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Abstract: Estimating model parameters from experimental data is a crucial technique for working with computational

models in systems biology. Since stochastic models are increasingly important, parameter estimation methods for

stochastic modelling are also of increasing interest. This study presents an extension to the ‘multiple shooting for

stochastic systems (MSS)’ method for parameter estimation. The transition probabilities of the likelihood function are

approximated with normal distributions. Means and variances are calculated with a linear noise approximation on the

interval between succeeding measurements. The fact that the system is only approximated on intervals which are

short in comparison with the total observation horizon allows to deal with effects of the intrinsic stochasticity. The

study presents scenarios in which the extension is essential for successfully estimating the parameters and scenarios

in which the extension is of modest benefit. Furthermore, it compares the estimation results with reversible jump

techniques showing that the approximation does not lead to a loss of accuracy. Since the method is not based on

stochastic simulations or approximative sampling of distributions, its computational speed is comparable with

conventional least-squares parameter estimation methods.

1 Introduction

Parameter estimation is very important for the analysis of models in
systems biology. Computational modelling is a central approach in
systems biology for studying increasingly complex biochemical
systems. Progress in experimental techniques, for example, the
possibility to measure small numbers of molecules in single cells
[1], highlights the need for stochastic modelling approaches.
Simulation methods for stochastic processes are being developed
for decades since [2] and nowadays exist with a lot of variants [3].
The development of parameter estimation methods for stochastic
models, however, has started only recently. This paper extends a
method of [4] with a more accurate approximation for the
variances of the transition probabilities.

Parameter estimation approaches for time series data exist using
stochastic simulations. Owing to the Markov property of the time
series, the likelihood function factorises into the product of
transition probabilities. These transition probabilities are generally
unknown in stochastic modelling. They can be estimated using
stochastic simulations. This can be done with density estimation
methods [5, 6]. Another approach is the use of a reversible jump
algorithm [7, 8]. As results of these two papers will be used for
comparison, their ideas will be explained in more detail.
Reversible jump algorithms start with a path connecting the
previous and the succeeding state that contains the minimum
number of reactions necessary to move from state to state. For this
specific path it is possible to calculate the probability. Then
reactions are added and subtracted from the path to obtain new
paths and their probabilities. The transition probability is the sum
over all possible paths. The space of paths is explored in a Monte
Carlo way. The parameter estimation can then be performed with
Bayesian methods as in [7]. The same idea of exploring the space
of possible paths can also be used to calculate derivatives of the
transition probabilities with respect to the parameter. This can be
combined with a gradient descent for the optimisation as in [8].

Using a surrogate probabilistic model as an approximation is faster
from a computational point of view [9]. Komorowski et al. [10]
approximates the system with a multivariate normal distribution, in
which the mean is described by the rate equations and the
covariance matrix contains all inter-temporal covariances. Another
approximation is suggested in form of an approximate
maximum-likelihood method [11], where also a singular value
decomposition likelihood method is described. A use of
approximate Bayesian methods is suggested in [12].

A second class of methods focuses on a numerical solution of the
chemical master equation (CME), which describes the probability
for each state as a function of time. These systems are generally
high dimensional. To address this problem, a state space truncation
can be used [13] or moment-closure methods, which are an
approximation focusing on a finite number of moments of the
probability distribution [14, 15]. Parameter estimation with the CME
and an approximation for the likelihood function for small systems
or a hybrid method for large systems is suggested in [16]. Deuflhard
et al. [17] and Engblom [18] use an adaptive Galerkin method for
the solution of the CME. If distribution information is available
from measurement, a finite state projection [19] can be used to
solve the CME. The common challenge is the fact that the solution
of the CME, as well as simulation-based methods, become very
time-consuming as the number of states in the state space increases.

Moment matching methods use repeated measurements to estimate
moments of the distribution for the parameter estimation [20, 21].
Further approaches can be taken from stochastic epidemic models
and are based on expectation maximisation algorithms or
Martingale-based approaches [22]. A different approach is
suggested by Chattopadhyaya et al. [23], called ‘inverse Gillespie’,
using certain geometrical properties of the population updated to
infer the reaction structure and the propensities.

The problem for parameter estimation for stochastic models can be
written in the following form: we assume that the experimental or
simulated data records at each time point ti, i = 0, 1, …, n, the
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number of molecules of species k, n
(k)
i , hence n

(k)
i [ N0. Each data

set n = (n0, n1, …, nn) is stochastic. This means that even two
simulated realisations of the system without measurement noise
can be different, and even that the mean of stochastic simulations
does not have to be close to the ordinary differential equation
(ODE) solution. Furthermore, it is assumed that the system’s
behaviour depends on some unknown parameters θ, which are to
be estimated. To this goal, the data n are compared with some sort
of stochastic or ODE simulations with respect to some objective
function F which measures the quality of the fit. Parameter
estimation means finding the optimal value û for the parameter.

A common choice for measuring the quality of a fit is the
likelihood function. The likelihood function describes the
probability for obtaining a data set n given a parameter θ. A
maximum-likelihood estimator is the choice of θ that maximises
the probability to obtain the data n. For processes satisfying the
Markov property, the likelihood function factorises into the
product of the transition probabilities from a point ni−1 at time ti−1
to a point ni at time ti, i = 1, …, n.

The MSS approach that we recently developed [4] approximates
this transition probability with a normal distribution of constant
variance. It has been shown to work well on oscillatory systems
even when the dynamics is qualitatively different from an ODE
solution. However, certainly the approximation with constant
variance is rough and can be improved. The new approach
therefore approximates the transition probabilities with a normal
distribution with a covariance calculated by a linear noise
approximation (LNA) on the intervals between two succeeding
time points of measurements. The conditions for the
approximation on the shorter time intervals are much less strict
than for the LNA applied over the complete time course.

Therefore the approach is comparable with [7–9] in that it uses a
factorisation of the likelihood function, but is different from those in
that it does not use simulations to calculate the transition probabilities.

The extended MSS method can tackle models with fully
observed and partially observed data sets. The fact that it works
without stochastic simulations and without solving a
high-dimensional CME means that it is possible to approach

Fig. 1 Outline of the simulation study

Time courses are simulated (5 small graphics) and used as pseudo data for a parameter estimation (rep resented by the arrows). Each time series results in one estimator plotted in the

coordinate system in the middle. As each time series is intrinsically stochastic, the estimators are random variables clustering around the true parameter value. To judge “how close” they

are, two statistical quantities are displayed: their average av,. to see if the method is unbiased, and their average relative error ARE, to see how far they spread around the true value.

Note that for a parameter estimation one time series is necessary. Only for the simulation study more than one time series is needed.
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systems of a size as large as realistic models being approached with
conventional deterministic methods. Since the evaluation of the
objective function does not involve stochastic simulations, all
methods from derivative-based methods, to global optimisation
techniques, to Bayesian methods can be applied for its numerical
optimisation.

As the objective function of the MSS method is deterministic, the
estimator for a single stochastic time course is unique. However,
using the same model with the same parameters and initial
conditions with a different stochastic time course realisation, the
estimation will result in a different value because of the intrinsic
stochasticity of the time courses. To evaluate the performance of
the objective function, it is therefore necessary to estimate more
than one stochastic realisation of the same model with the same
parameters and initial conditions. This paper uses 100 different
realisations for each model. A statistic over the 100 estimations
can then be used to assess the quality of the objective function
(Fig. 1). It has to be underlined that the 100 realisations are only
used to test the quality of the objective function. For an estimation
one realisation is sufficient.

This paper is structured as follows:
The method section will introduce stochastic modelling, suggest

and discuss the approximation, and present the resulting objective
function.

The results section will show the performance of the extended
MSS method on stochastic models of an immigration-death model,
a prokaryotic auto-regulatory network and a Lotka–Volterra
model. For the different scenarios, we will discuss the
performance of the extended MSS method with respect to a
state-of-the-art alternative – namely reversible jump techniques –

and the old MSS approach.

2 Method

2.1 Stochastic modelling of biochemical reactions

This section will introduce stochastic modelling and explain in
which situations it is important. Let X = (X1, …, XD) denote the D
reactants in a system with r reactions in which qij denotes the
number of educts or reactant molecules of species Xi for reaction j
and uij is the number of product molecules of species Xi for
reaction j. Hence, the systems read as

q1jX1 + q2jX2 + · · · + qDjXD

� u1jX1 + u2jX2 + · · · + uDjXD, for j = 1, . . . , r

The stoichiometric matrix S is a D × r dimensional matrix. Its entries
sij = uij− qij describe the net effect of reaction j to species Xi. In terms
of ODEs, the systems would read as

d

dt
x(t; u, x0) = S y (x(t; u, x0), u), x(0, u, x0) = x0

with a rate law υ = (υ1, …, υr)
T describing the speed of the reactions

and initial concentrations x0.
Stochastic modelling is important in systems with small numbers

of molecules, in which stochastic fluctuations can influence the
systems’ behaviour [24]. It focuses on single species and considers
each reaction explicitly. The temporal order of the reactions and
the waiting times are stochastic quantities depending on the state
of the system and the rate laws. For simulating a stochastic time
course, the Gillespie algorithm [2] is the method of choice. It is an
iterative algorithm, simulating reaction event after reaction event,
using functions of random numbers to determine the time step and
the reaction. There exists a number of implementations [3] of the
Gillespie algorithm. The resulting time course is a discrete state
continuous time Markov jump process, see also [25] for details.

Stochastic modelling can show dynamic behaviour which cannot
be seen with ODE modelling: stochasticity can, for example,
introduce bistability in genetic toggle switches which have a

steady state in ODE modelling [26]. The structure of calcium
oscillations may change qualitatively from ODE to stochastic
modelling [27]. Furthermore, intrinsic stochasticity may provide
information, for example, in form of reactivity, which allows to
solve identifiability problems [4]. This shows the importance of
stochastic modelling and the need for suited parameter estimation
methods for stochastic models.

2.2 Approximation

As mentioned in Section 1, the parameter estimation is based on
maximising a likelihood function that is a product of transition
probabilities. An accurate calculation of these transition
probabilities is very time-consuming. To overcome this problem,
we need to find an approximate way to estimate the transition
probabilities that is fast enough to be applicable in realistic size
systems and still accurate enough to capture intrinsic stochastic
features. The original MSS method suggests a rather simple
approximation with a normal distribution and constant variance
[4]. Although this approach has been shown to work well in
several cases, we expect that a more accurate approximation will
lead to more accurate estimation results or allow parameter
estimation for a larger set of models. Therefore we extend the
approximation by taking into account the variability of the
variances of the transition probabilities.

Let the system be in a state ni−1 at time ti−1. We approximate the
distribution of n at time ti−1 + Δt by

ni ≏ N (m, Cov)

with m = x(Dt; u, ni−1) (ODE solution on

[ti−1, ti] with initial value ni−1)

and Cov = S(Dt; u) (LNA approximation on

[ti−1, ti] with initial value 0D×D)

(1)

On the time interval Δt, the mean μ is the ODE solution of the system
and the variance S is calculated by an LNA. 0D × D stands for aD ×D
matrix with all entries equal zero. The LNA can be calculated with
only the knowledge of the stoichiometric matrix S and the rate law
vector υ

d

dt
S(t; u) = J (x(Dt; u, ni−1), u)S(t; u)

+ S(t; u)J (x(Dt; u, ni−1), u)
T

+V
−1
D(x(Dt; u, ni−1), u), S(0, u) = 0D×D

with J (x, u) = S
d

dx
y (x, u)

and D = (Dij) with Dij(x, u) =
∑

R

k=1

SikS jkyk (x, u)

(2)

and the volume Ω. Details and derivation can be found in [28]. See
also [29] ((6) and Appendix) and [30–32], which discuss software
tools for calculating LNAs.

The approximation differs from the approach used in the old MSS
method [4], in that the covariance is not kept constant over the
trajectory, but is calculated by an LNA on each time interval.

Although the validity of the LNA depends on the model and its
parametrisation, and thus cannot be guaranteed a priori, the LNA
is much more likely to hold on the intervals between
measurements than for the whole time series. In many cases LNAs
are applied to approximate stochastic systems from the first until
the last observation. This means that the stochastic dynamics must
fulfil the condition from the beginning until the end. The point
where the LNA typically fails is when the probability distribution
of the state variables deviate significantly from a normal
distribution, that is, when the system cannot be considered to
behave such as the deterministically simulated model plus some
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noise. Unfortunately, this includes more or less exactly those cases
where we have to choose a stochastic modelling approach because
an observed effect is not explained by a deterministic model. Since
the error of the LNA grows over time, its validity conditions can
be fulfilled much easier if we only apply it on the much shorter
time intervals between measurements. Note that in this use case,
we only require the LNA to hold locally on each of the intervals
since we only use it to calculate the transition probabilities for
each interval, from which we determine a global likelihood
function. We do not combine the local LNAs to one global
approximation of the system’s dynamics, and therefore we do not
have to test how the approximation errors of each of the LNAs
combine to a global error.

Additionally, this approximation can not only be used for parameter
estimation, but also for simulating trajectories. Choose a set of time
points t0 , · · · , tn and an initial state n0. Then, draw random
numbers according to (1) to iteratively calculate the values for the
system states n1, …, nn. Rounding the ni to integers and defining
the process’ state to be ni−1 on [ti−1, ti) leads to a trajectory that is a
continuous time discrete state Markov jump process.

Naturally, the question arises how to check whether the
approximation holds for a specific system under consideration. We
suggest a fast and intuitive check, discuss the formal conditions
and propose a calculation that can be carried out a posteriori
showing how good the approximation worked

† Since the approximation can also be used for an approximative
simulation, we can perform a first check by visually comparing the
approximate trajectory with one obtained from an exact simulation
method (such as the Gillespie algorithm). Although this will not
tell us about the quantitative accuracy of the approximation, it can
tell us if the qualitative features of the trajectory, and especially
the stochastic effects that lead us to use a stochastic modelling
approach, are conserved.
† The theoretical condition for the validity of the approximation on
the interval [ti−1, ti] is the condition of an LNA on this interval. The
theoretical condition for the validity first uses a variable
transformation to write the CME in terms of concentrations and
volumes. Next, the resulting equation is expanded in inverse
powers of the volume (similar to a Taylor expansion). If
higher-order terms are small and can be neglected, the LNA holds
and one can calculate the remaining terms (after cutting off the
higher-order terms) as described above. Details for the expansion
and its derivation can be found in [28, 30].
† Given time series data and a parameter, it is possible to reconstruct
the random number for each interval that is necessary to obtain
the data. Using the notation from (1), this is ri = S

−1/2
(ni − x),

with ni being the data point at ti. Owing to the multiplication with
the square root of the inverse of its corresponding covariance
matrix ri should be an N(0D, 1D × D)-distributed random number if
the approximation holds, where 1D × D stands for a D ×D-matrix
with diagonal entries 1. Checking whether the random numbers
r1, …, rn indeed follow this distribution, can give information on
the accuracy of the approximation (details in Section 2.6).

2.3 Extended objective function

Given experimental data as input, parameter estimation uses
numerical techniques to calculate a parameter which calibrates the
model to the data.

Denote the data as n = (n0, …, nn), measured at time points t0, …,
tn. The likelihood function L(n, θ) gives the probability to observe
the data n for a given parameter θ. With the help of the
approximation in the previous section, it is possible to derive a
formula for the likelihood function. Owing to the Markov property
of biochemical reaction networks [25], the likelihood function
factorises into the product of the transition probabilities

L(n, u) =
∏

n

i=1

p(ni; ni−1, Di, u)

where Δi = ti− ti−1 and p(ni;ni−1, Δi, θ) is the probability for a
transition from state ni−1 at time ti−1 to state ni at time ti given the
parameter θ. This transition probability will be approximated with
a normal distribution as in (1)

p(ni; ni−1, Di, u) ≈ PDF N x(Di; u, ni−1), S(Di; u)
( )

, ni
( )

with x and S as in equation (1)

where PDF(dist, y) stands for probability density function (PDF) of
the distribution ‘dist’ at y. Using the negative logarithm of the
likelihood function, this leads to the extended MSS objective
function

FMSS(n, u) = −
∑

n

i=1

log PDF N x(Di; u, ni−1), S(Di; u)
( )

, ni
( )( )

with
d

dt
x(t; u, ni−1) = Sy x(t; u, ni−1), u

( )

, x(0; u, ni−1) = ni−1

d

dt
S(t; u) = J (x(t; u, ni−1), u)S(t; u)

+ S(t; u)J (x(t; u, ni−1), u)
T

+V
−1
D(x(t; u, ni−1), u), S(0; u) = 0D×D (3)

As mentioned in Section 1, from a numerical point of view the
method is motivated by the multiple shooting method of [33] that
performs the integration on the so-called multiple shooting
subintervals. Equality constraints between the end point of a
previous interval and initial value variables on the subintervals
lead to a continuous trajectory. This method shows beneficial
behaviour for parameter estimation in ODE systems [34, 35]. The
MSS method is similar to the cited method as it also uses a
multiple shooting approach, but it differs by not using the equality
constraints. In a statistical setting the method is a Gaussian,
non-linear, first-order autoregressive time series model. An ODE
integration initialised with the previous observation is used as the
mean of the next interval; the conditional variance is obtained
from an LNA on the intervals between succeeding time points of
measurement.

A maximum-likelihood parameter estimate can be calculated by
maximising the likelihood function or equivalently minimising the
negative log likelihood function. Using the approximation, a
parameter estimate û can be determined by

û = argminuFMSS(n, u)

2.4 Partially observed data

In typical experimental setups, it is not possible to obtain
measurements for every species taking part in the reactions.
Assume that the first d species of the system are observable and
denote their measurements with nobs and denote the unobserved or
hidden components with nhid so that n = (nobs, nhid) and the data
nobs = nobs0 , . . . , nobsn

( )

is measured at time points t0, …, tn.
Include the unobserved species at time t0, nhid0 , into the

optimisation vector. Owing to the approximation, the distribution
at time point t1 is a normal distribution. As a very simple state
estimate for the unobserved species nhid1 , we choose the most
likely value from this distribution, which is the mean. It is in this
case calculated by the ODE solution on the time interval. More
generally, estimate the unobserved state n̂hidi at time ti for i = 1, …,
n− 1 by

n̂hidi = x(Di, u, ni−1)
hid

d

dt
x(t; u, ni−1) = Sy x(t; u, ni−1), u

( )

,

x(0; u, ni−1) = nobsi−1, n̂hidi−1

( )
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In this case the objective function reads as

FMSS(n, u, n
hid
0 )

= −
∑

n

i=1

log PDF N x(Di; u, ñi−1 )
obs, S(Di; u)

obs
( )

, nobsi

( )( )

ñi−1 =
(nobs0 , nhid0 ), i− 1 = 0

nobsi−1, x(Di−1; u, ñi−2)
hid

( )

, i− 1 . 0

{

with
d

dt
x(t; u, ñi−1) = Sy x(t, u, ñi−1), u

( )

,

x(0; u, ñi−1 ) = ñi−1

d

dt
S(t; u) = J (x(t; u, ñi−1), u)S(t; u)

+ S(t; u)J (x(t; u, ñi−1), u)
T

+V
−1
D(x(t; u, ñi−1), u), S(0; u) = 0D×D

(4)

The estimator in the partially observed scenario is determined by
an optimisation over the parameter θ and the unobserved initial
states nhid0

û , n̂hid0

( )

= argmin
u, nhid

0

( )FMSS(n, u, n
hid
0 )

It might be noted that the fully observed case is a subcase of this
scenario with n = nobs and nhid = {}. Therefore in the following the
notation of the partially observed case will be used. Our choice to
estimate the unobserved state variables solely from deterministic
simulation over the preceding time interval is guided by the desire
to provide a very simple objective function. A more accurate
estimate would take into account the correlation between
unobserved and observed species, as predicted by the LNA. In
principle, the unknown state variables could even be estimated
including information from future measurements, for example, by
using Kalman smoothing techniques [36]. This would, however,
run contrary to the underlying principle for our approach that the
intervals between measurement points are treated independently.
And our goal for this paper is to show that even a simple state
estimate can serve well for parameter estimation.

2.5 Measurement noise

Measurement noise is assumed to be normally distributed with zero
mean. Furthermore, it is assumed to be independent of the intrinsic
stochasticity of the process and inter-temporally independent,
which means that the measurement errors of two time points are
independent. Apart of that the d × d covariance matrix S

meas( )

of
the measurement error at a certain time point may account for
correlated errors between the species. More formally the
measurement error at time point ti is distributed with N (0d , S

meas
).

In this case, the first line of (4) extends to

FMSS(n, u, n
hid
0 )=

− log
∑

n

i=1

(

PDF N x(Di; u, ni−1)
obs, S(Di; u)

obs
+S

meas
( )

, nobsi

( )

)

Assuming that the noise model is given (e.g. from knowledge about
the experimental setup) and has zero mean, the observed data point
can serve as a simple state estimate. In principle, a better estimate
could be calculated by also taking into account the prediction of
the model and measurements of other variables as well as
measurements at other time points. As mentioned in the previous
section, the focus of this paper is to show that even this very
simple approach allows for good parameter estimation results.

2.6 Accuracy of the approximation

For given time series measurements and parameter values, it is
possible to test how well the approximation works: instead of
calculating the sum in the objective function FMSS, calculate the
following values

robsi = S(Di; u)
obs

+ S
meas( )−1/2

x(Di; u, ñi−1 )
obs

− nobsi

( )

(5)

for i = 1,…, n with the solution of the ODE system for x and S as in
(4). Taking into account (1), it follows that ri ≏ N (0d , 1d×d), where
1d×d denotes a d × d-matrix with diagonal entries one. This means

that it is enough to test whether r(k) = r
(k)
1 , . . . , r(k)n

( )

≏ N (0, 1)

for k = 1, …, d. This can be used to check how well the
approximation works. Note that there are n + 1 measurements, but
only n transition probabilities, and therefore only n numbers ri as well.

2.7 Optimisation

The objective function is completely deterministic, which means that
for its evaluation no stochastic simulations have to be performed.
The optimisation problem can therefore be solved using
gradient-based methods. Of course, it is as well possible to use
global optimisation techniques or Bayesian approaches.

3 Results

3.1 Immigration-death model

The first example is an immigration-death model

Ø −�
u1 X

X −�
u2

Ø

where X is the substance and θ1, θ2 are parameters and a rate law v =
(θ1, θ2x). The stoichiometric matrix is S = (1, −1) and the system in
ODE representation reads as

d

dt
x(t; u, x0) = u1 − u2x, x(0; u, x0) = x0

3.1.1 Considered scenarios: Several parametrisations and
choices of time points for measurements are considered. The
scenarios have been selected according to the choice of [8] to be
able to compare the accuracy of the estimation results. The initial
value is chosen in a way that the system is in the deterministic
steady state, x0 = θ1/θ2.

3.1.2 Design of simulation study: One difficulty when
evaluating the quality of a parameter estimate for a stochastic
process is that the observed data (in our case the test data
generated from the stochastic process) is itself random. This means
that even when a method is deterministic, and so gives the same
estimate when run repeatedly on the same time series, it will result
in different estimates if applied to different realisations of the same
process. Therefore it is not possible to estimate the accuracy of a
method by just looking at the results based on one set of
observations. Any deviation between true and estimated parameter
values could either be the result of a random deviation of the data
or of a bias in the method. To resolve this problem, the estimation
process was performed 100 times with 100 different data sets for
each scenario. Note that this is only needed to ‘test’ the method; it
is still possible to ‘apply’ it with a single time series. The data sets
were created by running 100 simulations with the Gillespie
algorithm [2] in the software COPASI [37] Version 4.11-65. For
each time series, an estimation is performed with the extended

MSS method. For the resulting 100 parameter estimates û
(i)
, i =
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1, …, 100 the average av = (1/100)
∑100

i=1 û
(i)

and the average

relative error (ARE) ARE = (1/100)
∑100

i=1

∣

∣û
(i)
−u(0)

∣

∣/u(0)
( )

, with

θ
(0) denoting the true parameter, are displayed in Table 1.
For comparison Table 1 includes the estimate of [8]. In [8] no

simulation study is performed and hence only one estimate is
provided. Thus we can only state how this one result ranks in
comparison with our 100 results. The relative error of this estimate is
calculated as well as the 100 relative errors of our estimates. The 101
relative errors are sorted by size (from low to high) and the rank of
[8]’s estimate is recorded. A rank 1 for most of the scenarios would
indicate that the method of [8] is clearly better, a rank 101 that it is
clearly worst, and ranks in between that the accuracy is comparable.

The optimisation has been performed with the FindMinimum
routine implemented in the software Mathematica [38] Version
8.0.4.0.

3.1.3 Observations: The estimations of the simulation study
show that the extended MSS method is able to estimate both
parameters for all considered scenarios. As a reference for the
accuracy of the estimate, we compare our 100 results to the one
result for each scenario that is given in [8]. In each but one case,
the result of [8] falls well into the range of our results. From this,
we conclude that our method shows comparable accuracy while
being computationally less demanding. Fig. 2 shows a plot of the
estimation of the first row and first column of Table 1 in a
coordinate system, illustrating how the estimates spread around the
true parameter. Both parameters are identifiable (there is a limited
range of values for them), but the stretched form of the cloud
indicates that the ratio of the parameters can be identified more
accurately. This is expected since in the case of a deterministic
model the ratio would be the only identifiable value while the two
separate parameters would be completely unidentifiable.

Fig. 3 shows the result of testing the validity of the approximation
using the concept described in Section 2.6. The basic idea is that for
each time step the deviation of the data value from the result of a
deterministic simulation should be normally distributed with

variance as calculated from the LNA. The result is only shown for
one time course, but would hold for most other time courses as well.

Only the case of parameter values (0.1, 0.03) leads to situations in
which for a few time series no convergence could be achieved,
namely 5 of 100 for the first measurement scenario, 1 of 100 for
the second, 2 of 100 for the third and none for the fourth.

Table 1 Statistics of the estimation results for immigration-death model

θ
(0) (#Δt) (0.6, 0.03) (0.6, 0.06) (0.6, 0.1) (0.1, 0.03) (0.2, 0.03)

(21 2) av:(0.59, 0.03) av:(0.62, 0.06) av:(0.64,0.11) av:(0.106, 0.032) av:(0.2,0.027)
ARE:(33%, 34%) ARE:(31%, 34%) ARE:(28%, 34%) ARE:(46%, 47%) ARE:(35%, 32%)
w:(0.61, 0.03) w = (0.36, 0.041) w = (0.47, 0.101) w = (0.167, 0.035) w = (0.28, 0.02)

rank 1 rank 68 rank 14 rank 51 rank 57

(51 2) av:(0.6, 0.03) av:(0.61, 0.063) av:(0.6, 0.103) av:(0.09, 0.033) av:(0.21, 0.033)
ARE:(16%, 16%) ARE:(21%, 20%) ARE:(24%, 24%) ARE:(28%, 37%) ARE:(27%, 25%)
w:(0.78, 0.03) w = (0.75, 0.077) w:(0.63, 0.12) w:(0.074, 0.032) w:(0.15, 0.029)

rank 59 rank 72 rank 28 rank 21 rank 26

(21 5) av:(0.62, 0.031) av:(0.61, 0.063) av:(0.67, 0.108) av:(0.1, 0.032) av:(0.21, 0.034)
ARE:(31%, 31%) ARE:(30%, 30%) ARE:(35%, 31%) ARE:(37%, 28%) ARE:(36%, 35%)
w:(0.51, 0.026) w:(0.67, 0.082) w:(0.69, 0.12) w:(0.092, 0.026) w:(0.21, 0.028)

rank 21 rank 49 rank 37 rank 10 rank 6

(101 10) av = (0.62, 0.031) av:(0.63, 0.063) av:(0.76, 0.126) av:(0.11, 0.032) av:(0.20, 0.031)
ARE:(13%, 15%) ARE:(16%, 16%) ARE:(40%, 39%) ARE:(16%, 17%) ARE:(14%, 14%)
w:(0.51, 0.026) w:(0.42, 0.04) w:(0.43, 0.067) w:(0.094, 0.024) w:(0.175, 0.026)

rank 56 rank 91 rank 73 rank 47 rank 57

This table shows the performance of the extended MSS method on an immigration-death model and compares it with results calculated by Wang et al. [8].
Different parametrisation are considered (columns) as well as different measurement scenarios (rows). θ(0) stands for the true parameter, # stands for
number of measurement points and Δt stands for the time interval between two succeeding observations. For each of the 20 scenarios, 100 simulated time
series are calculated with the Gillespie algorithm [2] within COPASI [37] Version 4.11-65. For each of the time series, an estimator û

(i)
is calculated. The

table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their ARE: ARE = 1
100

∑100
i=1

| û
(i)

−u(0) |

u(0)

† w is the estimate of one time series shown by Wang et al. [8]

The rank of w among the 100 estimates of this paper with respect to relative error (details on how this rank is calculated can be found in Sections 3.1.2).
The table shows that the extended MSS method estimates the parameters with acceptably small relative error for all considered scenarios. In comparison
with the reversible jump method by Wang et al. [8], the relative error is not significantly larger, which shows that the high computational speed of the
method does not lead to a loss of accuracy.

Fig. 2 Estimates for an immigration-death scenario

For the scenario of 21 measurements with Δt = 2 (table 1, first row, first column) and θ(0)

= (0.6,0.03) the graphic shows the 100 estimates (black dots) and the true parameter

value θ
(0) (big grey dot). Using a deterministic model, only the ratio but not the

absolute value of the parameters is identifiable. Using the MSS method, one can see

that not only the ratio but also the absolute value is identifiable, however, with a

slightly worse accuracy.
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Examining the time series for which no convergence could be
achieved shows that they are untypical in that they just decay from
the starting value to zero, indicating that no or very few influx
events actually occurred during the observation time. It is
understandable that the rate of the influx reaction (i.e. the
propensity of an influx event) cannot be estimated if the reaction
does not occur during the observation time. Checking the validity
of the approximation, using the concept described above, shows
that the approximation does not hold in the cases where
convergence could not be achieved.

An increase of the number of measurement points with the same
inter-sample distance (row 1 to row 2 of Table 1) shows that the
accuracy increases. Varying the inter-sample distance and keeping
the number of observations fixed (row 1 and row 3 of Table 1)
does not show a clear effect as for columns 1, 2 and 4 the
accuracy is improved, but not for columns 3 and 5. The reason is
that the optimal inter-sample distance depends on the parameter.
Methods to choose an inter-sample distance before doing any
experiments are called optimal design methods and are ongoing
research. Note that for none of the scenarios the parameters would
be identifiable using a conventional deterministic least-squares
approach.

Comparing the results of the extended MSS method to the original
MSS approach with constant variances (results not shown), shows
that the old approach is only able to estimate the parameters
correctly in the scenarios with 100 observations and parameters
θ = (0.6, 0.03) or θ = (0.6, 0.06) with an ARE of (31%, 32%) and
(21%, 24%), which is still higher than with the extended MSS.
The other scenarios are time courses in which only very few
reactions happen between two time points of measurement. These
are problematic for the old MSS as indicated in [4]. With the
improved method now all scenarios are tractable.

The immigration-death model is one of the few stochastic models
in which it is possible to solve the CME analytically, which allows
for a calculation of exact estimates without approximation. This
means that the remaining error of the estimation is because of the
stochasticity of the time series data, rather than because of
approximations in the estimation process. Comparing these results
to the extended MSS approach for the scenario of 101
measurements and parameter (0.6, 0.06), shows that the ARE of
the extended MSS approach (16%, 16%) is only slightly higher
than the ARE of the exact method (15%, 16%). This shows that
the extended MSS method is able to extract almost all information
out of the data.

3.2 Prokaryotic auto-regulatory network

The second example has also been investigated by Wang et al. [8]
and is an example of gene regulation

DNA+ P2 −�
u1 DNA.P2

DNA.P2 −�
u2 DNA+ P2

DNA −�
u3 DNA+ mRNA

mRNA −�
u4

Ø

2P −�
u5 P2

P2 −�
u6 2P

mRNA −�
u7 mRNA+ P

P −�
u8

Ø

where DNA represents promoter sequences, P proteins, P2 protein
dimmers, mRNA messenger RNA and θ1, …, θ8 parameters. All
reactions are modelled with mass action as kinetic law. An
representation in ODEs reads as

d

dt
DNA(t)=−u1DNA(t)P2(t)+ u2DNA.P2(t), DNA(0)= DNA0,

d

dt
P2(t)=−u1DNA(t)P2(t)+ u2DNA.P2(t)

+ u5P(t)
2
− u6P2(t), P2(0)= P20 ,

d

dt
DNA.P2(t)= u1DNA(t)P2(t)− u2DNA.P2(t),

DNA.P2(0)= DNA.P20,

d

dt
mRNA(t)= u3DNA(t)− u4mRNA(t), mRNA(0)= mRNA0

d

dt
P(t)=−2u5P(t)

2
+ 2u6P2(t)+ u7mRNA(t)− u8P(t), P(0)= P0

As in [8], the true parameter value is chosen as θ(0) = (0.1, 0.7, 0.35,
0.3, 0.1, 0.9, 0.2, 0.1) and the initial conditions P2 0 = 6, mRNA0 = 8
and P0 = 25. Other initial values are varied within the study and
displayed separately in the tables. DNAt = DNA(t) + DNA.P2(t) is
modelled a conserved quantity.

3.2.1 Considered scenarios: Different choices of measurement
time points are considered. All scenarios are considered in full
observation and in partial observation. For the partially observable
case, measurements are taken for mRNA, P and P2. The total
amount DNAt is assumed to be known as well. Furthermore, two
different values for DNAt are considered.

3.2.2 Design of simulation study: For each scenario, 100
simulations are performed as described above for the
immigration-death model to generate the pseudo-data. For each of
the 100 time series, an estimation is performed with the extended

MSS method. For the resulting 100 parameter estimates û
(i)
, i =

1, …, 100 the average av = (1/100)
∑100

i=1 û
(i)
, the ARE

ARE = (1/100)
∑100

i=1

∣

∣ û
(i)
− u(0)

∣

∣/u(0)
( )

and the median of the 100

relative errors are displayed in Tables 2 and 3.
For comparison, Tables 2 and 3 include the estimate given by

Wang et al. [8]. As [8] does not perform a simulation study, and
hence only one estimate is provided, it is calculated which rank
this estimate would obtain in comparison with the estimates in this
paper with respect to the relative error. The comparison is
described in detail in the previous section.

The optimisation has been performed as above. If the optimisation
did not converge to an estimate within [0, 100]8, the result was
counted as non-converging.

Fig. 3 Checking the approximation for one time course

This figure checks how well the approximation works for a time course of the

Immigration-Death model.

As the data sets contain 21 measurements, 21-1 N(0, 1) random variables are drawn and

a density estimation is performed with the SmoothKernelDistribution function in

Mathematica 9 [39]. This action is repeated 1000 times. The solid line shows the

mean of the 1000 densities and the yellow area fills the area from the 10%-quantile to

the 90%-quantile, the grey area from the 1%-quantile to the 99%-quantile. The

graphic shows an example of the ID11 scenario. The dashed line shows the density

estimate of the (r1,…,r20) of equation (5). One can see that these numbers are

compatible with the assumption of a N(0, 1) distribution which is a condition for the

validity of the approximation.
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3.2.3 Observations: In both scenarios with 500 observations
(rows 3 + 6) the extended MSS method performs well in estimating
all parameters with a high accuracy. With only 100 observations
(rows 2 + 5) the ARE for θ5 and θ6 increases. These ARE increase
even more for the 50 (rows 1 + 4) observations scenario. This can
be interpreted as a practical non-identifiability. The same holds –

although less strongly – for parameters θ1 and θ2 comparing rows 2
+ 5 and rows 1 + 4. The increasing number of non-converging time
series with decreasing number of observation points further
supports this thought. Changing the value of DNAt seems to have
only a small effect on the quality of the estimation. Only in the case
with 500 observations, it has a strong influence on the number of

Table 2 Statistics of the estimation results for an auto-regulatory gene network – fully observed

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
(# Δt) 0.1 0.7 0.35 0.3 0.1 0.9 0.2 0.1 rank

(50 1) av 0.294 2.051 0.367 0.323 0.405 3.624 0.197 0.1 div 18
DNAt = 10 ARE 222% 226% 20% 20% 344% 341% 18% 18%

medRE 31% 32% 16% 17% 47% 44% 15% 17%
w1 0.114 0.81 0.346 0.229 0.051 0.418 0.221 0.074 rank 21
w2 0.094 0.72 0.435 0.344 0.052 0.485 0.265 0.119 rank 21

(100 0.5) av 0.111 0.753 0.351 0.299 0.257 2.337 0.194 0.097 div 4
DNAt = 10 ARE 21% 19% 18% 16% 185% 184% 17% 17%

medRE 13% 13% 17% 12% 28% 26% 13% 12%
w1 0.113 0.82 0.408 0.321 0.075 0.75 0.226 0.095 rank 20
w2 0.113 0.71 0.276 0.253 0.086 0.77 0.223 0.1 rank 11

(500 0.1) av 0.101 0.696 0.349 0.305 0.094 0.905 0.202 0.101 div 0
DNAt = 10 ARE 8% 7% 13% 12% 9% 9% 14% 15%

medRE 7% 6% 10% 11% 8% 8% 11% 12%
w1 0.079 0.74 0.349 0.286 0.101 0.86 0.183 0.094 rank 10

(50 1) av 0.421 2.275 0.36 0.327 0.394 3.358 0.197 0.101 div 22
DNAt = 2 ARE 340% 246% 26% 25% 336% 309% 35% 16%

medRE 21% 24% 18% 19% 36% 30% 31% 13%
w1 0.095 0.42 0.321 0.277 0.10 0.73 0.235 0.104 rank 2
w2 0.097 0.9 0.35 0.335 0.079 0.92 0.312 0.12 rank 8

(100 0.5) av 0.105 0.687 0.359 0.309 0.298 2.552 0.199 0.1 div 8
DNAt = 2 ARE 23% 23% 29% 18% 220% 203% 25% 17%

medRE 21% 20% 26% 15% 25% 25% 20% 14%
w1 0.12 0.4 0.52 0.38 0.092 0.998 0.215 0.081 rank 42
w2 0.116 0.96 0.41 0.41 0.101 1.01 0.144 0.094 rank 27

(500 0.1) av 0.107 0.623 0.302 0.315 0.092 0.895 0.215 0.096 div 8
DNAt = 2 ARE 17% 23% 32% 25% 11% 7% 34% 16%

medRE 14% 19% 27% 18% 10% 5% 28% 16%
w1 0.052 0.91 0.277 0.35 0.128 0.93 0.137 0.075 rank 73

This table shows the performance of the extended MSS method on an auto-regulatory gene network model and compares it with results calculated by
Wang et al. [8]. Different measurement scenarios are considered as well as different amounts of DNAt. The initial values are for DNAt = 10: DNA0 = 6, DNA.
P2(0) = 4 as well as for DNAt = 2: DNA0 = 2, DNA.P2(0) = 0. θ(0) stands for the true parameter, # stands for number of measurement points and Δt stands for
the time interval between two succeeding observations. For each scenarios, 100 simulated time series are calculated with the Gillespie algorithm [2] within
COPASI [37] Version 4.11-65. For each of the time series an estimator û

(i)
is calculated. The table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their ARE: ARE = 1
100

∑100
i=1

| û
(i)

−u(0) |

u(0)

† medRE: The median of the 100 relative errors
† w1: the estimate of one time series shown by Wang et al. [8]
† w2: the estimate of a second time series shown by Wang et al. [8]
† the rank of w1 and w2 among the 100 estimates of this paper with respect to relative error (details on how this rank is calculated can be found in
Sections 3.2.2); and
† div stands for the number of time series for which no convergence could be achieved

Table 3 Statistics of the estimation results for an auto-regulatory gene network – fully observed plus measurement noise

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 σ

(# Δt) 0.1 0.7 0.35 0.3 0.1 0.9 0.2 0.1 div

(500 0.1) av 0.105 0.679 0.413 0.39 0.094 0.909 0.397 0.208 0.451 2
σ = 0.5 ARE 10% 8% 26% 32% 10% 10% 108% 115% 11%
σ estimated medRE 9% 7% 21% 29% 9% 8% 85% 101% 10%
(500 0.1) av 0.145 0.886 0.947 0.937 0.098 0.969 0.883 0.499 1.603 1
σ = 1 ARE 45% 28% 171% 212% 10% 13% 343% 400% 60%
σ estimated medRE 43% 26% 171% 207% 8% 11% 323% 387% 60%

This table shows the performance of the extended MSS method on an auto-regulatory gene network model with measurement noise. Different
measurement scenarios are considered as well as different amounts of DNAt. The initial values are DNA0 = 6, DNA.P2(0) = 4, and therefore DNAt = 10. θ(0)

stands for the true parameter, # stands for number of measurement points and Δt stands for the time interval between two succeeding observations. For
both scenarios 100 simulated time series are calculated with the Gillespie algorithm [2] within COPASI [37] Version 4.11-65. Normally distributed
measurement noise is added to each of the simulated time courses with a standard deviation σ displayed in the table. For each of the time series, an
estimator û

(i)
is calculated. The table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their ARE: ARE = 1
100

∑100
i=1

|û
(i)

−u(0) |

u(0)

† medRE: The median of the 100 relative errors
† div stands for the number of time series for which no convergence could be achieved
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non-converging time series. Except that the extended MSS method
can cope equally well with different amounts of DNAt.

Testing the accuracy of the approximation in the fully observed
case, indicates that for mRNA the mean is well approximated and
the variance in most cases as well; for two others, DNA and P2,
the mean fits well, but the variance is too high; whereas the fourth
parameter, P(t), has a bias. It is worthy to note that while the
approximation is therefore shown to be not strictly valid, most of
the estimates still have an acceptably small relative error. This
means that the approach for testing the approximation may be
overly strict. Estimation may still work when the test fails. The
reason for this is that the variance intuitively spoken acts as a
weighting factor for the estimation. An estimation is possible with
inaccurate variances, although with a certain loss in accuracy. The
fact that an estimation is possible even with a very rough
approximation of the variances, as in [4], supports that point.

The estimates provided by Wang et al. [8] generally fall within the
range of the 100 results of the MSS method. This shows that the MSS
method, in general, has comparable accuracy while being
computationally less demanding. It would be interesting for further
research to investigate the behaviour of the reversible jump
algorithm on the time series for which the MSS method did not
converge. The fact that the ARE is high for some parameters, but
still most of the estimates are of a similar precision as the estimates
of [8], can be explained by some estimates with extremely high
relative error influencing the ARE negatively. This observation is
supported by the small values for the median of the relative errors.

Table 3 shows how additive normally distributed measurement
noise decreases the accuracy of the estimates with increasing
standard deviation. Depending on the size of the measurement
noise, parameters might become non-identifiable (especially θ7, θ8
in the second row of Table 3).

Similar to the immigration-deathmodel, thismodel shows only few
reactions between two time points of measurement, and therefore falls
within the class of models that are hardly tractable without the
extension. Therefore no results with the old MSS method are shown.

The results for the partially observed case (Table 4) underline that
the extended MSS method can cope with partially observable
scenarios. The effects of the practical non-identifiability seem
similar except that also θ7, θ8 are affected in the DNAt = 10 case.

3.3 Lotka–Volterra

The third example is a Lotka–Volterra model which shows
oscillatory behaviour. This model has been used as a test model
for parameter estimation in [7] and consists of three reactions

Y (1)
−�
u1 2Y (1)

Y (1)
+ Y (2)

−�
u2 2Y (2) (6)

Y (2)
−�
u3 ∅

Table 4 Statistics of the estimation results for an auto-regulatory gene network – partially observed

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
(# Δt) 0.1 0.7 0.35 0.3 0.1 0.9 0.2 0.1

(50 1) av 0.519 5.476 0.293 0.322 0.258 2.299 0.439 0.224 div 36
DNAt = 10 ARE 438% 689% 29% 25% 201% 196% 136% 137%

medRE 80% 138% 26% 15% 51% 50% 95% 113%
w1 0.102 0.47 0.44 0.214 0.04 0.326 0.4 0.156 rank 9
w2 0.09 0.70 0.440 0.348 0.052 0.483 0.263 0.119 rank 1

(100 0.5) av 0.111 0.753 0.351 0.299 0.257 2.337 0.194 0.097 div 4
DNAt = 10 ARE 21% 19% 18% 16% 185% 184% 17% 17%

medRE 13% 13% 17% 12% 28% 26% 13% 12%
w1 0.125 0.91 0.402 0.316 0.077 0.78 0.23 0.097 rank 26
w2 0.188 0.64 0.413 0.25 0.072 0.64 0.43 0.196 rank 84

(500 0.1) Av 0.101 0.696 0.349 0.305 0.094 0.905 0.202 0.101 div 0
DNAt = 10 ARE 8% 7% 13% 12% 9% 9% 14% 15%

medRE 7% 6% 10% 11% 8% 8% 11% 12%
w1 0.078 0.76 0.35 0.3 0.103 0.88 0.188 0.097 rank 7

(50 1) av 0.421 2.275 0.36 0.327 0.394 3.358 0.197 0.101 div 22
DNAt = 2 ARE 340% 246% 26% 25% 336% 309% 35% 16%

medRE 21% 24% 18% 19% 36% 30% 31% 13%
w1 0.108 0.41 0.303 0.247 0.131 0.955 0.214 0.107 rank 7
w2 0.079 0.56 0.383 0.332 0.073 0.82 0.228 0.099 rank 3

(100 0.5) Av 0.105 0.687 0.359 0.309 0.298 2.552 0.199 0.1 div 8
DNAt = 2 ARE 23% 23% 29% 18% 220% 203% 25% 17%

medRE 21% 20% 26% 15% 25% 25% 20% 14%
w1 0.123 0.41 0.55 0.386 0.079 0.87 0.213 0.085 rank 48
w2 0.103 0.81 0.419 0.421 0.102 1.04 0.142 0.097 rank 13

(500 0.1) av 0.107 0.623 0.302 0.315 0.092 0.895 0.215 0.096 div 8
DNAt = 2 ARE 17% 23% 32% 25% 11% 7% 34% 16%

medRE 14% 19% 27% 18% 10% 5% 28% 16%
w1 0.075 0.75 0.37 0.3 0.13 0.96 0.25 0.11 rank 14

This table shows the performance of the extended MSS method on a partially observed auto-regulatory gene network model, only mRNA, P and P2

observed, and compares it with results calculated by Wang et al. [8]. Different measurement scenarios are considered as well as different amounts of
DNAt. The initial values are for DNAt = 10: DNA0 = 6, DNA.P2(0) = 4 as well as for DNAt = 2: DNA0 = 2, DNA.P2(0) = 0. θ(0) stands for the true parameter, #
stands for number of measurement points and Δt stands for the time interval between two succeeding observations. For each scenarios, 100 simulated
time series are calculated with the Gillespie algorithm [2] within Copasi [37] Version 4.11-65. For each of the time series, an estimator û

(i)
is calculated. The

table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their ARE: ARE = 1
100

∑100
i=1

|û
(i)

−u(0) |

u(0)

† medRE: The median of the 100 relative errors
† w1 is the estimate of one time series shown by Wang et al. [8]
† w2 is the estimate of a second time series shown by Wang et al. [8]
† the rank of w1 and w2 among the 100 estimates of this paper with respect to relative error (details on how this rank is calculated can be found in the
“Design of the simulation study section”) and
† div stands for the number of time series for which no convergence could be achieved
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where Y(1) is the prey and Y(2) is the predator and θ1, θ2 and θ3 are
parameters. The first reaction of (6) is the prey reproduction, the
second the predator reproduction and the third is the predator
death. In terms of ODEs this system reads as

d

dt
y(1)(t) = u1y

(1)(t)− u2y
(1)(t)y(2)(t)

d

dt
y(2)(t) = u2y

(1)(t)y(2)(t)− u3y
(2)(t)

The true parameter used in this paper is θ(0) = (0.5, 0.0025, 0.3).

3.3.1 Considered scenarios: Five scenarios of measurement
point choices are considered, three with fully observable variables
and two partially observable, LVp1: recordings for Y1 and Y2(0)
and LVp2: recordings for Y1 only. The fully observed scenario
with total observation horizon 200 is split up in three cases
depending on the specific time series behaviour: both species
dying out, exploding of one species’ population or none of both,
see also Fig. 4. It should be noted that on the long run
asymptotically one of the species will die-out with certainty, but
the time horizon 200 is short enough to observe all three scenarios.

3.3.2 Design of simulation study: For each scenario, 100 time
series were created and parameter estimation was performed on each
(as described for the other models). For the resulting 100 parameter

estimates û
(i)
, i = 1, …, 100 the average av = (1/100)

∑100
i=1 û

(i)
and

the ARE ARE = (1/100)
∑100

i=1

∣

∣û
(i)
−u(0)

∣

∣/u(0)
( )

are displayed in

Tables 5 and 6.
For comparison, Tables 5 and 6 include the estimates by Boys

et al. [7]. Since in [7] only estimations from one time series are
provided, we report which rank this estimate would obtain in
comparison with the estimates in this paper, as described above.

The optimisation has been performed with the FindMinimum
routine implemented in the software Mathematica [38] Version
8.0.4.0.

3.3.3 Observations: Tables 5 and 6 show that the extended MSS
method estimates all parameters in all considered scenarios including
the partially observable case with a very high accuracy.

For the fully observable case with 200 observations, the study
distinguishes between trajectories in which both species die-out
within the observation horizon (die-out), trajectories in which one
of the trajectories explodes (explode) and trajectories for which
none of both happens (normal). One reason for the slightly higher
ARE for the exploding trajectories might be that the ‘explosion’
happens before time 200, which means that the trajectories are
usually shorter than the others.

Testing the approximation for the fully observed case indicates
that it works very well for all ‘normal’ scenarios. For species
which die-out there is of course a huge mass of the distribution of

Fig. 4 Different scenarios for Lotka–Volterra

The stochastic Lotka–Volterra model can show a behaviour that is qualitatively different from the deterministic Lotka–Volterra model. Panel A shows oscillations in which the intrinsic

stochasticity influences amplitude and frequency. Panel B shows a case in which the prey Y(1) dies out and then after that the predator Y(2). Panel C shows a scenario in which the predator

dies out and then the prey population explodes

Table 5 Statistics of the estimation results for a Lotka–Volterra model –
fully observed

θ1 θ2 θ3
(# Δt) 0.5 0.0025 0.3

(40 1) av 0.5 0.002504 0.3
ARE 3% 2% 3%
rj 0.48 0.00255 0.308 rank 69
bu 0.48 0.00247 0.307 rank 66
a 0.484 0.00307 0.31 rank 101
d 0.48 0.00254 0.307 rank 68

old av 0.501 0.002515 0.302
old ARE 3% 3% 3%

(200 1) av 0.501 0.002499 0.3
normal ARE 1% 1% 1%

rj 0.5 0.0025 0.304 rank 10
bu 0.5 0.00251 0.304 rank 16
a 0.507 0.00254 0.308 rank 83
d 0.503 0.00252 0.306 rank 52

old av 0.5 0.002508 0.301
old ARE 1% 2% 2%

(200 1) av 0.5 0.002502 0.3
die-out ARE 1% 1% 1%

old av 0.503 0.0025 0.299
old ARE 2% 2% 2%

(200 1) av 0.436 0.002363 0.286
explode ARE 13% 6% 5%

old av 0.214 0.001971 0.226
old ARE 57% 21% 25%

(40 5) av 0.499 0.002492 0.299
ARE 2% 3% 3%
rj 0.493 0.00262 0.314 rank 85
bu 0.493 0.00262 0.314 rank 85
a 0.493 0.00262 0.314 rank 85
d 0.492 0.00263 0.315 rank 87

old av 0.5 0.0025 0.301
old ARE 3% 3% 3%

This table shows the performance of the extended MSS method on a
Lotka–Volterra model and compares it with results calculated by Boys
et al. [7]. Different measurement scenarios are considered. The initial
values are (Y(1), Y(2)) = (71, 79). θ(0) stands for the true parameter, # stands
for number of measurement points and Δt stands for the time interval
between two succeeding observations. For each scenarios, 100 simulated
time series are calculated with the Gillespie algorithm [2] within COPASI

[37] Version 4.11-65. For each of the time series, an estimator û
(i)

is
calculated. The table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their ARE: ARE = 1
100

∑100
i=1

|û
(i)

−u(0) |

u(0)

† (rj) an estimate by Boys et al. [7] using a reversible jump method
† (bu) an estimate by Boys et al. [7] using a block updating method
† an estimate by Boys et al. [7] using an approximation of a block
updating method
† (d) an estimate by Boys et al. [7] using a diffusion approximation
† the rank of rj, bu, a and d among the 100 estimates of this paper with
respect to relative error (details on how this rank is calculated can be
found in the “Design of the simulation study section”)
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r(k) close to zero and for species’ population that are exploding the
left tail of the distribution is heavier than that of an N(0, 1)
distribution. Nevertheless all estimations had a small relative error,
again supporting the point from the previous section that the test
might be overly strict, and therefore a positive test rather be used
in support of the approximation, but a negative result not
necessarily for a rejection.

For the partial observable case, the values for y(2) being not
observable, the accuracy of the estimates decreases; however, still
all parameters are well identifiable.

Compared with the approaches mentioned in [7], the extended
MSS method does not estimate the parameters with worst accuracy.

Comparing it with the old MSS approach with constant variances,
the ARE is very similar with the exception of the ‘die-out’ scenario
and the partially observed scenario, in which the extension performs
better. The reason why the difference in performance is so small here
is that the trajectories are highly dynamical because of the
oscillations. This makes the influence of the variance – acting as a
weighting factor – less strong.

4 Discussion and conclusion

This paper suggests an extension to the MSSs method of [4]. The
extension also uses a Gaussian approximation for the transition
probabilities, but in contrast to the ‘old’ version does not assume
constant variances. Mean and variance are calculated by an LNA
between the time points of measurements. The fact that the system
is approximated only on the relatively short time intervals (with
respect to the total observation horizon) allows to deal with
intrinsic stochastic effects.

On the oscillatory Lotka–Volterra model, the extension
performed slightly better than the old approach. The real benefit

could be seen in the non-oscillatory immigration-death example.
Here, the old versions failed in most of the scenarios to estimate
the parameters correctly. The reason has already been discussed
in [4] and is that only very few reactions happen between two
measurements. The extension outperforms the old version
considerably as it is able to estimate the parameters with small
ARE for all scenarios. As the prokaryotic auto-regulatory network
falls within the scenarios where the original MSS is not expected
to perform well, only the extended MSS method is tested and is
shown to work fine. Depending on the choice of sample points,
some parameters become non-identifiable especially in the
partially observed cases.

The suggested approach for testing the accuracy of the
approximation turned out to be a candidate for a sufficient criterion.
All time courses with an acceptably small relative error had as well
a distribution of the r(k) which was close to a standard normal
distribution. However, it does not work as a necessary criterion as
there were time courses with a r(k) distribution not close to standard
normal distribution having a small relative error. The reason is that
the variance intuitively spoken acts as a weighting factor for the
estimation, so even with a rough approximation of the variance an
estimation can be possible, as shown in [4]. Further research on
developing a criterion distinguishing between high relative errors
because of approximation error and high relative error because of
identifiability problems would be desirable.

To investigate whether the approximation leads to a loss of
accuracy, the results of the method are compared with other
methods. Wang et al. [8] uses a reversible jump technique
combined with a stochastic gradient descent and Boys et al. [7]
provides four estimates in a Bayesian framework using a reversible
jump techniques and approximations. Both papers do not provide
a simulation study estimating the parameters for multiple time
series of the same setting. Hence, it is not possible to compare the
ARE, but only to assign a rank which the provided estimate would
obtain in comparison with the estimates of this paper. This
comparison shows that the approximation does not lead to a
significant loss in accuracy. In the case of the Lotka–Volterra
oscillator even the special cases of a dying out or exploding
population can be treated successfully.

Concerning the identifiability issues, techniques of experimental
design would be desirable to obtain information on the
identifiability of parameters as well as on confidence intervals.
This is ongoing research.

Both the old and the extended MSS methods do not need
stochastic simulations or the solution of a CME system. The old
MSS method needs the solution of D ODEs (D number of
different substances in the system) for the calculation of a
transition probability. The extended MSS method requires the
solution of D + ((D + 1)D)/2 equations, which is more, but still not
prohibitive for tackling systems of the size that could be
realistically treated, for example, with estimation methods for
deterministic models.

For the same reasons, we expect that the MSS methods perform
well from a computational performance point of view. For each
evaluation of the likelihood function, one numerical integration of
the system of differential equations is required. No sampling as
approximation of distributions is performed. Although it will be
highly model dependent how the speed of one integration
compares with that of one stochastic simulation, it is definitely
advantageous that the integration is only performed once per
evaluation of the likelihood function, and that no trade-off
between sample numbers and accuracy needs to be considered.
Furthermore, the method is comparatively easy to implement; the
most complex part being a numerical integrator, for which reliable
packages are readily available.
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Table 6 Statistics of the estimation results for a Lotka–Volterra model –
partially observed

θ1 θ2 θ3
(# Δt) 0.5 0.0025 0.3

(40 1) av 0.494 0.002536 0.307
y1 and y2(0) ARE 6% 7% 9%

rj 0.469 0.00244 0.287 rank 34
bu 0.469 0.00244 0.287 rank 34
a 0.49 0.00236 0.273 rank 49
d 0.473 0.00256 0.304 rank 11

old av 0.495 0.002554 0.31
old ARE 6% 8% 10%

(40 1) av 0.491 0.002639 0.319
only y1 ARE 12% 15% 17%

bu 0.572 0.00201 0.236 rank 39
a 0.752 0.00151 0.176 rank 78
d 0.432 0.00291 0.347 rank 32

old av 0.552 0.002628 0.319
old ARE 27% 23% 25%

This table shows the performance of the extended MSS method on a
partially observed Lotka–Volterra model and compares it with results
calculated by Boys et al. [7]. Different measurement scenarios are
considered. The initial values are (Y(1), Y(2)) = (71, 79). θ(0) stands for the
true parameter, # stands for number of measurement points and Δt
stands for the time interval between two succeeding observations. For
each scenarios, 100 simulated time series are calculated with the Gillespie
algorithm [2] within COPASI [37] Version 4.11-65. For each of the time
series, an estimator û

(i)
is calculated. The table shows

† the average of the estimators: av = 1
100

∑100
i=1 û

(i)

† their average relative error: ARE = 1
100

∑100
i=1

|û
(i)

−u(0) |

u(0)

† (rj) an estimate by Boys et al. [7] using a reversible jump method
† (bu) an estimate by Boys et al. [7] using a block updating method
† an estimate by Boys et al. [7] using an approximation of a block
updating method
† (d) an estimate by Boys et al. [7] using a diffusion approximation
† the rank of rj, bu, a and d among the 100 estimates of this paper with
respect to relative error (details on how this rank is calculated can be
found in “Design of the simulation study sections”)
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