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Abstract

HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling
pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-
phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated
migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer.
HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein
that binds to SR-BI’s C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by
treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1
activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or
macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent
macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires
the activities of the HDL receptor SR-BI as well as S1PR1 activity.
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Introduction

Macrophages are phagocytic cells that play a key role in innate

host defense against invading pathogens, environmental agents

and in clearance of modified/damaged host cells/molecules [1].

Macrophages also play a key role in the development of

atherosclerotic vascular disease. Atherosclerosis is characterized

by the accumulation of cholesterol-engorged macrophages within

the walls of arteries. These so called foam cells appear to be the

most abundant cells within atherosclerotic plaques. Atherosclerosis

is triggered by the retention of low density lipoprotein (LDL) in the

walls of arteries, subsequent modification of LDL, for example by

oxidation, and engulfment of modified LDL by macrophages [2–

4]. Macrophage endocytosis of modified LDL is mediated by

scavenger receptors such as the class A types I and II and CD36

proteins, in a manner that is not regulated by the accumulation of

cellular cholesterol [1,3]. This leads to the accumulation of large

amounts of intracellular cholesterol stored in cytoplasmic choles-

teryl ester droplets, giving the cells a characteristic foamy

appearance.

A characteristic feature of macrophages in atherosclerotic

plaques is their relative inability to migrate. Recently this has

been linked to increased cellular cholesterol in macrophage-

derived foam cells in atherosclerotic plaques as a consequence of

endocytosis of modified lipoproteins [5–7]. In addition, hypoxia

has also been implicated in reduced macrophage migration [8].

Migration of macrophages and dendritic cells, related phagocytic

antigen presenting cells, has recently been shown to be critical for

their egress out of plaques, a key step in the regression of

atherosclerotic plaques [9–14]. Atherosclerotic plaque regression,

or the reversal of pre-established atherosclerotic plaques, is an

important goal in the design of anti-atherosclerosis therapies which

would be administered to patients with pre-established disease

[15]. Thus mechanisms for inducing macrophage migration in

response to appropriate chemotactic factors which could lead to

their egress out of atherosclerotic plaques are important for

designing novel therapeutics aimed at stimulating atherosclerotic

plaque regression. Animal models and human studies have both

demonstrated that atherosclerotic plaque regression can be

achieved by decreasing the concentration of circulating LDL

and increasing the concentration of circulating high density

lipoproteins (HDL) [11,13,16–19].

An inverse relationship between circulating levels of HDL and

coronary heart disease has been reported in numerous clinical and

epidemiological studies [20–22]. HDL particles as well as HDL

associated proteins and lipids were shown to exert a broad scope of

potentially anti-atherogenic effects [23–25]. These include the

ability to mediate reverse cholesterol transport from atheroscle-
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rotic plaque resident foam cells to the liver [26–28]. HDL also

exhibits various anti-inflammatory and anti-oxidative properties

[23–25]. Short term weekly infusions of reconstituted HDL

particles resulted in rapid and significant regression of coronary

atherosclerosis in patients with acute coronary syndrome [16].

Similar, though more striking, results have been obtained in

apolipoprotein (apo) E knockout (KO) mice injected with

reconstituted HDL [29,30]. A study of atherosclerotic plaque

regression in mice has reported significant alterations in the

expression of a variety of genes in inflammatory cells in the

regressing plaques, including significantly increased expression of

the scavenger receptor class B, type I (SR-BI) [13].

SR-BI is a high affinity HDL receptor that mediates selective

HDL lipid uptake [31]. Data from genetically altered mice

demonstrates that overexpression of SR-BI in livers protects

against atherosclerosis while knockout of SR-BI either in all tissues

or in bone marrow derived cells promotes atherosclerosis [32–34].

The interaction of HDL with SR-BI leads to both bi-directional

lipid exchange between the bound particle and cells [31,35] as well

as the activation of various signaling pathways [23,25,36]. HDL

induced activation of protein kinase C (PKC) was reported in

Chinese hamster ovary-derived cells overexpressing SR-BI, and

PKC activity, in turn, appears to increase the selective lipid uptake

activity of SR-BI [37-39]. HDL dependent signaling mediated by

SR-BI is also well demonstrated in endothelial cells, where the

interaction of HDL with SR-BI activated various signaling

pathways such as the PI3K-Akt, p38 MAPK and ERK1/2

resulting in induction of endothelial nitric oxide synthase (eNOS)

and cell migration but suppression of adhesion molecules

expression and apoptosis [25,40]. Studies in endothelial cells

demonstrated that cholesterol efflux, cholesterol binding to the C-

terminal transmembrane domain of SR-BI and the adaptor

protein, PDZK1, were all required for HDL-induced signaling

[25,41] (reviewed in[42,43]). In contrast little is known about

HDL-SR-BI induced signaling in macrophages.

PDZK1 (Postsynaptic Density Protein (PSD-95)/Drosophila

Discs-Large (Dlg)/Tight-Junction Protein (ZO1)) is a 519 amino

acid, 63 kDa adapter protein that contains four PDZ protein-

protein interaction domains [44–46]. The first and third PDZ

domain of PDZK1 interact with the last three amino acids, AKL,

of SR-BI’s C-terminal cytoplasmic tail [45,47,48]. Knockdown of

PDZK1 or deletion of the last three amino acids of SR-BI’s C-

terminal tail has been shown to impair HDL-dependent signaling

in endothelial cells [40,41].

Some of the atheroprotective actions of HDL may involve the

delivery of bioactive lipids to cells [49–51]. For example,

sphingosine-1-phosphate (S1P) and related lysosphingolipids car-

ried by HDL exert atheroprotective effects on the endothelium

[51–55]. Reconstituted HDL containing apo A1, phosphatidyl

choline and S1P can efficiently deliver S1P to S1P receptors on

cells [56,57]. S1P signaling is mediated by a family of five G-

protein coupled receptors (GPCR’s), the S1P receptors (S1PR’s) 1–

5, encoded by distinct genes [58,59]. In macrophages, S1P

suppresses proinflammatory cytokine production in response to

lipopolysaccharide, apparently through S1PR1 [60]. In endothe-

lial cells, S1P increases eNOS activity and abundance and induces

cell migration and survival via S1PR1 and S1PR3 [61] while HDL

associated S1P inhibits the expression of adhesion molecules via

S1PR1 and partially via S1PR3 [40] and improves endothelial

barrier function via S1PR1 [62]. S1P induced endothelial cell

migration involves Rho kinase [61,63], p38 MAPK [63,64] and

PI3-Akt-Rac [65–67] pathways. S1P can be supplied exogenously

to cells or generated intracellularly [58,59]. S1P in the circulation

is carried primarily by HDL [51–53,55]. This, coupled with SR-

BI’s ability to mediate selective lipid uptake from HDL into cells,

suggests that SR-BI might mediate HDL signaling in part by

mediating the transfer of S1P from HDL into cells.

Given the ability of HDL to stimulate the migration of

endothelial cells and the role of SR-BI and S1P receptors in that

process, and given the importance of macrophage migration for

atherosclerotic plaque regression, we hypothesized that HDL

might also directly stimulate the migration of macrophages and

that this might be mediated by SR-BI and S1PR’s. We

demonstrate that HDL can directly induce the migration of

macrophages in a manner dependent on both SR-BI and on

PDZK1. HDL stimulated migration also depends on S1PR1

activity, and is sensitive to the inactivation of PI3K-Akt1, p38

MAPK, ERK1/2, PKC and Rho kinase signaling pathways,

known to be downstream of S1PR1. These data suggest that HDL

stimulated macrophage migration may be one pathway by which

HDL protects against atherosclerosis development and promotes

plaque regression, and that this process is mediated by a signaling

pathway involving SR-BI, PDZK1, S1PR1 and Akt1.

Materials and Methods

Ethics statement
All procedures involving mice were approved by the McMaster

University Animal Research Ethics Board and were in accordance

with the guidelines of the Canadian Council on Animal Care. All

mice used were euthanized humanely under general anesthesia.

Materials
All materials for cell culture, alexafluor-488-phalloidin and

SYBR green were from Invitrogen/Life Technologies Inc.

(Burlington ON, Canada). HDL, acetylated LDL (AcLDL) and

apoA1 were from Biomedical Technologies, Inc (Stoughton MA,

USA). Corning Transwell inserts, cell culture plastic-ware and

Camco Quik Stain II were from VWR International (Mississauga,

ON Canada). W146 and VPC23019 were from Avanti Polar

Lipids (Alabaster AL, USA). Wortmannin, LY294002, SB203580,

PD98059, Go6976 and Ro31-8220 were from EMD Millipore

Corp. (Billerica, MA, USA). FTY720, SEW2871 and Y-27632

were from Cedarlane Labs (Burlington, ON Canada). Rat tail

collagen I and FITC-labeled anti-rabbit IgG were from BD

Biosciences (Mississauga, ON, Canada). Reagents for RNA

isolation and cDNA synthesis were from Qiagen Inc. (Toronto,

ON, Canada). All other suppliers were as indicated. All other

reagents, including primers for qRT-PCR were from Sigma-

Aldrich Canada Co. (Oakville, ON, Canada).

Mice
All mice were on a C57BL6 background, except PDZK1 KO

mice, which were on a mixed C57BL/6J X 129S6 background.

C57BL6 mice were bred from founders purchased from the

Jackson Laboratories (Bar Harbor ME, USA). SR-BI KO mice,

originally provided by Monty Krieger (Massachusetts Institute of

Technology), were backcrossed 10 times onto a C57BL/6J

background before interbreeding. Akt1, 2 and 3 KO mice were

bred from founders provided by Morris Birnbaum (University of

Pennsylvania). PDZK1 KO mice and corresponding WT mice

were from Jackson Laboratories. All mice were bred and housed in

the Thrombosis and Atherosclerosis Research Institute Division of

Comparative Medicine and provided with free access to food and

water.
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Cells and cell culture
Cells were cultured at 37uC in an atmosphere of 5% CO2in air.

RAW 264.7 cells were cultured in DMEM supplemented with

10% heat-inactivated FBS, 2mM L-glutamine and 50 mg/ml

penicillin/streptomycin and were passaged by scraping. Primary

mouse peritoneal macrophages (MPM’s) were isolated from mice

injected intraperitoneally on day 0 with 1ml of 10% thioglycolate.

On day 4 the mice were anesthetized with isoflurane gas and

euthanized humanely by cervical dislocation and peritoneal cells

were collected with 10 ml PBS containing 5mM EDTA. The cells

were washed once in DMEM containing 20% FBS and plated in

DMEM containing 10% FBS (86106cells/10 cm dish). Foam cells

were prepared by incubating MPM’s with AcLDL (100 mg

protein/ml) for 48 hrs. Prior to migration experiments, cells were

washed twice with serum fee media and cultured for 16 hrs either

in the absence of serum or in the presence of 3% newborn calf

lipoprotein deficient serum (NCLPDS) [68] as indicated.

Macrophage migration and adhesion assays
Macrophage migration was tested in a chemotaxis assay [5,7]

using Transwell inserts with pore size of 5 mm that were pre-

coated with rat tail collagen I (110 mg/ml). Cells (46105) were

added to the upper chamber and incubated for 2 hrs at 37uC in

media containing 5% NCLPDS. The media was then removed

and replaced with media containing 0.5% NCLPDS. These filter

inserts were placed in wells containing the same media with either

no further additives or with one of the following: HDL or apoA1

(100 mg protein/ml) [69], FTY720 (2 ng/ml) [70] or monocyte

chemotactic protein-1 (MCP-1; 100 ng/ml [71], Fitzgerald

Industries International, Acton, MA USA). In migration assays

testing the effects of immunological or pharmacological inhibitors,

the cells were pre-incubated with the inhibitor for 30 min and the

migration assays were performed in the continued absence or

presence of the inhibitors. The following compounds were used at

concentrations previously reported to be effective: anti-SR-BI

blocking antibody (KKB-1, 0.5 mg/ml [72], generously provided

by Karen Kozarsky, ReGenX Biosciences), BLT-1 (0.3 mM

[37,73], ID 5234221, ChemBridge Corp.), VPC23019 (10 mM)

[74], pertussis toxin (PTX, 100 ng/ml) [75], LY294002 (10 mM)

[76], SB203580 (1 mM) [77], PD98059 (10 mM) [78], Go6976 and

Ro31-8220 (5 mM) [79], W-146 (10 mM) [80], SEW2871 (5nM)

[81] and Y-27632 (10 mM) [82]. The following reagents were

added as 10006 stock solutions in DMSO: BLT-1, VPC23091,

LY294002, SB203850, PD98059, Go6976, Ro31-8220, W-146,

and Y-27632. PTX was prepared as a 100 mg/ml stock in sterile

water containing 2 mg/ml BSA. SEW2871 was prepared as a

100 mM stock in dimethylformamide. For each experiment, all

samples were treated with an equivalent final concentration of

solvent vehicle for each reagent used. After 4 hrs, cells on the filters

were fixed and stained with CamcoQuick Stain II or with 300 nM

49,6-diamidino-2-phenylindole dihydrochloride (DAPI) for 10 min

and rinsed twice with water. The non-migrated cells on the upper

surface of the filters were removed by carefully scraping with a

cotton swab and the cells that had migrated to the lower face of

each filter were visualized by bright-field or fluorescent microscopy

(using a Carl Zeiss Axiovert 200 M inverted microscope with a

106objective) and counted. Cell adhesion to collagen I was tested

by plating the same number of cells (as for migration assays) in

each well of a 96 well dish pre-coated with rat tail collagen I under

the same conditions as those used to coat the Transwell filters.

After 4 hrs non-adhered cells were washed away and adherent

cells were fixed, stained as above with DAPI, and cell adhesion was

measured by counting DAPI stained nuclei.

Phalloidin staining
Cells were cultured on sterile, untreated glass coverslips, as

above, in the presence or absence of HDL (100 mg protein/ml) for

different times. The cells were then washed twice with PBS, fixed

with 3% paraformaldehyde pH 7.4 for 30 min and permeabilized

with 0.1% Triton-X100 for 5 min. at room temperature. F-actin

was stained using 25units/ml Alexafluor488 phalloidinin PBS for

30 min at room temperature. The coverslips were then mounted

using Vectasheild (Vector Laboratories Canada Inc. Burlington,

ON, Canada) and imaged using a Zeiss Axiovert 200 M

fluorescence microscope with standard FITC filters using a 406
objective.

SDS-PAGE and immunoblotting
RAW 264.7 cells were serum starved overnight and incubated

with HDL (100 mg protein/ml) for different times, washed and

lysed in ice cold lysis buffer containing: 0.2xPBS, 0.1% Triton-

X100, 16 Phosphatase Inhibitor Cocktail 2 (Sigma Aldrich

catalogue number P5726) and protease inhibitors (20 mg/ml

aprotinin, 10 mg/ml leupeptin, 1 mM APMSF and 10 mg/ml

pepstatinA). To prepare total membranes, MPMs were homog-

enized on ice for 1 min in 20 mM Tris-HCl, pH 7.5 containing

2 mM MgCl2, 0.25 M sucrose, and protease inhibitors with the

concentrations indicated above. Homogenates were centrifuged at

3000xg for 10 min at 4uC and the supernatant was subjected to

another centrifugation step at 100,000xg for 1 hr at 4uC. The

pellet was then suspended in 10 mM sodium phosphate, pH 7.0

containing the protease inhibitors listed above. After boiling, the

samples were subjected to SDS-PAGE followed by immunoblot-

ting with rabbit anti-Akt, rabbit anti-phospho-Akt (Ser473) (Cell

Signaling Technology, Danvers, MA, USA). HRP-conjugated

donkey-anti-rabbit and donkey-anti-mouse antibodies (Jackson

ImmunoResearch Labs Inc, West Grove PA, USA) were used as

secondary antibodies and were detected using Western Lightning

ECL reagent kit (PerkinElmer Canada, Woodbridge ON,

Canada).

Flow cytometry
SR-BI surface expression was measured in unfixed non-

permeabilized MPMs. Macrophages were treated with rat anti-

CD16/32 (eBioscienceInc, San Diego, CA, USA) to block FC

receptors then incubated with rabbit anti-SR-BI antibody (KKB-1,

0.5mg/ml) followed by a FITC-conjugated anti-rabbit IgG. Cell

sorting was performed using BD FACSCalibur instrument and

data was analyzed using Cell Quest Pro software [73].

Quantitative RT-PCR
Total RNA was extracted from lungs and peritoneal macro-

phages of wild type mice using RNeasy kit. cDNA was generated

from 1 mg of total RNA using Quantitec Reverse Transcription

kit. Real-time PCR was performed using the SYBR green

detection method as described [83]. Primers were as follows[84]:

Mouse S1PR1forward 59-ACT TTG CGA GTG AGC TG-39

reverse 59-AGT GAGCCT TCA GTT ACA GC-39; S1PR2

forward 59-TTC TGG AGG GTA ACACAG TGG T-39 reverse

59-ACA CCC TTT GTA TCA AGT GGC A-39; S1PR3 forward

59-TGG TGT GCG GCT GTC TAG TCA A-39 reverse 59-CAC

AGC AAG CAG ACC TCC AGA-39; GAPDH forward 59-

ACCACAGTCCATGCCATCAC-39 reverse 59-TCCAC-

CACCCTGTTGCTGTA-39. Results were calculated as de-

scribed [85].
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Statistical analysis
Data was analyzed with Sigma Plot Software using the Student’s

T-test for pairwise comparisons between 2 groups, or using one

way ANOVA with Holm-Sidak post hoc test or two way ANOVA

with Tukey’s post hoc test for comparisons of multiple groups

where appropriate and was considered statistically significant

when P,0.05.

Results

HDL induces macrophage migration in SR-BI and PDZK1
dependent manner

We used a standard three-dimensional Transwell migration

assay to examine if HDL might stimulate macrophage migration.

In this set up, cells were added to the upper compartment of a cell

culture dish, separated from the lower compartment by a collagen

I coated membrane with 5 mm diameter pores. After allowing the

cells to adhere to the collagen I coated membrane for 2 hrs, HDL,

Figure 1. HDL stimulates the migration of macrophages but not of lipid loaded macrophage foam cells. A. Wild type mouse peritoneal
macrophages were incubated in lipoprotein deficient serum overnight and cell migration in response to no stimulus (control), apoA1(100 mg/ml),
HDL (100 mg protein/ml) or MCP-1 (100 ng/ml) (each added to the bottom well of the migration assay chamber) was performed as described in the
Methods section. The number of migrated cells/well from three independent samples from each group is represented as the mean 6 standard
deviation. B. Wild type mouse peritoneal macrophages, or C. RAW 264.7 cells were incubated in collagen I coated cell culture dishes with either HDL
(100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml) under conditions paralleling the migration assay. Cell adhesion was measured by
counting DAPI stained nuclei. The degree of cell adhesion was normalized to that in control cells and is represented as the mean 6 standard
deviation of triplicates. D. Foam cells from wild type mouse peritoneal macrophages were generated by culture for 48 hrs in the presence of AcLDL
(100 mg/ml). Cells were washed and migration in response to HDL was measured as described in the Methods section. The number of migrated cells/
well is plotted as the mean 6 standard deviation of triplicates. Statistical analysis was done using one way ANOVA with Holm-Sidak post hoc test (A–
C) or Student’s T-test (D). Values identified with different letters are statistically significantly different (P,0.05). NS indicates that no statistically
significant difference was detected.
doi:10.1371/journal.pone.0106487.g001
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Figure 2. HDL-induced migration is reduced in macrophages deficient in either SR-BI or PDZK1. A. Peritoneal macrophages were
prepared from either wild type (WT) or SR-BI KO mice, and cultured in the presence of 3% NCLPDS for 16 hrs before analysis. Migration of cells in
response to no stimulus (control), HDL (100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml) as described in the legend to Figure 1 and the
Methods section. B. Peritoneal macrophages from WT or SR-BI KO mice were cultured as described in A, prior to incubation with or without HDL
(100 mg protein/ml) for the times indicated. Actin filaments were visualized by fluorescence microscopy after alexa 488-phalloidin staining.
Representative images are shown. Scale bars = 10 mm. C. Numbers of cells with lamellipodia (arrows in B) were counted (,100 cells over 4–5 fields)
for cells isolated from three mice from each genotype. D. Migration of peritoneal macrophages from WT or PDZK1 KO mice as described for panel A.
E. Flow cytometry analysis of cell surface SR-BI levels in wild type, SR-BI KO and PDZK1 KO macrophages. Values in A, C and D are means 6 standard
deviations of triplicates and are representative of multiple independent assays. Data in E is representative of multiple analyses. Statistical analysis in
panels A, C and D was done using two way ANOVA with Tukey post hoc test. Values identified with different letters are statistically significantly
different (P,0.001). NS indicates that no statistically significant difference was detected.
doi:10.1371/journal.pone.0106487.g002
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lipid free apoA1, the major protein component of HDL, and

MCP1 were added to the lower compartment of individual wells.

We also included, as a control, wells in which no stimulus was

added. After 4 hrs at 37 uC, inserts were removed and the

numbers of macrophages that had migrated from the upper to the

lower face of the porous membrane were quantified. MCP-1, a

well-known chemotactic factor for macrophages, at 100 ng/ml,

stimulated a greater than 2-fold increase in migration of wild type

mouse peritoneal macrophages from the upper to the lower face of

the porous membrane. HDL, but not lipid free apoA1, at 100 mg

protein/ml, induced a similar increase in migration (Figure 1A).

To ensure that increased macrophage migration stimulated by

either MCP-1 or HDL was not merely the consequence of

increased macrophage adhesion to collagen I, which coated the

porous membrane of the migration chamber, we tested the effects

of each of these on the adhesion of macrophages to collagen I

coated wells of a 96 well microtitre dish. Neither HDL, MCP-1,

nor the known chemotactic factor FTY720, affected adhesion of

either primary mouse peritoneal macrophages (Figure 1B) or

RAW 264.7 cells (Figure 1C) to collagen I. In contrast to freshly

isolated macrophages, peritoneal macrophages that were lipid-

loaded by culture for 48 hrs in the presence of AcLDL failed to

migrate in response to HDL (Figure 1D). This is consistent with

previously reported findings that cholesterol loading of macro-

phages reduced their ability to migrate [5,7].

The HDL receptor SR-BI has been reported to mediate HDL

signaling leading to migration of endothelial cells (25). To explore

if SR-BI was required for macrophage migration in response to

HDL we examined the ability of peritoneal macrophages prepared

from SR-BI KO mice to migrate in response to HDL (Figure 2A).

Unlike macrophages from wild type mice, SR-BI KO macro-

phages were not able to migrate in response to HDL. Similarly,

they were also unable to migrate in response to the S1PR pro-

agonist, FTY720, although they showed normal migration in

response to MCP-1 (Figure 2A). Exposure of SR-BI expressing

wild type mouse peritoneal macrophages to 100 mg/ml HDL

resulted in a relatively rapid (within 15 min) rearrangement of the

actin cytoskeleton and increased the formation of lamellipodia, as

revealed by fluorescence microscopic analysis of fixed cells stained

with alexa-488 labeled phalloidin (Figure 2B, upper panels,

quantified in Figure 2C). Similar results were obtained using

murine RAW 264.7 macrophage-like cells (not shown). These

alterations in the actin cytoskeleton in response to HDL were not

observed in peritoneal macrophages prepared from SR-BI

deficient mice (Figure 2B, lower panels, quantified in Figure 2C).

Peritoneal macrophages prepared from PDZK1 KO mice were

also unable to migrate in response to HDL or to FTY720,

although their ability to migrate in response to MCP-1 was

unchanged (Figure 2D). Flow cytometry analysis confirmed that as

previously reported by others, [86], knockout of PDZK1 did not

alter the levels of SR-BI on the cell surface of macrophages

(Figure 2E).

To determine if acute inactivation of SR-BI-mediated HDL

binding or lipid transfer activity affected the ability of cells to

migrate in response to HDL or FTY720, we tested the effects of

pre-treating cells with either an anti-SR-BI blocking antibody,

previously reported to prevent HDL binding to SR-BI, or with a

small molecule, BLT-1 previously reported to selectively inhibit

SR-BI mediated lipid transfer between bound HDL and cells

without inhibiting HDL binding to SR-BI [73]. Immunological

blockade of SR-BI substantially reduced HDL stimulated migra-

tion of peritoneal macrophages from wild type mice (Figure 3A).

Treatment with BLT-1 also reduced HDL stimulated migration of

peritoneal macrophages from wild type mice (Figure3B). This

suggested that both HDL binding and lipid transfer activities of

SR-BI are required for HDL stimulated migration of macrophag-

es. Neither treatment affected the ability of macrophages to

migrate in response to FTY720 or to MCP-1 or (Figure 3A, B).

Therefore, acute inhibition of SR-BI selectively impairs migration

in response to HDL; however unlike macrophages lacking SR-BI

expression, those in which SR-BI activity is acutely blocked are still

able to migrate in response to the S1PR pro-agonist, FTY720.

Figure 3. Antibody or small molecule mediated inactivation of SR-BI inhibits HDL dependent but not FTY720 dependent
macrophage migration. Mouse peritoneal macrophages were pretreated for 30 min with either A. An anti-SR-BI blocking antiserum or pre-
immune rabbit serum (0.5 mg/ml); or B. BLT-1 (0.3 mM), an inhibitor of SR-BI mediated lipid transfer, or DMSO vehicle control. Cell migration in
response to HDL (100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml) was measured in the continued presence of the inhibitors as described
in the legend to Figure 1 and the Methods section. Data are means 6 standard deviations of 6 replicates. Statistical analysis was done using two way
ANOVA with Tukey post hoc test. Values identified with different letters are statistically significantly different (P,0.002).
doi:10.1371/journal.pone.0106487.g003
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HDL stimulated migration is dependent on a
sphingosine-1-phosphate receptor

FTY720 is a pro-agonist of S1PRs and S1P is a component of

HDL. We therefore tested the effects of different inhibitors of

S1PRs on macrophage migration stimulated by HDL, FTY720,

and MCP-1. Like primary wild type mouse peritoneal macro-

phages (e.g. Figure 2 A), murine RAW 264.7 macrophage like cells

were stimulated to migrate by HDL, FTY270 and MCP-1

(Figure 4 A,B). PTX, an inhibitor of the Gai subunit of

heterotrimeric G proteins [87], inhibited the migration of RAW

264.7 cells in response to both FTY720 and, as expected, MCP-1

(Figure 4A), which acts through the chemokine receptor 2, known

to be PTX-sensitive [88]. PTX treatment also inhibited migration

in response to HDL (Figure 4A), indicating the involvement of a

GPCR coupled to Gai in macrophage responses to HDL.

Treatment of RAW 264.7 cells with VPC23019, an antagonist

selective for S1PR1 and S1PR3 [89], blocked migration induced

by FTY720 and HDL but not by MCP-1 (Figure 4B). We

examined gene expression levels of three S1P receptors, S1PR1, 2

and 3 in mouse peritoneal macrophages and, for comparison,

mouse lung tissue. Macrophages expressed S1PR1; S1PR2 levels

were greater than 10-fold higher, whereas S1PR3 levels were

approximately 100-fold lower than S1PR1 (Figure 4C). This is

consistent with other reports of higher expression of S1PR1 than

S1PR3 in macrophages [60,90]. On the other hand, in lungs,

S1PR1 levels appeared highest and S1PR2 and 3 levels were

similar (at almost 10-fold lower than S1PR1). We focused our

attention on S1PR1 as a potential mediator of HDL dependent

stimulation of migration in macrophages because 1) HDL and

FTY720 induced migration was blocked by PTX and VPC23019

which impair S1PR1 and 3 but not S1PR2 signaling [89], 2)

S1PR1 expression in macrophages appeared to be much higher

than S1PR3, and 3) S1PR2 has previously been reported to

negatively regulate macrophage migration [91]. To confirm the

involvement of S1PR1 in HDL stimulated macrophage migration,

wild type mouse peritoneal macrophages were treated with the

Figure 4. Blockade of S1PR1 prevents HDL stimulated macrophage migration. RAW 264.7 (panels A,B) or mouse peritoneal macrophages
(panel D) were pretreated for 30 min with the following: A. PTX (100 ng/ml) an inhibitor of Gai protein coupled receptors; B. VPC23019 (10 mM) an
antagonist of S1PR’s 1, and 3; or D. W-146 (10 mM) an antagonist specific for S1PR1. Control cells were treated with either 2 mg/ml BSA or DMSO
vehicle as indicated. Cell migration in response to HDL (100 mg protein/ml), FTY720 (2 ng/ml), MCP-1 (100 ng/ml) and/or SEW2871 (5 nM) was
measured in the continued absence or presence of the inhibitors as described in the legend to Figure 1 and the Methods section. C. Analysis of
expression of S1PR1, 2 and 3 in peritoneal macrophages (left panel) or lung tissue (right panel) from wild type mice. Data are means 6 standard
deviations of 6 replicates (A,B) or 3 replicates (C,D). Statistical analysis was done using two way ANOVA with Tukey post hoc test. Values identified
with different letters are statistically significantly different (P,0.002).
doi:10.1371/journal.pone.0106487.g004
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S1PR1-specific agonist, SEW2871, and antagonist W146 (Fig-

ure 4D). SEW2871, like HDL and FTY720, stimulated macro-

phage migration. Furthermore, HDL-, FTY720- and SEW2871-

stimulated macrophage migration were blocked by treatment with

the S1PR1 specific antagonist, W146 (Figure 4D). In contrast,

W146 did not affect migration stimulated by MCP-1 (Figure 4D).

Together, these data suggest that S1PR1 is required for HDL

stimulated migration of macrophages.

HDL stimulated macrophage migration is mediated by
multiple downstream kinases

Cell migration triggered by GPCR signaling has been reported

to involve PI3K dependent pathways and PI3K independent

pathways involving RhoA and Rho-kinase [92-97]. Consistent

with this, pretreatment of RAW 264.7 cells with the Rho kinase

inhibitor Y27632 or the PI3K inhibitor LY294002, did not affect

basal migration, but reduced migration in response to HDL,

FTY720 and MCP-1 (Figure 5A). Wortmannin, another PI3K

inhibitor, had similar effects on HDL stimulated migration (data

not shown). PI3K and protein kinase B/Akt have been implicated

in driving initial steps of cell polarization and migrationin response

to various stimuli [61,98-102]. HDL (100 mg protein/ml)

treatment of RAW 264.7 cells induced Akt phosphorylation as

early as 10 min, with a peak at 30 min and diminished levels by

60 min (Figure 5B).

To determine which Akt isoform might mediate HDL

stimulated migration in macrophages, we examined the ability of

HDL to stimulate migration of peritoneal macrophages from KO

mice lacking expression of either the Akt 1, 2 or 3 genes. Akt1 KO

peritoneal macrophages exhibited slightly elevated basal migration

compared to peritoneal macrophages from wild type mice

(Figure 5C), but exhibited no increased migration in response to

HDL, FTY720 or MCP-1. Akt2 KO peritoneal macrophages

exhibited a five-fold increase in migration in the absence of

stimulation compared to wild type cells. Migration of Akt2 KO

macrophages was substantially reduced by HDL or FTY720, but

was not affected by MCP-1, suggesting that Akt2 KO MPMs were

still able to respond to both HDL and FTY720, albeit in the

opposite manner as did wild type MPMs. On the other hand,

HDL, FTY720 and MCP-1were able to stimulate increased

migration of Akt3 KO macrophages (Figure 5C) suggesting that

Akt3 was not required for migration in response to these stimuli.

The inability of Akt1 KO MPMs to respond to HDL was not due

to differences in SR-BI expression levels at the cell surface

Figure 5. HDL stimulated macrophage migration involves Rho kinase and PI3K-Akt 1 signaling. A. RAW 264.7 cells were cultured in
media containing 3% NCLPDS for 18 hrs. Cells were pre-incubated with 10 mM of either the Rho Kinase inhibitor, Y-27632, or the PI3K inhibitor
LY294002, or with DMSO vehicle for 30 min and then the migration in response to HDL (100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml)
was measured in the continued presence or absence of the indicated inhibitors. B. RAW 264.7 cells were serum starved for 18 hrs, washed and
treated with or without HDL (100 mg protein/ml) for 10, 30 or 60 min. Equal amounts of proteins were analyzed by SDS-PAGE and immunoblotting
for either phospho-Ser473- or total-Akt. C. MPM’s were harvested from 6 independent WT, Akt1 KO, Akt2 KO or Akt3 KO mice. Migration in response
to no stimulus, HDL (100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml) was measured. Data from A and C are means 6 standard deviations
of 6 replicates done over two independent experiments. Values identified with different letters are statistically significantly different (P,0.003, 2 way
ANOVA with Tukey post hoc test). D. Flow cytometry analysis of cell surface SR-BI levels in wild type, SR-BI KO and Akt1 KO macrophages. Shown are
representative histograms of an experiment performed twice.
doi:10.1371/journal.pone.0106487.g005
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(Figure 5D). Similarly, Akt2 and Akt3 KO MPMs had normal cell

surface levels of SR-BI (data not shown).

HDL induced activation of ERK1/2 and p38 MAPK has been

reported in vascular smooth muscle cells, endothelial cells and in

Chinese hamster ovary cells overexpressing SR-BI [37,103,104].

Therefore we tested the effects of inhibiting these kinase pathways

on the ability of macrophages to migrate in response to HDL.

Inhibition of the ERK1/2 pathway with PD98059, an inhibitor of

ERK1/2 phosphorylation, did not affect basal macrophage

migration but prevented macrophage migration in response to

HDL, FTY720, and MCP-1 (Figure 6A). Similarly, inhibition of

p38 MAPK activity with SB230580 also had no effect on basal

macrophage migration but prevented migration in response to

HDL, FTY720 and MCP-1 (Figure 6A). This is consistent with

reports that both ERK1/2 and p38 MAPK pathways are involved

in HDL and S1P induced migration of endothelial cells [61].

HDL also induces the activation of PKC in different cell types

[37,38,105], and S1P induced cell migration has been shown to

require PKC activity [106]. We therefore tested the involvement

of PKC activity using a general PKC inhibitor, Ro31-8220, and

an inhibitor of Ca2+-dependent PKC isoforms, Go6976 [107,108].

Both of these inhibitors reduced basal migration and completely

blocked the induction of migration of macrophages in response to

HDL or FTY720 (Figure 6B), suggesting the involvement of a

Ca2+-dependent PKC in HDL or FTY720 stimulated macrophage

migration.

Discussion

Macrophages are normally motile cells; however a number of

studies have suggested that macrophages in atherosclerotic plaques

exhibit impaired migration [5,7]. Under some circumstances,

however, migration can be re-established in macrophages in

atherosclerotic plaques, and this appears to be important for

atherosclerotic plaque regression, e.g. under conditions of elevated

HDL levels [10,11,13]. The migration of MPM in response to

native and modified lipoproteins has previously been demonstrat-

ed, however the underlying mechanisms were not investigated

[109]. In the present study we show that HDL, but not lipid free

apoA1 induced macrophage migration (Figure 1). This finding is

consistent with studies that investigated the role of apoA1 in eNOS

activation in endothelial cells, where it was shown that apoA1 is a

necessary component of HDL but that lipid free apoA-I is not

sufficient for stimulation of eNOS activation [110].

Cell migration is a highly integrated, multistep process that

involves dynamic rearrangement of the actin cytoskeleton and an

extensive cross talk between signaling molecules at the leading

edge of a migrating cell followed by a down regulation of adhesion

molecules at the trailing end of the cell, reviewed in [92]. Lamellar

extension is one of the early morphological changes in response to

chemotactic stimuli [92]. We found that treatment of macrophages

with HDL resulted in rapid (within 15 min) formation of

lamellipodia in wild type macrophages but not those lacking SR-

BI (Figure 2 B,C), consistent with the ability of HDL to stimulate

chemotaxis of wild type macrophages but not macrophages in

which SR-BI was inactivated or inhibited (Figure 2A, Figure 3), or

macrophages that lacked the adaptor protein PDZK1 (Figure 2D)

that binds to the C terminus of SR-BI. Our data also demonstrates

that HDL induced the migration of macrophages in a manner that

is sensitive to antagonists of the G-protein coupled receptor,

S1PR1 (Figure 4A, B, D). The ability of an anti-SR-BI blocking

antibody and an inhibitor of SR-BI meditated lipid transfer, BLT-

1, to inhibit HDL but not FTY720 or MCP-1induced macrophage

migration (Figure 3) demonstrate that HDL binding to SR-BI and

SR-BI mediated lipid transfer activities are both required for

macrophage migration in response to HDL, but not for migration

in response to other chemotactic factors, including the S1P

receptor pro-agonist FTY720 or MCP-1. This suggests that SR-BI

may be involved in the uptake of HDL associated lipids such as

sphingosine and/or S1P and may mediate their delivery to S1PRs,

whereas the need for SR-BI activity can be bypassed in the

absence of HDL by direct stimulation of S1PR1 with FTY720

(Figure 7). Alternatively, we cannot exclude the possibility that

SR-BI mediated cholesterol efflux may also participate in HDL

signaling to stimulate macrophage migration as has been suggested

for endothelial cells (41) since BLT-1 also inhibits HDL dependent

SR-BI mediated cholesterol efflux [111]. Further studies will be

required to determine the mechanisms by which HDL binding to

SR-BI and SR-BI mediated lipid transfer trigger signaling in

macrophages.

Figure 6. HDL stimulated macrophage migration involves MAP
kinase and PKC pathways. RAW 264.7 cells were cultured in media
containing 3%NCLPDS for 18 hrs. Cells were pre-incubated with the
indicated inhibitors for 30 min and then the migration in response to
HDL (100 mg protein/ml), FTY720 (2 ng/ml) or MCP-1 (100 ng/ml) was
measured in the continued presence or absence of the indicated
inhibitors. Control cells were treated with DMSO vehicle. A. Cells were
treated with either 10 mM of the ERK1/2 pathway inhibitor, PD98059, or
1 mM of the p38 MAPK inhibitor, SB230580. B. Cells were treated with
5 mM of the PKC inhibitors Ro31-8220 or Go6976. Data are means 6
standard deviations of 3 replicates. Values identified with different
letters are statistically significantly different (P,0.04, 2 way ANOVA with
Tukey post hoc test).
doi:10.1371/journal.pone.0106487.g006
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Our data suggests that HDL-induced macrophage migration

involves an S1PR, likely S1PR1. HDL is the major lipoprotein

carrier of plasma S1P [53]. S1P is known to be a modulator of

immune cell migration and appears to mediate the migration of

endothelial cells treated with HDL [52,58,59]. Therefore we tested

the involvement of S1PR activity in HDL dependent macrophage

migration. The sphingosine analog FTY720, which is phosphor-

ylated in vivo to FTY720-phosphate [112], a broad spectrum

S1PR agonist, induced macrophage migration in a manner that

was not diminished by the anti-SR-BI blocking antibody or by

BLT-1 (Figure 4). This suggested that neither SR-BI’s ability to

bind HDL, nor its lipid transfer activity were required for

macrophage migration in response to FTY720. Mouse macro-

phages were reported to express S1PR1 and S1PR2 and lower

Figure 7. Working model for HDL mediated stimulation of macrophage migration. HDL binding to SR-BI leads to activation of S1PR1
signaling. This may involve transfer of S1P from bound HDL to S1PR1. Inhibition of HDL binding to SR-BI (blocking antibody) or SR-BI-mediated lipid
transfer (BLT-1) prevents HDL dependent activation of S1PR1 signaling, but does not affect direct activation of S1PR1 by agonists. Inactivation of
expression of SR-BI or PDZK1, on the other hand, inhibits migratory responses to FTY720, through an as yet unknown mechanism. HDL dependent
activation of migration is suppressed by inhibition of S1PR1 signaling with FTY720 or W146, which directly antagonize S1PR1, or with PTX, which
blocks Gai coupled GPCR’s including CCR2 (receptor for MCP-1). Upon appropriate stimulation, S1PR1 (and CCR2) stimulate macrophage migration by
activation of diverse signaling pathways including PI3K/Akt1, Rho kinase, PKC, p38 MAPK and Erk1/2 pathways .
doi:10.1371/journal.pone.0106487.g007
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levels of S1PR3 [90]. S1PR2 negatively modulates macrophage

migration in vivo and in vitro [91]. A number of lines of evidence

implicate S1PR1 as the S1PR that mediates HDL dependent

macrophage migration: First, HDL dependent macrophage

migration is inhibited by PTX (Figure 3A), an inhibitor of Gai

heterotrimeric G proteins, to which S1PR1 is coupled; second, an

S1PR1 specific agonist, SEW2871, stimulates macrophage migra-

tion (Figure 3D); third, an S1PR1 specific antagonist,W146,

prevents HDL stimulated macrophage migration (Figure 3D);

fourth, we have detected S1PR1 but little to no S1PR3 expression

in mouse peritoneal macrophages (Figure 4C). S1PR1 has

previously been shown to be involved in HDL mediated eNOS

activation, cell survival, migration and inhibition of adhesion

molecule expression in endothelial cells [40,61]. Our findings

suggest that it also plays an important role in SR-BI dependent

HDL stimulated migration of macrophages.

Surprisingly, macrophages from either SR-BI KO or PDZK1

KO mice were unable to migrate in response to the S1PR pro-

agonist FTY720 (Figure 2A, D). This differed from the results of

acutely inactivating SR-BI’s HDL binding or lipid transfer activity

(Figure 3), which impaired macrophage migration in response to

HDL but left migration in response to FTY720 intact. The reasons

why SR-BI KO or PDZK1 KO macrophages are unable to

migrate in response to FTY720 is not clear and are the subject of

on-going studies.

Our data suggests that HDL and the S1PR agonists FTY720

and SEW2871 share common downstream signaling pathways

leading to macrophage migration which may suggests the

involvement of common upstream signal transducers such as

S1PR1. We demonstrate that HDL induced migration is

dependent on the activation of PI3K-Akt1 signaling (Figure 5),

consistent with the requirement of PI3K-Akt in HDL stimulated

migration of endothelial cells [113]. PI3K-Akt signaling is known

to be activated by S1PR1 [114]. The Akt family consists of three

isoforms: Akt1, 2 and 3, encoded by different genes, all of which

are reportedly expressed in macrophages [115]. Different Akt

isoforms appear to play distinct roles in HDL stimulated

macrophage migration. Interestingly, basal migration was en-

hanced ,5 fold when Akt2 was knocked out (Figure 5C). This is

consistent with previously reported observations that cell migra-

tion is enhanced in the absence of Akt2 expression and suggests

that Akt2 negatively regulates basal migration [116]. Neither HDL

nor FTY720 further increased migration of Akt2 KO macro-

phages, but rather, both reduced the enhanced basal migration by

half (Figure 5C). This suggests that Akt2 KO MPMs could still

respond to HDL or FTY720, although their response (reduced

migration) was opposite that of wild type macrophages (increased

migration) which contained Akt2. Akt3 did not play a significant

role in migration in response to HDL, FTY720 or MCP-1

(Figure 5C). On the other hand, HDL induced migration was

dependent on Akt1 (Figure 5C). Similar data were observed for

FTY720 and MCP-1 stimulated migration. The difference in

HDL mediated migration in Akt1, 2, and 3 KO macrophages was

not due to differences in expression levels of SR-BI as these cells

express similar levels of SR-BI compared to wild type macro-

phages (Figures 5D and data not shown). Akt isoforms seem to

play non-redundant and sometimes opposing roles in cell

migration [116] which appear to be cell type specific and depend

on the chemotactic agent tested [117–119]. Our data suggests that

Akt1 is downstream of HDL and is the key Akt isoform that

mediates HDL induced migration of macrophages. Several studies

reported the involvement of Akt1 in the development of

atherosclerosis, macrophage inflammation, endothelial cell migra-

tion and vascular smooth muscle cell proliferation and protection

against apoptosis [117,120–123]. Overall these studies, together

with our findings that Akt1 is required for HDL stimulated

macrophage migration, are consistent with an atheroprotective

function of Akt1. The requirement of Akt1 in HDL induced

macrophage migration may suggest that at least some of the

atheroprotective actions of HDL are mediated by Akt1.

In addition to the PI3K-Akt1 pathway, we used a chemical

approach to demonstrate the involvement of p38 MAPK and

ERK1/2 in HDL mediated macrophage migration (Figure 6 A).

The involvement of p38 MAPK in HDL induced migration is

similar to what has been reported previously for endothelial cells in

which p38 MAPK was reported to act downstream of PI3K-Rac

[61]. Unlike macrophages in which ERK1/2 appears to play a

role in HDL stimulated migration, endothelial cell migration in

response to HDL reportedly does not require ERK1/2 [61],

suggesting cell type dependent differences in signaling pathways

involved in HDL stimulated migration. We also demonstrate,

using a chemical approach, the involvement of Ca2+-dependent

PKCs in macrophage migration in response to HDL, FTY720 and

MCP-1 (Figure 6B). HDL has been shown to increase intracellular

calcium concentration in diverse cell types in culture, including,

Chinese hamster ovary cells [124], human skin fibroblasts

[125,126], smooth muscle cells [127] and endothelial cells

[54,128]. Whether HDL also increases intracellular calcium in

macrophages remains to be determined. Interestingly, Pilon et al.

reported that SR-BI expression is increased in human adrenocor-

tical cells in response to PKC activators, resulting in higher

lipoprotein binding and specific cholesteryl ester uptake utilized

for steroidogenesis [129], and we have previously reported that

activation of PKC in transfected Chinese hamster ovary-derived

and in HepG2 human hepatoma cells modulates the activity of

SR-BI [37,39]. Thus, SR-BI may be both a mediator and/or a

target of HDL-dependent PKC activation.

Small GTPases of the Rho family play a key role in actin

cytoskeleton organization and cell migration in response to

chemokines and cytokines [92–96,130,131]. Blockage of Rho-

kinase reduced HDL stimulated migration suggesting the require-

ment of this pathway in response to HDL (Figure 5A). Similar

results were obtained for FTY720 and MCP-1 mediated migration

consistent with the importance of the Rho-kinase pathway in

macrophage migration in response to these stimuli. Although our

data suggests the involvement of different kinases in HDL

stimulated macrophage migration (Figure 7), the hierarchy and

the interaction between multiple downstream signaling pathways

remain to be established.

In conclusion we have demonstrated that HDL induces the

migration of macrophages in an SR-BI, PDZK1 and S1PR1

dependent manner as summarized in Figure 7. HDL induced

macrophage migration involves the PI3K-Akt1, p38MAPK,

ERK1/2, PKC and Rho kinase pathways. HDL mediated

macrophage migration may be one mechanism by which HDL

contributes to protection against atherosclerosis development and

atherosclerotic plaque regression.
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