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Abstract. Ultrastructural studies have shown that dur- 
ing early stages of Schwann cell myelination mesaxon 
membranes are converted to compact myelin lamellae. 
The distinct changes that occur in the spacing of these 
Schwann cell membranes are likely to be mediated by 
the redistribution of (a) the myelin-associated glyco- 
protein, a major structural protein of mesaxon mem- 
branes; and (b) P0 protein, the major structural protein 
of compact myelin. To test this hypothesis, the immu- 
nocytochemical distribution of these two proteins was 
determined in serial 1-1xm-thick Epon sections of ven- 
tral roots from quaking mice and compared to the 

ultrastructure of identical areas in an adjacent thin sec- 
tion. Ventral roots of this hypomyelinating mouse mu- 
tant were studied because many fibers have a deficit in 
converting mesaxon membranes to compact myelin. 
The results indicated that conversion of mesaxon mem- 
branes to compact myelin involves the insertion of P0 
protein into and the removal of the myelin-associated 
glycoprotein from mesaxon membranes. The failure of 
some quaking mouse Schwann cells to form compact 
myelin appears to result from an inability to remove 
the myelin-associated glycoprotein from their mesaxon 
membranes. 

M 
YELIN sheaths in the peripheral nervous system 
(PNS)' are formed by Schwann cells in a system- 
atic and predicable manner that has been de- 

scribed in detail in ultrastructural studies (for review see 
Webster and Favilla [34]). The biochemical composition of 
mammalian PNS myelin is also well characterized (for re- 
view see Lees and Brostoff [15]). Nevertheless, little is known 
about how myelination occurs at the molecular level. Cor- 
relating the biochemical and molecular properties of myelin 
proteins with their immunocytochemical localization in ul- 
trastructurally distinct myelin membranes can provide clues 
to their possible role in formation and maintenance of the 
myelin sheath. This approach has provided evidence that the 
myelin-associated glycoprotein (MAG) is involved in main- 
mining the membrane periodicity of periaxonal membranes, 
Schmidt-Lanterman incisures, paranodal myelin loops, and 
mesaxon membranes of PNS myelinated fibers (27). Simi- 
larly, in pathological conditions, correlations between the 
absence of a myelin protein and ultrastructural alterations in 
myelin membranes have strengthened the hypotheses that 
myelin basic protein maintains the major dense line of cen- 
tral nervous system (CNS) myelin (12), that proteolipid pro- 
tein maintains the intraperiod line of CNS myelin (3), and 
that MAG participates in the formation and maintenance of 
the periaxonal space and periaxonal cytoplasm of myelinat- 
ing Schwann cells (32). 

1. Abbreviations used in this paper: CNS, central nervous system; MAG, 
myelin-associated glycoprotein; PNS, peripheral nervous system. 

The purpose of the present study was to compare the local- 
ization of two myelin-specific integral membrane glycopro- 
teins (P0 and MAG) during Schwann cell remyelination in 
ventral roots from 11-mo-old quaking mice. Fibers in these 
ventral roots undergo a chronic, slowly progressive demyelin- 
ation and remyelination that results in a generalized hypo- 
myelination (25, 32). The present studies focused on early 
sages of myelin formation that included expansion of mes- 
axon membranes and their subsequent conversion to com- 
pact myelin for the following reasons: (a) many Schwann 
cells in these roots do not convert their mesaxon membranes 
to compact myelin; (b) MAG is a major structural protein of 
mesaxon membranes but it is not present in compact myelin 
where P0 protein is the major structural protein; and (c) 
mesaxon membranes and compact myelin have distinct and 
different periodicities. 

The results suggest that the conversion of mesaxon mem- 
branes to compact myelin involves the insertion of P0 pro- 
tein into and the removal of MAG from mesaxon membranes. 
The failure of some quaking mouse Schwarm cells to convert 
mesaxon membranes to compact myelin appears to involve 
their inability to remove MAG from mesaxon membranes. 

Materials and Methods 

T i s s u e  

ll-mo-old quaking mice (C57 BLJ-6 lqk, qk]) were obtained from Jackson 
Laboratory (Bar Harbor, ME) and perfused with 5 % glntaraldehyde in 0.08 
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Figure 1. Electron micrograph of a fiber from the L4 ventral root of an l l-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-1xm sections that were stained by P0 (left inset) and MAG (right inset) antisera. The region of this fiber where a single com- 
pact myelin lamella had formed (right panel, enlargement of boxed area) (arrow) was stained only by P0 antiserum. The remaining periax- 
onal region had a normal periaxonal space (arrowhead) and was stained only by MAG antiserum. Bars: (left) 1 grn; (right) 0.2 ttm. 

M phosphate buffer (pH 7.4) for 10 min. The L~ ventral roots were re- 
moved, fixed for an additional hour, postfixed in Dalton's fixative, de- 
hydrated through a graded series of ethanols, and embedded in Epon. Two 
serial l-lxm-thick sections of the entire ventral root were cut adjacent to a 
thin section with silver interference colors. The 1-1~m-thick section adjacent 
to the thin section was stained with Po antiserum; the other l-I~m-thick 
section was stained with MAG antiserum. The thin section was mounted on 
Fonnvar-coated slot grids, stained with uranyl acetate and lead citrate, and 
examined in an electron microscope (model H-600; Hitachi Ltd., Tokyo, 
Japan). Areas of P0 and MAG staining in the l-l.tm sections were pho- 
tographed and their negative images were enlarged and compared with the 
fine structure in electron micrographs from identical areas of the adjacent 
thin section. This procedure allows the comparison of the immunocyto- 
chemical localization of P0 and MAG with the fine structure of individual 
nerve fibers. 

Immunostaining Procedure 
1-~tm-thick Epon sections mounted on glass slides were placed in a 60°C 
oven for 924 h. Epon and osmium were removed as previously described 
(27, 28, 30, 32). The sections were then stained with P0 or MAG antiserum 
by the peroxidase-antiperoxidase method as previously described (27, 28, 
30, 32). Sections were examined microscopically with brightffeld illumi- 
nation. 

Po and MAG antisera were prepared in rabbits and used at a dilution of 
1:250. The purity of antigens used in preparing these antisera and the im- 
munological and immunocytochemical specificity of these antisera have 
been described for Po (27, 30, 31) and MAG (5, 11, 21, 24, 27, 32). 

Results 

The immunocytochemical localization of MAG and P0 pro- 
tein in serial 1-gm-thick Epon sections from the ventral roots 
of quaking mice was compared to the ultrastructure of identi- 
cal areas in an adjacently cut thin section. With this ap- 
proach, the distribution of MAG, P0 protein, and ultrastruc- 
turally defined Schwann cell membranes can be compared in 
individual fibers over a 2-gm distance. In all cases, P0 pro- 
tein was localized in the 1-~tm section immediately adjacent 
to the thin section. In the electron micrograph shown in Fig. 
1, the Schwann cell process has formed 1.25 spiral turns 
around the axon. Where the axon is surrounded by the single 
Schwann cell process, the 12-14-nm periaxonal space has 
formed (Fig. 1, arrowhead). In the adjacent 1-gin sections, 
this region was stained by MAG antiserum but it was not 
stained by Po antiserum. Where the Schwann cell process 
encircles the axon twice, the periaxonal space is not formed. 
In addition, the cytoplasmic leaflets of the inner Schwann 
cell process have fused to form a major dense line of compact 
myelin (Fig. 1, arrow). This region of the fiber was stained 
by Po antiserum but it was not stained by MAG antiserum in 
the adjacent 1-ttm sections. 
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Figure 2. Electron micrograph of a fiber from the L ventral root of an 11-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-~m sections that were stained by Po (le~ inset) and MAG (right inset) antisera. The mesaxon process which encircles the 
axon 2.3 times did not contain detectable levels of Po protein. In contrast, these membranes were stained intensely by MAG antiserum. 
Bar, 1 IXm. 

After axonal ensheathment, myelination proceeds by spi- 
ral rotation of mesaxon membranes around the axon. The 
electron micrographs in Figs. 2 and 3 show mesaxon mem- 
branes encircling the axon ~2.3 and 5 times, respectively. 
In Fig. 2, mesaxon cytoplasm is relatively sparse and free 
from organelles such as mitochondria and microtubules. 
Mesaxon cytoplasm in Fig. 3 is more abundant and contained 
many mitochondria. In the adjacently cut 1-1xm sections, 
MAG antiserum intensely stained these membranes; in con- 
trast, P0 immunoreactivity was undetectable. 

Analysis of electron micrographs of normally developing 
peripheral nerve has shown that once mesaxon membranes 
form several spiral turns, their spacing or periodicity 
changes to that of compact myelin (33). Many of the remye- 

linating Schwann cells in quaking mice ventral roots do not 
convert their mesaxon membranes to compact myelin, re- 
suiting in an abundance of mesaxon wraps not found during 
normal myelination. For example, the mesaxon membranes 
in Figs. 4 and 5 have formed 10 spiral wraps that stain in- 
tensely with MAG antiserum in the adjacent 1-1xm sections. 
These mesaxon membranes are also stained with P0 antise- 
rum. In Fig. 4, the intensity of P0 immunoreaction product 
is variable. In Fig. 5, P0 staining showed little variability 
and was similar in intensity to that found over neighboring 
compact myelin sheaths. Mesaxon cytoplasm, sparse in Fig. 
4, was more abundant in Fig. 5 and contained occasional mi- 
tochondria and microtubules. 

Comparison of unstained axonal areas and areas occupied 
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Figure 3. Electron micrograph of a fiber from the L4 ventral root of an ll-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, l-lam sections that were stained by Po (le~ inset) and MAG (right inset) antisera. The mesaxon process which encircles the 
axon five times did not contain detectable levels of P0 protein. In contrast, these membranes were stained intensely by MAG antiserum. 
Bar, 1 lain. 

by P0 and MAG immunoreaction product in Fig. 5 indicated 
that MAG staining extended farther from the unstained ax- 
onal perimeter than did P0 staining and that the band of 
MAG staining was 30--40% thicker than the band of P0 stain- 
ing. These observations suggested that P0 protein was more 
concentrated in mesaxon membranes that were closest to the 
axon. Analysis of P0 and MAG distribution in the thick- 
thin comparison of Fig. 6 showed this more clearly. The axon 
in Fig. 6 was surrounded by 11 mesaxon wraps. The inner 
eight wraps contained little mesaxon cytoplasm, tightly ap- 
posed the axon, and were stained by both P0 and MAG an- 
tisera in the adjacent 1-~tm sections. The outer three wraps 
contained variable amounts of mesaxon cytoplasm and or- 
ganelles. A segment of the outermost mesaxon wrap (Fig. 6, 

arrowheads) was separated from the other mesaxon mem- 
branes by abundant Schwann cell cytoplasm. MAG immuno- 
reactivity was present along the length of this segment. In 
contrast, only a short segment of this outer turn was stained 
by P0 antiserum. The unstained area separating the MAG- 
and P0-stained portion of this outer mesaxon from the others 
was greater in the P0-stained section. This indicated that P0 
protein was more concentrated in mesaxon membranes that 
were closest to the axon. 

Occasional axons in these quaking roots were surrounded 
by variable amounts of both compact myelin and noncom- 
pacted Schwann cell membranes. For example, the right half 
of the axon in Fig. 7 was surrounded by compact myelin. The 
vast majority of the Schwann cell membranes on the left half 
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Figure 4. Electron micrograph of a fiber from the I-,4 ventral root of an 11-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-~tm sections that were stained by P0 (le3~ inset) and MAG (right inset) antisera. The mesaxon process which encircles the 
axon 10 times contained sparse Schwann cell cytoplasm and detectable levels of both P0 protein and MAG. Compared to MAG staining, 
the ring of P0 staining was thinner and varied in intensity. Bar, 1 lun. 

had the periodicity of mesaxon membranes that contained 
sparse cytoplasm. In the adjacent 1-~tm sections, a thick band 
of MAG staining was present over the mesaxon membranes. 
A thin band of MAG staining, similar to that present in neigh- 
boring fibers surrounded by totally compact myelin sheaths, 
was present in the region of compact myelin. In contrast, P0 
staining present over compact myelin and mesaxon mem- 
branes was similar in intensity and thickness. These observa- 
tions indicate that MAG was present in mesaxon and periax- 
onal membranes but was not present in compact myelin. In 
contrast, P0 protein was enriched in both compact myelin 
and mesaxon membranes. 

Discussion 

After axonal ensheathment, PNS myelination normally pro- 
ceeds by expansion of mesaxon membranes (34). A mesaxon 
can be considered as a Schwann cell process that spirally 
wraps around the axon by rotating upon itself. After several 
spiral turns, the cytoplasm between the mesaxon membranes 
disappears and the major dense line of compact myelin is 
formed. Simultaneously, the 12-14-nm spacing between the 
extracellular leaflets of apposing mesaxon membranes de- 
creases to the 2-nm spacing of compact myelin. 

Conversion of mesaxon membranes to compact myelin has 
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Figure 5. Electron micrograph of a fiber from the L4 ventral root of an ll-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-I.tm sections that were stained by P0 (left inseO and MAG (right inset) antisera. The mesaxon process which encircles the 
axon 10 times contained variable amounts of Schwann cell cytoplasm and detectable levels of both P0 and MAG. The ring of P0 staining 
was thinner than the ring of MAG staining. Bar, 1 tim. 

three requirements: the insertion of P0 protein, the exclu- 
sion of Schwann cell cytoplasm, and the removal of MAG. 
The quaking mutation affects all three events. Each can be 
altered to various degrees within individual fibers. This sug- 
gests that these events are intricately related and likely to be 
dependent on a variety of feedback mechanisms. How these 
"events" relate to each other, to the pathology in the quaking 
mouse, and to the normal process of myelination is discussed 
below and schematically summarized in Fig. 8. 

Insertion of  Po Protein 

P0 protein has an Mr of 28 kD, contains ~5  % sugar, and 
comprises >50% of the total protein in myelin fractions iso- 
lated from peripheral nerve (8). The complete amino acid se- 
quence of Po protein has been deduced from a cDNA clone 
(17). As the major structural protein of PNS myelin, P0 

spans the lipid bilayer and is thought to function in stabilizing 
the apposition of both the extraceUular and cytoplasmic 
membrane surfaces of compact myelin (12, 16, 17). The P0 
gene, recently isolated by Lemke et al. (18), is divided into 
six exons which can be segregated into extracellular, mem- 
brane-spanning, and cytoplasmic domains. The extraceUular 
domain of P0 is homologous to the variable region fold of 
immunoglobulins and has been proposed to stabilize the in- 
traperiod line of compact PNS myelin by homotypic interac- 
tions (14, 18). Compared to that of MAG, the extracellular 
domain of P0 protein is relatively small. 

Mesaxon membranes are normally converted to compact 
myelin after a few wraps are formed. The lack of detectable 
P0 immunoreaction product in mesaxon membranes that en- 
circle the axon 2.3 and 5 times (Figs. 2 and 3) suggests that 
initial insertion and accumulation of P0 protein into these 
quaking mouse mesaxons were delayed. The possibility that 
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Figure 6. Electron micrograph of a fiber from the L4 ventral root of an ll-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-1~m sections that were stained by P0 (lej~ inset) and MAG (right inset) antisera. The mesaxon process encircles the axon 11 
times. The eight inner processes closely appose the axon and contain detectable levels of both P0 and MAG. The outer mesaxon process 
(arrowheads) contained MAG along its entire length (right inset, arrowhead). In contrast, P0 protein was detectable over a short segment 
o! the outer mesaxon process ffe3~ inset, arrowhead). Bar, 1 Ima. 

these mesaxons contained P0 protein at concentrations too 
low to be detected by imrnunocytochemicai means cannot be 
excluded, but Po protein was clearly detectable in a single 
compact myelin lamella (Fig. 1) and in a single mesaxon 
membrane (Fig. 6, Po inset, arrowhead). In quaking mouse 
fibers containing multiple mesaxon wraps, P0 protein ap- 
pears to be concentrated within the inner wraps (Fig. 7). This 
is likely to occur during normal myelination since mesaxon 
membranes closest to the axon are the first to be converted 
to compact myelin (33) and the first to incorporate P0 pro- 

tein (7). Since the concentraaon of  P0 protein in mesaxon 
membranes of  quaking mice can be similar to that detected 
in compact myelin (Fig. 5), and for reasons discussed below, 
alterations in P0 protein expression do not appear to be the 
primary defect in these quaking fibers. 

Exclus ion o f  Schwann  Cell  Cytoplasm 

Two types of  cytoplasmic domains can be distinguished in 
quaking mesaxon membranes: organeUe enriched and or- 
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Figure 7. Electron micrograph of a fiber from the 1-,4 ventral root of an ll-mo-old quaking mouse. The same fiber is shown in serial, adja- 
cently cut, 1-I.tm sections that were stained by Po (left inset) and MAG (right inset) antisera, The axon is partially surrounded by compact 
myelin lamellae (right half) that are contiguous with noncompact Schwann cell membranes (left half). The intensity and thickness of P0 
staining were similar over compact and noncompact membranes. Compared to MAG staining over noncompact membranes and P0 stain- 
ing over compact myelin, the band of MAG staining over compact myelin was thinner. Bar, 1 p,m. 

ganelle free. Both areas persist in some fibers, whereas in 
others one predominates. The presence of organelles such as 
mitochondria and microtubules in quaking mouse mesaxon 
cytoplasm must inhibit formation of the major  dense line. 
However, the presence of occasional organelles is likely to 
be a secondary response because many mesaxon wraps con- 
rained little cytoplasm, no organelles, and were enriched in 
Po protein. This observation is of  particular interest since P0 
protein is thought to be responsible for maintaining the major 
dense line of compact PNS myelin (12, 17, 18). 

A striking feature of  these quaking mesaxon membranes 
was the strict correlation between the presence of mesaxon 
cytoplasm and the persistence of the 12-14-nm spacing be- 
tween their extracellular leaflets. Therefore, the two mor- 
phological markers for conversion of mesaxon membranes 

to compact  myelin, exclusion of mesaxon cytoplasm and a 
six- to sevenfold decrease in the spacing between extracellu- 
lar leaflets, appear to be functionally related in quaking 
mouse fibers. This observation raises the possibility that a 
transmembrane constituent of  mesaxon membranes plays a 
role in maintaining the extracellular spacing of mesaxon 
membranes and inhibiting the exclusion of mesaxon cyto- 
plasm. Potential mechanisms controlling the removal of 
mesaxonal cytoplasm during normal myelination, and how 
this may be altered in quaking fibers, are discussed below. 

Removal o f  MAG 
MAG is a transmembrane protein that comprises ,,o0.1% of 
the total protein in PNS myelin (20). MAG has an apparent 
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Figure 8. Schematic representation of the orientation and membrane distribution of Po protein and MAG during conversion of mesaxon 
membranes to compact myelin. MAG and P0 are shown only in the inner two membrane bilayers. Initial mesaxon wraps contain MAG, 
but little P0 protein (A). The bulk of MAG's extracellular domain maintains a constant spacing of 12-14 nm between apposing mesaxon 
membranes. As has been proposed for several immunoglobulin-related adhesion molecules, this may occur by homotypic interactions be- 
tween apposing MAG molecules. As mesaxon membranes increase in length, P0 protein is inserted (B). The spacing between the extracel- 
lular leaflets of apposing mesaxon membranes containing MAC; and Po is dictated by the larger MAG molecule. The cytoplasmic domain 
of MAG inhibits fusion of the cytoplasmic leaflets of these Po-containing mesaxon membranes. When the concentration of Po protein is 
su~cient, MAG is removed from mesaxon membranes and compact myelin is formed (C). The extracellular spacing of compact myelin 
is depicted to be mediated via homotypic interactions between apposing P0 molecules, as proposed by Lemke and colleagues (16-18). The 
close apposition of the cytoplasmic leaflets of compact myelin may occur by homotypic interactions between the cytoplasmic domain of 
Po or by heterotypic interactions involving P0 and acidic iipids. The results of the present study indicated that the failure of quaking 
mesaxons to convert to compact myelin was a result of their inability to remove MAC;. 

Mr of 100 kD and contains 30% carbohydrate. In addition 
to mesaxon membranes, MAG is located in periaxonal mem- 
branes, Schmidt-Lantermhn incisures, and paranodal myelin 
loops (27). All MAG-containing membranes have two strik- 
ing ultrastructural features: (a) their extracellular leaflets are 
separated by a 12-14-nm gap; and (b) Schwann cell cyto- 
plasm underlies their cytoplasmic leaflets. Based on this 
correlation, it was proposed that MAG had a structural role 
in maintaining the periodicity of these membranes (27). The 
observation that maintenance of the periaxonal space and 
periaxonal Schwann cell cytoplasmic collar required detect- 
able levels of MAG in periaxonal regions of myelinated fibers 
in quaking mouse roots provided additional support for this 
hypothesis (32). In the present study mesaxon membranes 
that failed to convert to compact myelin always contained 
MAG, had a 12-14-nm gap between their extracellular leaf- 
lets, and also had Schwann cell cytoplasm between their cy- 
toplasmic leaflets. These correlations add further support for 
the dual structural role of MAG described above• 

The amino acid sequence and putative orientation of MAG 
with respect to the membrane bilayer have recently been 
deduced from cDNA clones (1, 13, 22). The molecule is 

postulated to have a large extracellular domain that contains 
five segments of internal homology and eight potential N-linked 
glycosylation sites, a single transmembrane domain, and a 
100-amino acid cytoplasmic domain. Most important, these 
analyses showed homology between the extracellular domain 
of MAG and the variable region of immunoglobulins, a prop- 
erty shared by a growing number of neuronal and glial adhe- 
sion molecules (9, 14). This region of the molecule contains 
the tripeptide sequence Arg-Gly-Asp (RGD) which appears 
to be crucial in mediating interactions between transmem- 
brane and extracellular proteins. The bulk of the extracellu- 
lar domain of MAG and its shared homology with the immu- 
noglobulin superfamily are consistent with the ability of this 
region of the molecule to maintain the 12-14-nm gap be- 
tween apposing mesaxon membranes. This may occur by 
homotypic interactions between apposing MAG molecules 
as shown schematically in Fig. 8. Whereas the five immuno- 
globulin domains of MAG are arranged in a straight line in 
Fig. 8 (13), the tertiary structure of this region of the MAG 
molecule is unknown and it may fold back upon itself. 

Because the bulk of the extracellular domain of MAG ex- 
ceeds that of P0 protein, mesaxon membranes containing 
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both molecules had the 12-14-nm spacing dictated by MAG. 
The presence of MAG in these mesaxon membranes also dic- 
tated the periodicity of their cytoplasmic leaflets in that they 
were always separated by a variable amount of Schwann cell 
cytoplasm. This suggests that the cytoplasmic domain of 
MAG inhibits formation of the major dense line of compact 
PNS myelin, an event thought to be mediated by the cytoplas- 
mic domain of P0 protein. Therefore, the failure to remove 
MAG from quaking mesaxon membranes is likely to account 
for the deficit in their conversion to compact myelin. 

Removal of MAG from mesaxon membranes is probably 
mediated by the cytoplasmic domain of the molecule. The 
amino acid sequence of the cytoplasmic domain predicts sev- 
eral proteolytic cleavage sites (19). Proteolysis of this do- 
main could result in release of the rest of the molecule from 
the membrane as is likely to happen to CNS MAG (20, 23). 
A more likely hypothesis would involve an interaction be- 
tween the cytoplasmic domain of MAG and the Schwann cell 
cytoskeleton that permits lateral diffusion of MAG to the in- 
ner and/or outer mesaxon as compact myelin is formed. In 
support of this hypothesis, actin microfilaments have been 
shown to colocalize with MAG in PNS myelinated fibers 
(Trapp, B. D., S. B. Andrews, A. Wong, M. O'Connell, and 
J. W. Griffin; manuscript submitted for publication). The cy- 
toplasmic domain of MAG contains several phosphorylation 
sites and shares homology with the cytoplasmic domain of 
integrin (22), a transmembrane protein that binds microfila- 
ments intracellularly (26). If such an interaction exists, fail- 
ure to convert mesaxon membranes to compact myelin could 
be due to (a) alterations in the cytoplasmic domain of quak- 
ing MAG, which has an apparent lower Mr than does MAG 

• from control mice (10); (b) alterations in Schwann cell cyto- 
skeletal components; or (c) alterations in cellular regulatory 
mechanisms (i.e., pH, Ca 2+ concentration, phosphoryla- 
tion) that govern cytoskeleton-membrane interactions. Since 
only a proportion of the Schwann cells in quaking mouse 
ventral roots fail to convert mesaxon membranes to compact 
myelin and because the MAG gene and the quaking mutation 
are on different chromosomes (2), alterations in regulatory 
mechanisms that govern removal of MAG appear to be the 
most plausible explanation. Failure to remove MAG from 
mesaxon membranes, therefore, is likely to be a secondary 
response to the primary quaking mutation. 

Fig. 8, depicting homotypic interactions between MAG 
molecules present in apposing mesaxon membranes, is spec- 
ulative at this time. Although recent experiments (4) did not 
show homotypic interactions between MAG molecules puri- 
fied from the CNS, this does not necessarily rule out the pos- 
sibility that PNS MAG molecules have the potential to inter- 
act homotypically under appropriate conditions. CNS MAG 
is enriched only in oligodendrocyte periaxonal membranes, 
and hence it does not have the opportunity to undergo homo- 
typic interaction. 

It should be stressed that the MAG sequence data dis- 
cussed in the present manuscript were derived from cDNA 
clones isolated from the CNS. Although several studies have 
shown remarkable similarities between CNS and PNS MAG, 
such as similar peptide maps, cross-reactivity to antisera (5), 
and similar mRNA mobilities on agarose gels (22), minor 
differences may exist between the amino acid sequence or 
glycosylation of CNS and PNS MAG. Indeed, PNS MAG 
transcripts apparently do not undergo differential splicing as 
described for CNS MAG during development (6, 14, 22). 

Cloning and sequencing of PNS MAG therefore may reveal 
other differences that contribute to the wider distribution of 
MAG in PNS myelin sheaths. In the PNS, a critical question 
is whether the molecule(s) to which MAG adheres are the 
same in apposing Schwann cell membranes and axolemma. 
Whereas it is possible that MAG interacts homotypically in 
apposing Schwann cell membranes, heterotypic interactions 
with axolemmal components must occur in both the CNS 
and PNS. 
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