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ABSTRACT: Weakly cemented sandstones are characteristic of loose-bonding contacts, large porosities, and high-clay contents.
This study presents a discrete element method (DEM)-based numerical study for the effective elasticity of such rocks that mainly
depends on the mechanical behavior of intergranular contact regions. The DEM scheme employs a set of normal and shear springs
to phenomenologically describe the mechanical behavior of intergranular finite-sized cements defined by three morphological
parameters: cement thickness, bonding radius, and grain radius. Applications to two digital models established in terms of contact-
bonding and distant-bonding modes, respectively, where spherical quartz grains are randomly packed together with adding cements
under the specified confining pressure, are compared with the theoretical predictions by the contact-bonding and distant-bonding
cement theories, which demonstrates a good agreement generally for small contact widths, small contact thicknesses, and large-
magnitude moduli, especially for the effective shear modulus. Applications to a series of artificial sandstone samples made in terms of
different proportions of quartz grains and clays (a mixture of epoxy and kaolinite) under loose compaction for weak cementation
demonstrate a good agreement with ultrasonic measurements. Numerical investigations for the micromechanical characteristics
(differential stress fields, force chains, and fabric tensors) of artificial samples subject to applied axial strains demonstrate that the
strong mechanical behavior of weakly cemented sandstones tends to appear inside the cohesive aggregates of stiff grains because of
their relatively large sizes with loose compaction.

1. INTRODUCTION

Grain contact domains are most sensitive to deformations. As
the pore space of porous rocks, such intergranular structures are
molded by compaction, dissolution, and cementation during
diagenesis and compose of the origin of rock elasticity. The
strength of rocks depends strongly on intergranular cements.
Therefore, the elastic characteristics of rocks are mainly affected
by the mechanical property and geometry of intergranular
structures, especially for weakly cemented (unconsolidated)
sands which are very common in sedimentary deposits. As the
main elements of heavy oil reservoirs, such loose sands are
characteristic of large porosities, loose cementations, and high
clay contents.

The key issue in cemented sands is highly relevant to the
mechanical behavior at grain contacts between bonds. There
have been numerous analytical models to describe the elasticity
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of consolidated rocks, which potentially tend to overestimate
acoustic velocities for poorly cemented sands. There have
existed some models that are developed based on the
microstructural contact of unconsolidated sands and estimate
effective moduli from the contact stiffness between grains.
Classical Hertz—Mindlin (HM) model describes the mechanical
behavior of grain-to-grain elastic interactions for randomly
packed spherical grains,' which assumes a small contact area
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Figure 1. (a) Parallel bond model (cross section) using normal and shear springs at a cemented contact region (marked by light gray area) between
distant grains, where a and h denote the radius and thickness of the cement cylinder, respectively. (b) Calculation cycle flowchart of any DE that

connects with normal and shear springs at contact surfaces.

compared with the dimension of grains. The HM model initiates
numerous theoretical works for granular media. For instance,
Dvorkin and Nur (1996)* extended the HM model to low-
porosity unconsolidated sandstones by incorporating the
Hashin—Shtrikman (HS) lower bound for effective moduli up
to critical porosity. Madadi and Christy (2012)° modify the
CPA model to include grain-contact moduli and coordination-
number effect. However, many of these works focus on
uncemented grains that are directly bonded together by a
normal loading stress to keep contact.

Using the apparent microstructure of poorly cemented sands,
Dvorkin et al. (1991 and 1994)*° proposed a contact cement
theory (CCT) to represent the effect of cements on the normal
and tangential stiffness of spherical grains, which is revisited by
Langlois and Jia (2014)° and Langlois (2015) for an accurate
approximate expression of contact stiffnesses. Grains in the CCT
model are directly bonded together by a few intergranular
cements near the contact area. It is worth noting that the small
quantity of cementation by even very soft cements can
significantly increase the stiffness of sands.”® Chiu et al.
(2017)” used the CCT model to develop a biconcave bond
model to study the effect on the mechanical behavior of rocks.
The CCT model usually holds for high porosity because of the
minor amount of cement at grain contacts. As indicated by
Theocharis et al. (2020),'" the model does not consider the
dependence of coordination numbers on the cement content. By
combining the CCT, HM, and HS models as well as including
the intergranular volume index (IGV) for pressure effects,' a
patchy cement model'>'® has been developed to predict stress
dependence in poorly consolidated sandstones with weak
cementation. A comprehensive comparison of various analytical
models can be referred to the work of Carcione et al. (2022)."
should be stressed that the CCT model is based on the grain-to-
grain direct contact with a small cemented contact region.
Unconsolidated sandstones with weak cementation are usually
characteristic of nonzero contact thickness between adjacent
grains, which will reduce the normal and tangential stiffnesses.”
Therefore, the CCT model tends to overestimate the elastic
moduli of weakly cemented sands.'” Xue-Hui et al. (2014)®
modify the CCT model with basal cementation (i.e., bridging
cementation) to consider the effect of contact thickness. The
modified CCT model (MCCT) has been used to examine the
acoustic velocities for heavy oil sands.'® In this study, the CCT
and MCCT analytical models will be validated by a numerical
scheme.
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Many distant contact problems have no analytical solution,
resulting in the development of various numerical methods
which are generally classified into two categories: continuum-
and discrete-based models. The former has been widely used for
effective elasticity prediction because of their computational
efficiency by regarding the rocks as continuous granular media.
It is worth mentioning that Madadi and Saadatfar (2017)"°
present a finite-element simulation for the effective elastic
moduli of unconsolidated sandstones by varying the volume
fraction of grain contacts. However, such cemented media as
rocks are natural to handle using discrete-based methods, for
example, discrete element methods (DEMs) that can specifically
account for individual factors (e.g., granular texture, particle
kinematics, and force transmission) that influence the
mechanical behavior of rocks. Particularly, for fractured rocks,
the DEM seems more suitable'’~>° where even a small number
of cracks have significantly effect on the elastic properties of
rocks. A discrete fracture network (DFN) to model complex
fractures has been coupled with the DEM for strength
characterization of fractured rocks.”* Xu et al. (2021)*” present
a DEM—-DEFEN crack inversion for the distribution of
coordination numbers, which captures the structural character-
istics of fractures. On the other hand, the DEM is an efficient
numerical method to investigate the micromechanism of
deformations in cemented rocks,>”>° elastic character-
istics,”*~*" and size-dependent wave propagation.”” The key is
relevant to bonded particle models.’*** The methods can be
extended to poorly cemented rocks by weakening the strength of
bonds at grain contacts.”>*® The aforementioned numerical
studies focus on the mechanical behavior of bonded particle
models by adopting various forms of contact laws. Theocharis et

(2020)'° attempt the accurate elasticity of bonding
cementation by extending the analytical contact-bonding
model of Langlois (2015)” to distant-bonding cases. They
conduct a DEM-based numerical study to elaborate the effect of
bonding parameters on the elastic characteristics of these two
typical cemented bonds (contact bonding and distant bonding).
For the distant-bonding model, noncontacting grains are joined
by a cement bridge (i.e., basal cementation or bridging
cementation).

The research aims to develop a DEM-based numerical scheme
for the effective elasticity of weakly cemented sands based on the
PFC2D platform (Itasca, 2014) in which a built-in parallel bond
model (PBM) can be applied to the bridging cementation. It
describes the mechanical behavior of a finite-sized cement
material deposited between two grains. The process is two steps.

https://doi.org/10.1021/acsomega.3c03802
ACS Omega 2023, 8, 33610—-33621
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Figure 2. Parallel-bond force—displacement law for normal force vs normal displacement () and shear force vs tangential displacement (b).
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Figure 3. DE arrangements in terms of the contact-bonding (a) and distant-bonding (b) patterns, with the intergranular cementation size and matrix

porosity controlled by the key parameters 4, R, and h.

First, this essay develops the DEM-based numerical scheme to
approximate the contact-bonding and distant-bonding functions
based on the built-in PBM and assumes that both grains and
cements are linear, elastic, and isotropic. The scheme is validated
by the theoretical CCT and MCCT solutions for isotropically
confined bead packs assembled in terms of the contact-bonding
and distant-bonding modes, respectively. Second, a series of
weakly cemented clay-bearing sandstone samples are artificially
made with different packing textures by increasing the
proportion of clay contents under a small fixed confining
pressure. Based on scanning electron microscopic (SEM)
images from these sandstone samples, the grain mineral
formations and grain contacts can be measured.” The mineral
formation of cements and their volume fraction of each mineral
can be identified.”” Based on the digital SEM images of these
differently packed samples, this article numerically calculates
their effective bulk and shear moduli, which are validated by
quantitative confrontations with ultrasonic experiments to the
artificial sandstone samples. In addition, this research also
further examine the effect of differential stresses, force chains,
and fabric tensors on the elastic properties of cemented
sandstones subject to biaxial compression tests.

2. NUMERICAL METHODS AND PROCEDURE

2.1. DEM Model. The DEM has made significant advances
in complex simulations of granular media and aggregates but
focusing on the mechanical behavior of intergranular
cementation in soft and hard rocks. The PBM built in the
PFC2D provides an efficient approach to improve significantly
the predictive capability of the DEM for rock-modeling purpose.
It realistically captures the macroscopic response to dynamic or
kinematic boundary conditions in terms of microscale bonded
structures. In this study, the built-in PBM in the PFC2D to
establish a grain-level numerical scheme for modeling the
effective elasticity of weakly cemented sandstones is employed,
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Figure 4. Comparison of the analytical and simulated bulk and shear
moduli vs the dimensionless parameter a/R for contact-bonding DEs.

which will be compared with the theoretical CCT and MCCT
solutions and validated by ultrasonic experiments.

2.2. Parallel Bond Model. The PBM describes the
mechanical behavior of granular finite-sized cements to model
the contact-bonding and distant-bonding functions. It can be
equivalized by elastic springs with normal and shear stiffnesses,
as shown in Figure la, where the parallel-bond component
works with the springs of the linear component to build up an
elastic interaction between two grains. The linear model does
not resist relative rotation. It accommodates a slip by imposing a
Coulomb limit on the shear force. The PBM resists relative
rotation but is linear elastic until the strength limit before the
bond breaks. Relative motions at intergranular contact regions
induce force and moment within the bond material. If the
resulting maximum normal or shear stresses exceed its
corresponding bond strength, the parallel bond breaks and

https://doi.org/10.1021/acsomega.3c03802
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Figure 6. Comparison of the elastic moduli vs the dimensionless
parameter h/R for the packing models with different cemented
thicknesses.

becomes unbonded. The unbonded PBM is equivalent to the
linear model. The DEM calculation process involves two steps,
as shown in Figure 1b. The first step is to calculate the
interaction forces between DEs according to the force—
displacement law. Second, the velocity and position of each
DE are updated based on Newton’s law of motion.

The force—displacement law applied to each DE to update the
contacting force resorts to a local constitutive law, with its
mechanical behavior of normal and shear springs generally
expressed in Figure 2. The essence of the problem is to estimate
the distribution of normal and tangential tractions, which
satisfies the normal and tangential boundary conditions at the
interface. The total contact force consists of the linear force, the
dashpot force, and the parallel bond force. The linear and
dashpot forces are updated using the linear model through the
blue springs in Figure 1a, and the force and moment are updated
using the PBM through the yellow springs in the figure. The
parallel-bond force is decomposed into a normal and shear force,
with its moment into a twisting and bending moment. The
parallel bond has the advantage over a simple contact bond in
that it acts together with the normal contact spring and transmits

control the intergranular cementation size and matrix porosity
by assigning the parameters 4, R, and h with different values.
These packed particles will be used to discretize digital image
pixels of sandstone samples, with the coordinates of particles set
by the approximate zone of the pixels within the digital core
image. The relevant micromechanical parameters of DEs can be
adjusted to the mechanical properties of the approximate zone.

2.3. Validation by the CCT Model for Contact-Bonding
Cementation. This work applies the aforementioned DEM
numerical scheme to a quartz-grain packing model with weak
contacts by the contact-bonding mode. The static elastic moduli
(bulk and shear) of grains and cements are assumed to be (38,
44) and (15, 8) GPa, respectively. The critical porosity of loosely
packed grains is assumed to be approximately 0.36 which is
similar to that of randomly packed spherical grains.” The
effective bulk and shear moduli are numerically calculated for
the dimensionless parameter a/R ranging from 0.3 to 0.55.

This work first packs spherical grains randomly and uses the
servo function to balance the sample under the specified
confining pressure that mechanically stabilizes these packed DEs
to ensure the contact-bonding mode. The resulting DE model of
spherical grains has an isotropic distribution of grain contacts, as
shown in Figure 3a. Then, this work adds cements to individual
intergranular contact regions for the expected value of /R and
carries out repeated uniaxial compression tests for a stable
simulation of Young’s modulus and Poisson’s ratio of isotropic
material. Based on the analytical formula of CCT,” the effective
bulk and shear moduli of the same model can also be calculated.
The algorithm of CCT is presented in Appendix A. Figure 4
compares the analytical and simulated moduli for the
dimensionless parameter a/R ranging from 0.3 to 0.55. Due to
the large uncertainty and randomness in the parameter
calibration of numerical simulation, the numerical results are
usually not completely consistent with the theoretical results.
The simulation results in this paper are slightly different from the
theoretical prediction results, but in general, they still show a
high consistency. Both shear moduli and bulk moduli increase
with the increase of bonding width, which reflects the increase of
bond strength of the whole system. This trend can be intuitively
understood: the porosity decreases with the increase of a/R
ratio, and the greater the a/R ratio, the greater the contact
stiffness of the system, which is manifested as an increase in bond
strength and an increase in equivalent elastic moduli.

Similar to the validation for contact-bonding DEs by the CCT
model, the DEM numerical scheme is applied to a quartz-grain
packing model with weak contacts by the distant-bonding mode.
The static elastic moduli (bulk and shear) of grains and cements
are assumed to be (38, 44) and (6.8, 2.0) GPa, respectively. This
research chooses cement materials with smaller moduli. The
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Figure 7. SEM images of 10 sandstone samples synthesized in terms of different proportions of grains and clays under limited confining pressures for
weak cementation, showing granular aggregates as the skeleton and filled clays as cements.

effective elastic moduli are numerically calculated for the
dimensionless parameter h/R ranging from 0.01 to 0.0S. The
distant-bonding DEs packed with different cemented thick-
nesses under the specified confining pressure present an
isotropic distribution of grains and bridging cement materials,
as shown in Figure 3b.

Accounting to the analytical formula of MCCT® detailed in
Appendix A, this study compute the effective elastic moduli of
the packing models with different cemented thicknesses and the
analytical solutions of samples of the CCT model and MCCT
model, as shown in Figure 5. As can be seen from the figure,
under the influence of cementation thickness, the modulus of
based-type cementation is slightly lower than that of porous
cementation under the same cementation radius. The reason is
that the increase of the central thickness of the cement will
reduce the normal contact stiffness and tangential contact
stiffness, resulting in relatively soft sandstone, so the modulus
decreases. Based on this, the fixed cement width a/R value in the
simulation process is 0.50. The modulus value of basement-
cemented sandstone under variable cementation thickness (h/R,
h is the cementation thickness and R is the cementation radius)
is simulated through the uniaxial compression test in the Y
direction, and only the linear elastic change stage is still
concerned. As shown in Figure 6, the simulation results in this
paper are slightly different from the analytical prediction results,
but in general, they still show a high consistency. When the fixed
cement width a/R is 0.50, the weakly cemented sandstone
becomes relatively soft with the increase of contact thickness, so
the overall stiffness and effective modulus of the system decrease
with the increase of contact thickness.

3. NUMERICAL EXPERIMENTS

Natural cemented sandstones are generally complex in mineral
formations and microstructures that involve with complicated
interactions between the base and cements. In contrast,
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Figure 8. Cohesive aggregates of grains (marked in red) and clays
(marked in green) for model S (left panel), identified by image
processing in terms of the pixel grayscale of grains and clays in the SEM
image.

Table 1. Basic Petrophysical Properties and Ultrasonic
Measurements for Artificially Made Sandstones

sample clay content porosity density (g-em™) Vi (ms™!)  V, (ms™h)

1 0.09 0.31 1.64 1897 1219
2 0.11 0.29 1.69 1856 1347
3 0.25 0.15 2.07 2521 1384
4 0.24 0.16 2.05 2505 1449
S 0.26 0.15 2.09 2320 1525
6 0.18 0.22 1.89 2190 1385
7 0.22 0.18 1.96 2392 1519
8 0.23 0.17 2.03 2436 1425
9 0.25 0.15 2.08 2442 1491
10 0.15 0.25 1.76 2130 1482
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Figure 9. Digital models of DEs for 10 sandstone samples shown in Figure 7, where cohesive aggregates of grains (marked in yellow) and clays (marked
in blue) are approximated by different-sized DEs with specific geometrical and micromechanical parameters for the mechanical behavior of individual
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Figure 10. Cross plot of measured velocities against DEM-simulated
and CCT-predicted velocities, respectively.

synthetic clay-bearing sandstones present known grains,
cements, and their proportions, which are packed under the
controllable confining pressure. In this study, artificial sandstone
samples are preferred to test numerical approaches for effective
elasticity, which is validated by ultrasonic experiments.

3.1. Artificial Sandstone Samples and Ultrasonic
Measurements. Artificial sandstones consist of quartz grains
and cements (a mixture of epoxy and kaolinite). These
components with irregular shapes are packed under limited
confining pressures for weak cementation. The static elastic
moduli (bulk and shear) of grains and cements are 38, 44 and
2.24, 1.57 GPa, respectively, with their densities measured by a
helium porosimeter as 2.65 and 1.38 g-cm™, respectively. The
resulting critical porosity of loosely cemented grains is measured

to be approximately 0.4. This research makes 10 sandstone
samples in terms of different proportions of grains and cements,
with each as 10 and 20 mm in width and height, respectively.
Figure 7 shows the SEM images of the resulting sandstone
samples and represents that these thin-sheet images basically
capture the microstructural features of natural cemented
sandstones. Cohesive aggregates of grains with different shapes
and scales in size are randomly embedded in the clays.
Intergranular contact regions are filled with cements varying in
thickness and shape, which manifests both the contact-bonding
and distant-bonding modes for weak contacts.

Based on the pixel grayscale of grains and cements in the SEM
images, the threshold segmentation of these two components
can be easily implemented by image processing, enabling the
accurate extraction of grains and clays. Figure 8 shows cohesive
aggregates of grains (marked in red) and clays (marked in green)
for model 5. Based on the pixel recognition of grains and clays,
the petrophysical properties such as clay content and porosity
for each sample can be estimated, as listed in Table 1. Ultrasonic
measurements are conducted to each sample using 1 and 0.5
MHz for P- and S-wave piezoelectric transducers (PZTs),
respectively. The resulting P- and S-wave velocities are listed in
Table 1. Furthermore, this study can identify grain-contact area
distributions, based on which the statistical analysis of grain
contacts results in the normalized cement thickness ranging
from 0.0 to 0.05, with normalized cementation radii and
coordination numbers estimated by the method.””

3.2. DEM Numerical Simulations Based on Digital
Image Pixels. For elasticity calculations based on the SEM
images, this work first applies packed DEs (see Figure 3) to
discretize digital image pixels. Based on the distinct distribution
of grains and clays, as shown in Figure 8, this work usually uses
large- and small-sized DEs for cohesive aggregates of grains and
clays, respectively. The resulting digital models of DEs are
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Figure 11. Differential stress fields for model 9 subject to different levels of axial strains (¢ = 0.5, 1.0, and 1.2%) under the confinements of 0.5 MPa

(upper panel) and 1.0 MPa (lower panel).

shown in Figure 9. Based on the aforementioned statistical
analyses of individual voxels, this work can configurate
petrophysical properties, cement thicknesses, and coordination
numbers among these voxels through the parameters g, R, and h.
The relevant micromechanical parameters of individual DEs can
be adjusted to the mechanical properties of the approximate
zone. Particularly, along the boundaries of individual cohesive
aggregates of quartz grains, the weakening of grain-clay contacts
will be assigned to weakly cemented areas. These loosely
cemented areas at the contact boundaries due to a limited
compaction will change the distribution of stresses dramatically
and in turn affect the effective elastic moduli.

DEM simulations described previously are applied to the
digital models of DEs shown in Figure 9. The effective elastic
moduli are calculated by applying uniaxial compression
experiments. The resulting P- and S-wave velocities are plotted
against those (see Table 1) obtained from ultrasonic measure-
ments, as shown in Figure 10. Based on the statistical analyses of
petrophysical properties, cement thicknesses, and coordination
numbers for individual voxels, this work conducts the CCT and
MCCT predictions for these digital models of DEs, which are
also plotted against the measured P- and S-wave velocities in
Figure 10. Similar to the MCCT prediction, the DEM
simulations agree well with the measured values, whereas the
CCT model overestimates acoustic velocities for these artificial
sandstones because of the assumption of cementation.*®

4. RESULTS

The elasticity of artificial sandstone samples is examined based
on the DEM numerical simulations with biaxial compression
tests under the confining pressure. The effects of micro-
mechanical characteristics, such as differential stress fields, force
chains, and fabric tensors, are numerically investigated based on
the confining pressures and applied strain rates. This work
demonstrates that biaxial compression tests can help to predict
the possible location of stress concentration in the samples.
4.1. Differential Stress Fields. The distribution of stress
fields in rocks is significantly altered by elastic interactions of
microstructures. This study takes model 9 (see Figure 9) as an
example to conduct a series of biaxial experiments. The
differential stress is defined as the difference between the
maximum and minimum principal stresses experienced by an
object. It is often used to estimate the tensile or shear failure
determined by the failure criterion.”” Figure 11 shows the
distribution of local differential stresses for the specimen subject
to different levels of axial strains (& = 0.5, 1.0, and 1.2%) under
the confinements of 0.5 and 1 MPa, respectively, and represents
that both the confinements have similar differential-stress
distributions. Unlike well-cemented fractured rocks,'”*® where
the local stress maxima usually occur around fractures, the local
stress maxima for weakly cemented sandstones tend to appear
inside the cohesive aggregates of grains because these stiff grains
have relatively large sizes with loose compaction, whereas stress-
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Figure 12. Contact force chains for model 9 subject to different levels of axial strains (¢ = 0.5, 1.0, and 1.2%) under the confinements of 0.5 MPa (upper

panel) and 1.0 MPa (lower panel).

shielding areas occur around cemented parts due to small soft
particles. The stress concentration increases with increasing
strains, indicating closer contacts between grains.

4.2. Force Chains. Force chains indicate the contact force
between particles in granular media. Such contact forces
manifest the transfer path of external loading and connect the
macro—micro-mechanical properties of granular media. Based
on the DEM numerical simulations with biaxial compression
tests, the distribution of force chains across grains can be
calculated. Figure 12 shows the evolution of contact forces for
model 9 subject to different levels of axial strains (¢ = 0.5, 1.0,
and 1.2%) under the confinements of 0.5 and 1 MPa,
respectively. Similar to the distribution of differential stresses,
strong force chains appear inside the matrix because of the loose
compaction of large-sized stiff grains, whereas weak force chains
are mainly located in the area of clays. The contact forces
increase with increasing strains due to increasing external loads,
yielding a force-chain buckling inside the matrix that is indicated
by a red chain.

4.3. Fabric Tensors. The stress-induced growth of direc-
tional features of granular contacts tends to render the medium
anisotropic in certain preferential direction. The fabric
anisotropy is characteristic of the distribution of directional
data, termed fabric tensors.”’ To quantitatively describe the
evolution of fabric anisotropy, this study estimate the contact-

normal distribution of model 9 subject to different levels of axial
strains (£ = 0.5, 0.8, 1.0, and 1.2%) under the confinements of 1
MPa. Figure 13 shows the rose diagram of directional
distributions within the XY-plane of normal forces for mass
nodes. Where g, is the Fourier coefficient, its value represents
the anisotropy coefficient of force chain strength, and 6, is the
main direction of chain distribution. The rearrangement of DEs
is isotropic in the initial state (¢ = 0.5%), with the contact-
normal direction uniformly distributed in all directions. With
increasing strains, the contact-normal orientation tends to an
ellipse with its long axis along the vertical direction, that is, the
contact normals concentrate in the direction of the maximum
principal stress, whereas the number of contacts decreases in the
direction of the minimum principal stress.

5. DISCUSSION

The present work presents a DEM-based numerical study for the
elastic behavior of weakly cemented sandstones that are
characteristic of loose-bonding contacts, large porosities, and
high clay contents. The strength of such rocks depends strongly
on intergranular cementations that are most sensitive to
deformations due to external loading. Intergranular structures
mainly include two typical cemented bonds: contact-bonding
and distant-bonding modes. The former has a grain-to-grain
direct contact with a small region of cementation and tends to
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Figure 13. Fabric tensors for model 9 subject to different levels of axial strains (¢ = 0.5, 0.8, 1.0, and 1.2%) under the confinements of 1.0 MPa.

overestimate the elastic moduli of weakly cemented sandstones.
The latter features noncontacting grains that are joined by a
cement bridge that reduces the normal and tangential stiffnesses
of grain contacts. Unconsolidated sandstones are usually
dominated by such bridging cementation that are controlled
by three morphological parameters: cement thickness, bonding
radius, and grain radius.

This work employs the built-in parallel bond model in the
PFC2D to establish the DEM numerical scheme for the effective
elasticity of weakly cemented sandstones. The parallel bond
phenomenologically describes the mechanical behavior of
intergranular finite-sized cements by a set of normal and shear
springs. Unlike the CCT and MCCT models, the contact
constitutive relation in the parallel bond is of a wide applicability
with flexibility for more complex simulations of granular media.
This study randomly packs spherical quartz grains together with
adding cements under the specified confining pressure that
mechanically stabilizes these packed DEs to ensure the contact-
bonding and distant-bonding modes, respectively, followed by
repeated uniaxial compression tests to calculate effective elastic
moduli. The numerical results are validated by the theoretical
CCT and MCCT solutions generally for small contact widths,
small contact thicknesses, and large-magnitude moduli,
especially for the effective shear modulus.

33618

A series of artificial sandstone samples are made in terms of
different proportions of quartz grains and clays (a mixture of
epoxy and kaolinite) under loose compaction for weak
cementation. The resulting thin-sheet SEM images show
cohesive aggregates of grains and clays with different shapes
and scales in size. Intergranular contact regions with cements
varying in thickness and area manifest both the contact-bonding
and distant-bonding modes for weak contacts. The petrophys-
ical properties and morphological parameters can be extracted
for DEM simulations by the statistical analysis of individual
voxels. The numerical results demonstrate a good agreement
with ultrasonic measurements in comparison with the
theoretical predictions by CCT and MCCT, where the CCT
significantly overestimates acoustic velocities. Numerical
investigations for the micromechanical characteristics (differ-
ential stress fields, force chains, and fabric tensors) of artificial
samples subject to applied axial strains demonstrate that the
strong mechanical behavior of weakly cemented sandstones
tends to appear inside the cohesive aggregates of stiff grains
because of their relatively large sizes with loose compaction.

The DEs do not emulate real grain contacts with distinct
angularities, different sizes, and differential adhesive strengths.
The assumption and limitations of our DEM simulations are as
follows: (i) both grains and cements are assumed to be linear,
elastic, and isotropic. (ii) The arrangement of DEs cannot
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accurately model individual pores with different sizes, and the
cementation is assumed to occur at the grain contacts only. (i)
The DEs phenomenologically replicate the effect of natural
cements in the sense of mechanics, without considering local
and weak pressure solutions and chemical adhesions at the grain
contacts of weakly cemented sandstones.

6. CONCLUSIONS

This study has developed an effective numerical scheme for
simulating the cementing medium with high precision. Both
contact- and distant-bonding modes of weakly cemented
sandstones can be replicated using this approach. In contrast
to existing methods, this model is extensible to more complex
sandstone samples, demonstrating its potential for quantifying
and visualizing internal factors and microscopic mechanisms.
Numerical results indicate that the strong mechanical behavior
of weakly cemented sandstones tends to manifest within
cohesive aggregates of stiff grains due to their relatively large
sizes and loose compaction. The correlation between changes in
the fine microstructure of cemented sandstone and alterations in
macroscopic mechanical properties not only expands the
applicability of the DEM to geotechnical problems but also
provides a theoretical reference for addressing practical
geotechnical challenges.

Bl APPENDIX A

Cemented Contact Models

Dvorkin et al. (1991, 1994)*° present a CCT to describe the
normal and tangential deformations of contact-bonding grains
for weakly cemented sandstones. The theory predicts the
contact stiffness and strength from the geometry of a contact
region and allows to calculate the effective elastic moduli of a
random packing of spheres.

The contact model used in the CCT is shown in Figure Al,
where F, R, and a represent the force applied to the grain, the
grain radius, and the radius of cementing region, respectively.
The normal and tangential stiffnesses are

47RG(1 — 1) k,
1 -2y A

n

kT
—27RG,—
A

T

(a-1)

with

@ H_ ()t dt
e+ t*/2
« H (t)t dt
e+t2/2

kn=f
0
L=/

0

where G, denotes the shear modulus of the cement; v, is
Poisson’s ratio of the cement; k, and k, are proportional to the
normal force and tangential force, respectively; the normalized
cement radius @ = a/R indicates the amount of the contact
cement, H,(t) and H,(t) denote the normal and tangential
deformations of the cement, respectively, and A, and A,
represent the overall normal and tangential deformations,
respectively.

Based on the effective medium theory,"” the bulk and shear
moduli of weakly cemented sandstones can be calculated from
the normal and tangential stiffnesses in A-1

(A-2)

1—
K="=
127R
1- 3
G = u(sn + _Sr)
207R 2 (A-3)
where the corresponding P- and S-wave velocities can be
denoted as
K. + 4/3G,
V; — eff / eff
p
V2= Gest
P (A-4)

where @ is the porosity of the loose sandstone, n is the average
number of contacts per sphere, K4 and G, are the bulk and
shear moduli, respectively, and V,, and V, denote the P- and S-
wave velocities, respectively. Dvorkin and Nur (1996)
formulate the normalized cement radius by two cases

025
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for Scheme 1 with all cements deposited at the grain contacts
and
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Figure A2. Contact model for the MCCT with all cements deposited at the grain contacts (Scheme 1) and evenly on the grain surface (Scheme 2).

for Scheme 2, with all cements deposited evenly on the grain
surface, where ¢, is the critical porosity.
The normal and tangential stiffnesses can be approximated by

S, = A (A)a” + Bi(Aa + Cy(A,)

S, = A (A, v)a® + B(A,, v)a + C(A,, v) (A7)
with

A (A = —0.024153-An—1.3646

B,(A,) = 0.20405-A %08

C,(A,) = 0.00024649- An—1.9s45

and

A (A, v) = —10%-(2260° + 2.07v + 2.3)-
A 0.0790240.1754v—1.342
T

B.(A,, v) = (0.05730% + 0.0937v + 0.202)-
A 0.02740°40.05290—0.8765
T

C,(A,, v) = —107*(9.6541" + 4.9450 + 3.1)-
A 0‘01867I/2+0A4011b—1‘8186
T

(A-8)
where
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p 260001
G 1 -2y
G
A, =—
G

The CCT model usually holds for high porosity because of the
minor amount of cements at grain contacts. Xue-Hui et al.
(2014)® modify the CCT model for noncontacting grains by
proposing a more general expression for the normalized cement
radius.

The distant-contact mode used in the MCCT is shown in
Figure A2, where h represents the contact thickness. In the
MCCT, the normalized cement radius becomes

a= |-2e+2 |8+ M
3n(l — goo) (A-9)

for Scheme 1 with all cements deposited at the grain contacts
and

. [ 2(0, — )
3(1 - ) (A-10)

for Scheme 2, with all cements deposited evenly on the grain
surface, where € = h/R is the normalized contact thickness. A-9
reduces to A-10 at £ = 0.

The normal and tangential stiffnesses for the MCCT can be
approximated by

Sn = An(AnJ S)az + Bn(An) g)a + Cn(An) 8)
ST = AT(AT, S)az + BT(AT’ S)a + CT(AT’ 8) (A—ll)
where

A (A, ) = —(5.7792€” + 0.4569 + 0.0446)-
A (105.716*4+5.3505¢ —1.1159)

Bn(An, £) = (0.277182 + 1.928¢ + 0.2462)-
A (19.307¢%+3.3416—0.8023)

B,(A,, €) = (0.3939” + 0.2114¢ — 0.0018)-
A (—283.4667+31.128¢—1.7754)
n

(A-12)
and
A (A, €) = —107(2260% + 2.07v + 2.3)-
A 0.0790°40.1754v—1.342
T
B,(A,, £) = (0.05731% + 0.0937v + 0.202)-
A 0.02740%+0.05290—0.8765
T
C.(A, &) = —107*(9.6540” + 49450 + 3.1)-
A 0.018671>40.40110—1.8186
T (A-13)
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