
Nucleus accumbens CREB activity is necessary for nicotine 
conditioned place preference

Darlene H Brunzell, Ph.D.1,2, Yann S Mineur, Ph.D.1, Rachael L Neve, M.D., Ph.D.3, and 
Marina R Picciotto, Ph.D.1

1Dept Psychiatry, Yale University School of Medicine, CMHC 304, 34 Park Street New Haven, CT 
06508

2Dept Pharmacology and Toxicology, Virginia Commonwealth University, MCV Campus, RB 
Smith Bldg, PO Box 980613, Richmond, VA, 23298

3Dept Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478

Abstract

The ability of nicotine to alter firing of dopamine neurons is the first step leading to nicotine 

reward, but activation of intracellular signaling pathways downstream of nicotinic acetylcholine 

receptors is likely to be critical for longer-term consequences of nicotine exposure, including 

conditioned reward. The transcription factor cyclic AMP-regulated binding protein (CREB) is 

important for new gene transcription and in its phosphorylated form (pCREB) promotes long-term 

changes in synaptic strength. Previous studies have implicated nucleus accumbens (NAc) CREB 

activity in the modulation of cocaine and morphine reward, and have shown that nicotine 

conditioned place preference (CPP) is associated with NAc CREB activation. It is not clear 

whether CPP elicits phosphorylation of CREB or if elevations in pCREB support nicotine CPP. In 

the current study, we investigated levels of CREB and pCREB during Pavlovian conditioning with 

nicotine in a novel context in the absence of chamber choice. Nicotine context conditioning 

resulted in elevated pCREB levels in the NAc shell but not the NAc core of mice following 

placement in the nicotine-paired chamber in the absence of nicotine. To test if CREB activity in 

the NAc shell contributes to cue-induced responses that may precipitate nicotine seeking, we used 

viral-mediated gene transfer of a dominant negative CREB construct in the NAc shell of 

C57BL/6J mice and found that disruption of CREB activation prior to training blocked nicotine 

place preference across a range of doses. Taken together, these studies identify the NAc shell as a 

brain region where CREB activity is essential for nicotine CPP.
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INTRODUCTION

Despite declines over the last 25 years, more than a fifth of the US population continues to 

smoke, and an increasing number of tobacco users are intermittent smokers in social settings 

(“chippers”). It is likely that environmental cues contribute to social and habitual tobacco 

use. Nicotine, the primary addictive substance in tobacco smoke, stimulates neuronal 

activity in the ventral tegmental area and downstream dopamine (DA) projection regions 

that support addictive behavior (Due et al, 2002; Brody et al, 2004). Mesolimbic DA release 

is believed to underlie the primary reinforcing effects of drugs of abuse including nicotine 

(Roberts et al, 1980; Di Chiara and Imperato, 1988; Corrigall et al, 1992; Picciotto et al, 

1998). In particular, DA release in the nucleus accumbens (NAc) shell is thought to regulate 

motivation for drug and natural rewards (Di Chiara et al, 2004). Rodent and non-human 

primate studies show that after repeated pairings of a primary reward with a conditioned 

stimulus (CS) cue, the CS functionally replaces the primary reinforcer in regulation of DA 

neuron firing (Schultz et al, 1997; Day et al, 2007). In addicted individuals, the rewarding 

properties of cues associated with a primary reinforcer such as nicotine are thought to play a 

more predominant role than primary reinforcement in compulsive drug use (Robinson and 

Berridge, 1993). Associative learning between drug and conditioned rewards involves the 

amygdala, cingulate cortex, hippocampus and NAc core and shell (Robbins and Everitt, 

2002; Robinson and Berridge, 2003), DA projection areas activated by nicotine and 

cigarette-associated cues in smokers (Due et al., 2002; Brody et al., 2004) and the striatum, 

including the NAc, appears to regulate cue-induced craving (David et al, 2007; Franklin et 

al, 2007; McClernon et al, 2008; Volkow et al, 2008). Rodent studies show that a nicotine-

associated context stimulates immediate early gene activation in several mesolimblic DA 

projection areas (Schroeder et al, 2001; Schiltz et al, 2005), suggesting that neuroplasticity 

associated with nicotine addiction occurs at a molecular level in the DA system.

A candidate gene regulated in the NAc by in vivo nicotine effects on DA is the transcription 

factor cyclic AMP-response element binding protein (CREB) (Pandey et al, 2001; Brunzell 

et al, 2003; Pluzarev and Pandey, 2004; Walters et al, 2005). D1- and D2-type DA receptors 

are distinguished according to their respective stimulatory and inhibitory effects on adenylyl 

cyclase and subsequent activation of CREB via phosphorylation of the protein at Ser 133 

(Gomperts et al, 2002). In a nicotine place conditioning paradigm where animals are given a 

choice between two chambers previously paired with either nicotine or saline, mice show 

elevated expression of the phosphorylated form of CREB (pCREB) in the NAc that 

corresponds with increases in preference for the nicotine-paired chamber (Walters et al., 

2005). This nicotine conditioned place preference (CPP) is also associated with elevated 

levels of pCREB in the hippocampus (Walters et al., 2005), a brain area that is important for 

context conditioning (Kim and Fanselow, 1992; Phillips and LeDoux, 1992) and sensitive to 

nicotine exposure (Levin et al, 2006; Kenney and Gould, 2008). It is not clear, however, 

whether phosphorylation of CREB precipitates nicotine chamber choice during CPP or 
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whether the animals’ nicotine-seeking behavior results in phosphorylation of CREB. 

Changes in signaling that precede CPP may play a role in behavioral responses to cue 

reward. It is interesting that chronic nicotine exposure results in decreases in pCREB in the 

NAc (Brunzell et al., 2003) and that the rewarding effects of elicit drugs of abuse, such as 

morphine and cocaine, are enhanced by disruption of CREB activation in the NAc shell 

(Carlezon et al, 1998; Barrot et al, 2002). Constitutive, global knockout of CREB α/δ 

isoforms prevents nicotine CPP (Walters et al., 2005), suggesting that CREB activation is 

critical for this reward-associated behavior; however the role of NAc CREB activation in 

nicotine CPP remains to be determined. .

To address the role of CREB in nicotine place conditioning, we first tested whether nicotine 

or a nicotine-paired chamber would regulate total CREB or pCREB levels in the 

hippocampus and NAc of animals isolated to the training chamber during training or 24 

hours following 3 days of nicotine context conditioning in the absence of nicotine. To 

expand on previous research (Brunzell et al., 2003; Pluzarev and Pandey, 2004; Walters et 

al., 2005), we subdivided the NAc into core and shell regions. A nicotine-paired chamber 

increased levels of pCREB in the NAc shell but not the core or the hippocampus. We 

hypothesized that changes in CREB signaling that occur while the animal is isolated in a 

nicotine-paired chamber are CS-dependent and necessary for nicotine CPP. To test this 

hypothesis, we used a herpes simplex viral vector to express a dominant-negative form of 

CREB with a mutation at the Ser 133 phosphorylation site (mCREB) (Carlezon et al., 1998) 

or control vector (LacZ) into the NAc shell. Mice showed normal nicotine CPP when 

infused with LacZ control vector, but shell infusions of mCREB blocked nicotine CPP at a 

range of doses. Together these data suggest that context-associated changes in CREB 

activation in the NAc shell are necessary for nicotine CPP.

MATERIALS AND METHODS

Animals

8–12 week old, male C57BL/6J mice were purchased from Jackson Laboratories or bred in 

our laboratory. Mice were maintained in a temperature-controlled vivarium (21±2°C) under 

a 12:12 h light-dark cycle and housed 4 per cage. Food and fluid were available ad libitum. 

Mice were habituated to handling for at least 3 days before behavioral testing or biochemical 

studies. All studies were approved by the Yale University Animal Care and Use Committee 

and followed the NIH Guide for the Care and Use of Laboratory animals.

Drug dosing and administration

Mice undergoing place conditioning received i.p. injections of nicotine in 0.9% saline (0.04, 

0.065, 0.09, 0.175, 1.75 mg/kg (by weight of free base) or vehicle immediately prior to 

training.

CREB and pCREB induction studies during Pavlovian context conditioning

For studies of CREB signaling under Pavlovian conditions, separate groups of mice received 

nicotine (NIC; 0.09 mg/kg, i.p.) or saline injection (SAL) once daily for 3 days immediately 

before placement in a (48 × 22 × 18 cm) training chamber for 30 min. Brains of all SAL 
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animals and a portion of NIC mice were harvested 15 min into the third training session. 

Approximately 22 h following the third NIC training session, the remaining mice (NIC 

Chamber) had brains harvested 15 minutes following saline injection and placement into the 

nicotine-paired chamber. A Med Associates locomotor apparatus measured beam breaks to 

calculate distance traveled during exposure to the training chambers for subgroups of 

animals in each of the 3 conditions.

Western blot analysis

Mouse brains were harvested by rapid decapitation, placed in ice cold PBS, sectioned in a 

chilled matrix, and placed in fresh, chilled PBS. The dorsal hippocampus was dissected and 

16 gauge punches of NAc core and shell were harvested from 1 mm brain sections and fast-

frozen in dry ice. Tissues and blots were processed as described previously (Brunzell et al., 

2003). 10 µg of protein was loaded on a polyacrylamide gradient gel (4–20%) and 

transferred to nitrocellulose for immunodetection using polyclonal antisera (Cell Signaling, 

USA) to CREB (1:1000) and pCREB (Ser 133; 1:500). Blots were washed and then 

incubated in 1:1000 peroxidase labeled anti-rabbit secondary antiserum (Vector, USA). For 

NAc core and shell, ECL detection reagents were applied for 1 min, blots were exposed to 

X-Ray film and developed. Equal loading was assured by Ponceau staining, and blots were 

subsequently incubated in 1:10,000 GAPDH monoclonal antiserum (Upstate Biotechnology) 

and 1:5000 anti-mouse secondary antiserum as a loading control. In the hippocampus, 

monoclonal pCREB (1:500 in mouse) and CREB (1:1000 in rabbit) (Cell Signaling) antisera 

were incubated on the same blot. Fluorescence-tagged anti-mouse and –rabbit secondary 

antibodies of different wavelengths were used (Licor) and were scanned using the Odyssey 

scanning system and software.

Unbiased Place Conditioning

Two conditioning chambers with retractable doors were separated by a neutral chamber. The 

walls and the floors of the chambers varied but lighting was equilibrated so that there was no 

baseline preference for either chamber. Time spent in each chamber was recorded by beam 

breaks and calculated using Med-PC IV software.

On Day 0, baseline, mice received a vehicle injection, were placed in the neutral chamber 

and allowed to explore the apparatus for 15 min. Mice with a chamber bias greater than 75% 

were dropped from studies. On Days 1–3, mice were placed in one conditioning chamber for 

30 min following vehicle injection in the morning and in the afternoon were placed in the 

opposite conditioning chamber following an injection of drug; Vehicle-injected control 

subjects received saline injections prior to placement in either chamber. Mice were counter-

balanced for drug-paired chamber according to treatment dose, genotype, and baseline 

preference. On Day 4, testing, mice were injected with vehicle, placed in the center 

compartment and allowed access to both conditioning chambers for 15 min. Baseline and 

testing sessions took place at an intermediate time between the AM and PM training 

sessions. Total time spent in each chamber was measured and changes from baseline 

preference were calculated.
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HSV-mediated gene transfer

HSV-mCREB or HSV-LacZ was infused into the NAc shell 1 day after measurement of 

baseline preference and 2 days prior to the initiation of place conditioning. Mice were 

anesthetized with a mixture of ketamine (130 mg/kg, i.p.) and xylazine (13 mg/kg). Bilateral 

infusion canulae were 1.5 mm apart and offset by 0.5 mm in length to target the NAc shell 

when inserted unilaterally at a 20° angle, sparing the overlying cingulate cortex and 

contralateral structures. Stereotaxic placement of a 10 mm guide canula (o.d./i.d. 0.6/0.45 

mm) into the NAc shell minimized backflow into overlying structures (1.5 mm A/P, 2.5 mm 

L, and −4.0 mm D/V with respect to bregma). Anatomical control animals received an 

optimal dose of nicotine following a more dorsal infusion of HSV-mCREB (1.5 mm A/P, 

2.25 mm L, and −3.25 mm D/V from dura) to further insure that behavioral effects of 

mCREB were due to infusion into the NAc shell and not into an overlying structure. HSV-

vector (0.7 µL over 14 min) was infused via micro-infusion pump. Canulae were kept in 

place for 5 min post infusion. Following surgery, mice were housed 4/cage. A nonsteroidal 

anti-inflammatory drug (5 mg/kg Rimadyl) was used for preemptive analgesia in some mice; 

all mice received 64 mg of children’s acetaminophen applied to wet chow ad libitum during 

recovery. Most mice recovered from surgery within 48 h without signs of discomfort, 

infection, or bleeding. Following 2 days recovery, mice underwent CPP training on days 

when HSV-mediated mCREB expression was at its peak (Days 2–4 post-infusion), and 

underwent subsequent testing on Day 5 (Carlezon et al., 1998; Barrot et al., 2002). 

Following behavioral procedures, mice received lethal doses of chloral hydrate, were 

perfused intra-cardially with chilled 4% paraformaldehyde (PFA) and brains were harvested 

and sectioned for verification of canula placement. A separate group of HSV-LacZ mice 

brains were harvested 3 days post-infusion for the Xgal enzymatic assay.

X-gal immunohistochemistry

Mice were perfused transcardially with ice cold PBS followed by 4% paraformaldehyde in 

0.1 mol/L phosphate buffer. Brains were removed, postfixed in 4% paraformaldehyde and 

subsequently placed in 30% sucrose in PBS for dehydration. 40 um sections were collected 

on a freezing microtome and stored in cryoprotectant at −20 degrees C. For X-gal 

histochemistry, sections were washed 3 × in PBS, incubated for 4 hours at 37 degrees C in 

PBS solution containing 3.1 mmol/L potassium ferrocyanice, 1 mmol/L MgCl, 0.01% 

sodium deoxycholate, 0.02% Nonidet P-40, and 0.2 mg/mL X-gal. β-galactosidase 

enzymatic activity was terminated with 5 min washes in PBS. Sections were mounted, 

stained with neutral red, dehydrated with increasing concentrations of ethanol and 

coverslipped with Permount.

Statistical analyses

For place conditioning, significant effects of treatment and genotype were determined 

analyzing conditioning chamber as a within-subject measure (drug-paired versus saline-

paired), with between-subjects measures for viral mediated transfection (HSV-mCREB or 

HSV-LacZ) and drug (e.g. NIC/VEH). Post-hoc two-tailed t-tests were performed for all 

statistics except where previous studies predicted a directional finding to justify use of 1-

tailed t-tests. Western blot optical densities were normalized to Vehicle controls to enable 
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comparisons across blots. Planned comparisons were made between vehicle-injected (SAL) 

and nicotine-injected (NIC) animals and between SAL subjects and animals exposed to a 

nicotine-paired chamber in the absence of nicotine (NIC Chamber). Just prior to brain 

harvest, locomotor activity was assessed between treatment groups (SAL, NIC, NIC 

Chamber) using time bin as a repeated measure.

Results

A nicotine-paired context leads to increases in pCREB in the NAc shell in the absence of 
changes in locomotor activity

Exposure to a nicotine-paired context was sufficient to activate NAc CREB activity in the 

absence of overt nicotine seeking (Fig 1A). In comparison to saline-injected control animals 

that received no nicotine exposure, saline-injected animals exposed to a chamber where they 

had previously received nicotine showed a significant increase in levels of pCREB (p = 

0.05) in the NAc shell. Slight elevations in NAc shell pCREB levels during nicotine 

Pavlovian training failed to reach significance (p > 0.1), suggesting that the conditioned 

stimulus properties of the context rather than the primary rewarding properties of the 

nicotine regulate this effect following 3 days of training. Neither nicotine nor a nicotine-

associated context resulted in changes in pCREB levels in the hippocampus or NAc core 

(Fig 1 B,C) and there was no effect of treatment condition on total CREB levels in the NAc 

shell, core, or hippocampus (p’s > 0.1).

Figure 1D shows nicotine associated locomotor activity on the 3rd day of training and 

during exposure to a nicotine-paired chamber in the absence of nicotine. There was no 

difference in locomotor activity across experimental conditions on the day of brain harvest 

(F2,11 = 0.448, p = 0.65), and no interaction of Pavlovian condition with time bin on 

distance traveled (F2,11 = 1.662, p = 0.23). These data further suggest that the nicotine-

associated context and not the overt behavior of the animal led to the observed induction of 

pCREB in the NAc shell.

Unbiased nicotine CPP is dose-dependent

Nicotine CPP in C57BL/6J mice was tightly regulated by dose (F3,39 = 2.87, p = 0.05). As 

previously reported in rats (Le Foll and Goldberg, 2005) and mice (McGeehan and Olive, 

2003), C57BL/6J mice showed nicotine CPP at the 0.09 mg/kg i.p. dose of nicotine as 

measured by a preference for the drug-paired chamber in comparison to saline controls (Fig 

2A; p = 0.05). The highest dose of nicotine (0.175 mg/kg) did not result in a preference for 

the nicotine-paired chamber, presumably due to potential aversive effects of nicotine. Unlike 

s.c. administration under similar conditions (Walters et al, 2006), however, i.p. nicotine did 

not result in conditioned place aversion (CPA) to the nicotine-paired chamber even at a dose 

of nicotine one log higher than the highest dose (1.75 mg/kg i.p., data not shown), perhaps 

due to faster kinetics of the i.p. route of administration.

Decreases in CREB activity in the NAc shell oppose nicotine reward learning

We used a modified herpes viral vector (HSV) to express mCREB, a dominant-negative 

form of CREB with a mutation of serine 133 to alanine, in the NAc shell to test directly 
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whether place conditioning-associated changes in CREB activity are necessary for nicotine 

CPP. The serine to alanine mutation in this HSV-mCREB construct reduces cyclic AMP 

response element (CRE)-mediated transcription in CRE-LacZ reporter mice (Barrot et al., 

2002); hence, mCREB expression disrupts NAc CREB activity and will oppose increases in 

NAc CREB activity that may occur during place conditioning and following nicotine CPP 

(Fig. S1). There was a significant interaction of HSV infusion with dose of nicotine (F3,148 

= 2.836, p = 0.04) on change in chamber preference. Mice infused with HSV-LacZ control 

vector, like untreated animals, showed dose-dependent nicotine CPP (Fig. 3A), but pre-

training NAc shell infusion of HSV-mCREB, blocked preference for the nicotine-paired 

chamber across a range of doses (Fig. 3A,B). HSV-mCREB infusion into the NAc shell also 

resulted in a significant preference for the saline chamber at the optimal dose for nicotine 

CPP in untreated mice (0.09 mg/kg; p = 0.036) which resulted from a shift in time spent in 

the center compartment and did not reflect a significant decrease in preference for the drug-

paired chamber. A subgroup of animals tested for locomotor activity on the day of testing 

showed no effect of HSV-infusion or prior nicotine treatment on locomotor activity (Fig. 

S2). Reconstructions of infusion canula placement and an HSV-LacZ Xgal enzymatic 

activity assay demonstrate that HSV vector expression was local to the site of infusion (Fig. 

4). Control animals that received infusions 0.75 mm dorsal to the NAc shell showed similar 

nicotine CPP to HSV-LaZ-infused animals following administration of 0.09 mg/kg i.p. 

nicotine, as measured by an increase in preference for the drug-paired chamber over the 

saline-paired chamber (p = 0.05). Preference for the drug-paired chamber was significantly 

greater than in saline-injected controls (t54 = 1.675, p = 0.05) suggesting that blockade of 

nicotine CPP in these experiments chiefly involved inhibition of CREB in the NAc shell and 

not some overlying structure (Fig. 5).

DISCUSSION

These studies demonstrate that activation of CREB in the NAc shell is critical for nicotine 

CPP, a form of appetitive contextual conditioning. We further show that a nicotine-paired 

context increases levels of pCREB in the NAc shell in the absence of overt nicotine seeking 

or locomotor activation, suggesting that exposure to an environment associated with nicotine 

can result in activation of the transcription factor CREB. Context-associated elevations of 

pCREB were specific to the NAc shell and not observed in the NAc core or the 

hippocampus using these parameters. Under place conditioning training conditions where 

animals were given a choice of chamber, disruption of CREB activation in the NAc shell 

blocked nicotine CPP, suggesting that induction of pCREB by exposure to contextual cues 

may support nicotine reward learning.

These data expand on previous studies of CREBαδ knockout mice (Walters et al., 2005) 

suggesting that regulation of CREB is critical for nicotine CPP. We show that in animals 

that develop with normal CREB function, inactivation of CREB in the NAc shell in 

adulthood is sufficient to disrupt nicotine CPP. Previous reports have shown that HSV-

mCREB infusion into the NAc shell enhances cocaine and morphine CPP (Carlezon et al., 

1998; Walters and Blendy, 2001; Barrot et al., 2002). In contrast, the current study shows 

that nicotine CPP cannot occur without CREB activity in the NAc shell. This suggests that 

although various drugs of abuse converge on the NAc in terms of DA release (Di Chiara and 
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Imperato, 1988), the circuit level adaptations that underlie nicotine reward differ from those 

of other drugs of abuse (Nestler, 2005). Interestingly, chronic nicotine results in decreases in 

pCREB in the NAc (Brunzell et al., 2003), and thus may contribute to the ability of cigarette 

smoking to promote the transition to use of other drugs of abuse (Lai et al, 2000). Other 

studies, however, show that elevated pCREB is associated with cocaine CPP in the NAc 

(Miller and Marshall, 2005; Walters et al., 2005) and antisense-induced reductions of NAc 

CREB in shell or core attenuate the primary reinforcing efficacy of cocaine as well as its 

ability to act as primer during reinstatement (Choi et al, 2006), perhaps due to more chronic 

dosing regimens of cocaine self administration (McClung and Nestler, 2003) Results 

obtained with CPP do not always translate onto intravenous self administration data, but 

unfortunately, reliable nicotine self-administration is difficult to establish in mice.

Place conditioning provides a valuable tool for assessing Pavolovian contributions to 

changes in signaling and consequent reward learning. The present studies expand upon 

earlier data, which did not discriminate between subdivisions of the NAc (Pandey et al., 

2001; Brunzell et al., 2003; Walters et al., 2005), to show a dichotomy between the NAc 

core and shell in nicotine-associated regulation of pCREB. Previous data shows that CPP 

testing, but not a similar regimen of nicotine exposure and withdrawal in the homecage, 

results in elevations of NAc pCREB (Walters et al., 2005). In the current study mice showed 

an increase in NAc shell levels of pCREB while isolated to a nicotine-paired chamber 22 h 

after the last of 3 daily pairings of nicotine with that chamber. Hence, Pavlovian nicotine 

place conditioning resulted in elevations of pCREB in the absence of overt nicotine seeking. 

Microdialysis studies have shown that elevated DA release, which ought to lead to D1-

associated activation of CREB, occurs in the NAc shell but not the core during early 

acquisition sessions (fewer than 7), indicating that CREB in the NAc shell may contribute to 

initiation of nicotine use (Spina et al, 2006). These Pavlovian conditioning data support the 

hypothesis that the CS properties of the context are sufficient to activate CREB in the NAc 

shell.

At the molecular level, activation of pCREB in the NAc follows a pattern that is similar to 

that seen for DA neuron activity during stimulus reward learning. Studies in primates and 

rodents show that after repeated pairing of a rewarding stimulus with a cue, DA neuron 

firing shifts from responding to the primary rewarding stimulus, becoming dependent 

instead on the conditioned cue (Schultz et al., 1997; Day et al., 2007). Similarly, elevations 

of pCREB were observed in the NAc in response to acute nicotine exposure, but not 

following 4 days of exposure to nicotine in the homecage (Walters et al., 2005) or during 

Pavlovian training on the 3rd day of nicotine exposure in these studies. Instead, NAc pCREB 

levels were elevated in response to the nicotine-paired chamber, suggesting that the CS 

properties of the context and not the rewarding properties of nicotine regulate pCREB in the 

NAc shell after training that is sufficient to lead to nicotine CPP.

CREB signaling is necessary for neural plasticity associated with learning and addiction 

(Silva et al, 1998; Carlezon et al, 2005). Genes such as fos and BDNF that are regulated by 

nicotine and thought to be important for tobacco addiction (Schroeder et al., 2001; Li et al, 

2008) are upregulated as a result of CREB overexpression and are inhibited by expression of 

mCREB in the NAc of transgenic mice (McClung and Nestler, 2003). Disruption of CREB 
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activity could interfere with expression of many genes that have CRE sequences in their 

promoters. For example, CREB activity is necessary for the regulation of mu opiate 

receptors in response to nicotine administration, and this upregulation contributes to nicotine 

CPP (Walters et al., 2005). Thus, CRE-mediated neuroadaptations that normally occur in 

response to nicotine may lead to lasting changes in systems that regulate incentive salience 

and drug reward.

There was no effect of nicotine or a nicotine-paired chamber on regulation of pCREB in the 

hippocampus in the current study, as was observed using a 4 day regimen of CPP training in 

previous studies (Walters et al., 2005). One potential reason for this difference may be that 

animals were not actively seeking the nicotine-paired chamber in the current study, but were 

rather confined to that chamber by the experimenter. Some evidence suggests that regulation 

of CREB in the dorsal hippocampus is more critical for spatial navigation than context 

conditioning (Pittenger et al, 2002). Although CREB was not regulated in the NAc core or 

hippocampus during exposure to a nicotine-paired chamber on the 3rd day of training, we 

cannot conclude that CREB in these brain areas is not critical for learning during earlier 

trials or for consolidation processes related to nicotine CPP (Josselyn and Nguyen, 2005). 

Human studies show that the dorsal striatum and orbitofrontal cortex may also play a role in 

cue reward for drugs of abuse (David et al., 2007; Franklin et al., 2007; McClernon et al., 

2008; Volkow et al., 2008). Whereas guide canulae prevented expression of mCREB along 

the canulae tracks, damage to these overlying structures could have impaired cue reward. 

LacZ control animals showed levels of nicotine CPP similar to untreated controls, however, 

suggesting that potential unilateral damage during infusion did not affect nicotine CPP.

In summary, these studies show that activation of CREB in the NAc shell is critical for 

nicotine CPP. The phosphorylation state of CREB may therefore regulate the motivational 

valence for nicotine or the conditioned rewarding effects of nicotine-associated cues, such as 

a context associated with nicotine. A nicotine-paired environment can elicit CREB 

phosphorylation in the NAc shell, suggesting that contextual cues may drive changes in 

CREB that promote nicotine reward learning. We conclude from the current study that 

pharmacological agents that decrease CREB phosphorylation might be novel targets for 

smoking cessation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nicotine context conditioning increases pCREB levels in the nucleus accumbens (NAc) 

shell but not the NAc core or dorsal hippocampus. A) In comparison to animals injected 

with saline in the training chamber (SAL, S; n = 12), mice that received nicotine (0.09 

mg/kg i.p. by weight of freebase) showed no effect of treatment on levels of phosphorylated 

CREB (pCREB) during the 3rd day of Pavlovian training (NIC, N; n = 13), but did show 

NAc shell-specific elevations in pCREB following exposure to the chamber previously 

paired with nicotine (NIC Chamber, NC; n = 4; p < 0.05). Total CREB levels in the NAc 

shell were not regulated by NIC or exposure to the NIC-paired Chamber. B, C) There was 

no effect of NIC, or NIC Chamber exposure on either NAc core or hippocampal levels of 

CREB or pCREB (p’s > 0.1). D) There was no difference in locomotor activity across 

groups of SAL, NIC, and NIC Chamber mice during the 15 minutes post-injection 

immediately prior to brain harvest (p > 0.1). Activity data are presented as distance traveled 

in cm across 5 min time bins. All brains were harvested 15 min following injection and 

placement into the chamber. Data from western blotting are presented as percent of SAL 

control data. Error bars represent SEM; * p ≤ 0.05 compared to SAL animals.
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Figure 2. 
Non-biased nicotine CPP is tightly regulated by dose. A) C57BL/6J mice showed a trend for 

nicotine CPP at the 0.04 mg/kg dose nicotine (n = 12), a significant increase in preference 

for the nicotine-paired chamber at the 0.09 mg/kg dose (n = 8; p = 0.05), and no preference 

at the highest dose of i.p. nicotine, 0.175 mg/kg (n = 8) as compared to saline-injected 

animals (n = 9). All nicotine doses are calculated by weight of the freebase. Data are 

presented in seconds as mean % change from baseline preference; error bars reflect SEM; *p 

< 0.05 compared to vehicle control animals. B) There was no difference in time spent in the 

conditioning chamber at baseline indicating that animals showed no overall bias for either 

chamber prior to training (p’s > 0.1), suggesting that change in preference was due to 

nicotine reward rather than anxiolytic effects of nicotine treatment.
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Figure 3. 
Blockade of CREB activation in NAc shell with HSV-mCREB abolishes nicotine CPP 

across a range of doses. A) HSV-LacZ-treated mice showed a preference for the nicotine-

paired chamber at the 0.065 (n = 18) and 0.09 (n = 20) mg/kg i.p. doses of nicotine but not at 

the 0.04 mg/kg dose (n = 22) as compared to saline-treated controls (n = 18). B) HSV-

mCREB infusion into the NAc shell blocked nicotine CPP at all i.p. nicotine doses as 

demonstrated by the lack of preference for the drug-paired chamber (All p’s > 0.2; n = 15–

23). HSV-mCREB-infused mice showed preference for the saline-paired chamber at the 

0.09 mg/kg i.p. dose of nicotine. C, D) Mice showed no preference for the drug-paired or 

saline-paired chamber at baseline. Data are presented as changes from baseline preference +/

− SEM; * signifies p ≤ 0.05 compared to vehicle control mice.
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Figure 4. 
HSV infusions into the nucleus accumbens (NAc) shell. A) Reconstruction of canulae 

placement for HSV-mCREB- (closed circles) and HSV-LacZ-infused animals (open circles). 

B) A representative mouse NAc section harvested 3 days post HSV-LacZ infusion. X-gal 

enzymatic reaction demonstrates that HSV infusions were local to the NAc shell infusion 

site. The use of guide canulae helped to insure that viral vector that may have traveled up the 

infusion canulae did not infect overlying tissues. Coronal section of striatum used with 

permission: Rosen GD, Williams AG, Capra JA, Connolly MT, Cruz B, Lu L, Airey DC, 

Kulkarni K, Williams RW (2000) The Mouse Brain Library @ www.mbl.org. Int Mouse 

Genome Conference 14: 166. www.mbl.org.
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Figure 5. 
HSV-mCREB infusions into structures above the nucleus accumbens (NAc) shell did not 

disrupt nicotine conditioned place preference. A) Surgery control animals (n = 18) showed a 

conditioned place preference to 0.09 mg/kg i.p. nicotine as measured by a significant 

increase in preference for the nicotine-paired chamber compared to HSV saline-injected 

animals (n = 38). B) Mice showed no preference for either chamber at baseline. C) 

Reconstructions of canulae placement for HSV-mCREB (closed circles) in animals that 

received infusions 0.75 mm dorsal to the NAc shell target structure. Data are presented as 

mean changes from baseline preference and mean time spent in either chamber at baseline +/

− SEM; *p < 0.05 compared to saline-injected controls.
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