reduce the resources needed for double-reading of

ABUS by confirming cases that were found suspicious

and leaving only non-CAD suspicious cases for double-

reading. Whether validation of findings with CAD

actually improves the screening performance and

reduces the costs for double-reading needs further pro-

spective investigation.
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