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SPME‑LC/MS‑based serum 
metabolomic phenotyping 
for distinguishing ovarian cancer 
histologic subtypes: a pilot study
Mariola Olkowicz1, Hernando Rosales‑Solano1, Vathany Kulasingam2,3* & 
Janusz Pawliszyn1*

Epithelial ovarian cancer (EOC) is the most common cause of death from gynecological cancer. The 
outcomes of EOC are complicated, as it is often diagnosed late and comprises several heterogenous 
subtypes. As such, upfront treatment can be highly challenging. Although many significant advances 
in EOC management have been made over the past several decades, further work must be done to 
develop early detection tools capable of distinguishing between the various EOC subtypes. In this 
paper, we present a sophisticated analytical pipeline based on solid‑phase microextraction (SPME) 
and three orthogonal LC/MS acquisition modes that facilitates the comprehensive mapping of a 
wide range of analytes in serum samples from patients with EOC. PLS‑DA multivariate analysis 
of the metabolomic data was able to provide clear discrimination between all four main EOC 
subtypes: serous, endometrioid, clear cell, and mucinous carcinomas. The prognostic performance of 
discriminative metabolites and lipids was confirmed via multivariate receiver operating characteristic 
(ROC) analysis (AUC value > 88% with 20 features). Further pathway analysis using the top 57 
dysregulated metabolic features showed distinct differences in amino acid, lipid, and steroids 
metabolism among the four EOC subtypes. Thus, metabolomic profiling can serve as a powerful tool 
for complementing histology in classifying EOC subtypes.

Patients with ovarian cancer (OC) often present initially with a pelvic mass of unknown malignant  potential1,2. 
Each year, more than 200,000 women in North America undergo exploratory surgery for pelvic masses, with an 
average of 13–21% of these lesions proving to be  malignant3. The ability to accurately discriminate between OC 
and benign pelvic lesions is critical for developing appropriate treatment plans, which is crucial for improving 
patient  outcomes1,3,4.. Non-malignant lesions do not need to be treated; rather, they simply need to be monitored, 
thus avoiding the deleterious effects of over-diagnosis and over-treatment. Approximately 20% of women will 
develop an ovarian cyst or pelvic mass in their lifetime, with many undergoing unnecessary surgery as a  result3.

Imaging, menopausal status, and serum biomarkers (including carbohydrate antigen 125 –CA125) can all 
be of use in distinguishing between malignant and benign pelvic  masses4,5. As such, a number of algorithms, 
such as the Risk of Malignancy Index (RMI) or the Risk of Ovarian Malignancy Algorithm (ROMA)6, have been 
developed to help physicians make quick and accurate referrals. While these algorithms offer high negative pre-
dictive values (i.e., malignancy is excluded when results are negative), they are significantly limited by a lack of 
specificity. In particular, this lack of specificity results in a high number of false positives, which in turn results 
in unnecessary follow-up surgical procedures. High sensitivity is critical in ensuring that women with cancer 
are receiving surgical treatment from the most qualified medical personnel (i.e., gynecologic oncologists), while 
high specificity prevents over-diagnosis and over-treatment, thus ensuring the most efficient use of gynecologic 
oncologists’ time. As such, the lack of specificity in current algorithms has inhibited the efficient distribution of 
medical resources, led to unnecessary surgical procedures, and negatively impacted disease  outcomes6.

The medical community’s understanding of OC has changed significantly over the past few  years4,5. It is now 
evident that OC is not a single disease, but is a category comprised of several distinct histotypes. The main histo-
types are epithelial in origin and include high-grade serous carcinoma (HGSeC), endometrioid carcinoma (EC), 
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clear cell carcinoma (CCC), low-grade serous carcinoma (LGSeC), and mucinous carcinoma (MC). Epithelial 
histotypes differ from one another in many aspects, such as origin, response to treatment, and aggressiveness. This 
prior understanding of OC as a single disease rather than a number of different subtypes was a significant reason 
for the lack of major breakthroughs in improving OC  outcomes4. Current algorithms are most reliable in cases of 
advanced HGSeC due to their emphasis on  CA1257. Nonetheless, the management of negative test results in the 
presence of an apparent isolated adnexal mass remains a key  challenge8. Indeed, reliance on current algorithms 
may cause medical personnel to miss an unacceptably large number of cases of early stage cancer, which is a 
significant oversight, as outcomes for such patients could potentially be improved if referred to a gynecologic 
oncologist in a timely manner. As such, it is essential to develop new methods capable of discriminating solitary 
adnexal masses via biochemical markers of non-serous histologic  subtypes8,9. Identifying pathways associated 
with the development of non-serous OC may provide insights into disease pathogenesis and aid in the identifica-
tion of biomarkers that can be used for early interventions.

Metabolites are the final products of complex metabolic pathways and most closely reflect phenotypic mani-
festations of  disease10. Metabolomics seeks to identify the downstream effects of the actions of enzymes and 
proteins, as well as environmental exposures. Evaluating the serum profiles of patients with the various different 
subtypes of OC would provide snapshots of the metabolic changes linked to the changing disease  phenotype11. 
In particular, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry 
(LC/MS) can be applied to identify metabolites in biofluids, with the aim of developing a better understanding of 
disease-induced processes/events and  responses10,11. In cancer research, metabolomics-based techniques provide 
an impetus for the discovery of novel biomarkers and the exploration of the molecular mechanisms that underlie 
cancer development and  progression12,13. Moreover, combining metabolomics with specific, sensitive sampling/
extraction approaches makes it is possible to comprehensively map the metabolomic landscape.

Solid-phase microextraction (SPME) is a non-exhaustive technique that is capable of extracting a broad range 
of metabolites from a diversity of biological samples, including biofluids and  tissues14–16. In SPME, a small amount 
of extractive phase is immobilized onto the outer part of a solid support, which is then used to extract either vola-
tile (headspace) or non-volatile (direct immersion) analytes from a given sample matrix. Headspace-SPME-gas 
chromatography (GC)/MS has been widely used for the metabolic profiling of volatile compounds from complex 
biological samples, and has provided encouraging results, particularly in in vivo and on-site contexts; however, 
combining direct immersion (DI)-SPME with LC/MS enables the exploration of a more comprehensive range 
of  metabolites16. Given the variety of available biocompatible SPME extraction phases with limited porosity, 
it is possible to achieve high selectivity towards small molecules, while avoiding the co-extraction of proteins 
and other  macromolecules14,15. Furthermore, due to their anti-fouling properties, such SPME coatings do not 
induce adverse events when immersed in biological matrixes, thus making them particularly suitable for the 
in vivo sampling of complex  matrixes17–20. The obtained extracts do not contain copious amounts of phospho-
lipids, which effectively eliminates (or drastically minimizes) the matrix effects that would be encountered in 
LC/MS runs with extracts obtained via exhaustive extraction methods, involving solvents. The use of SPME as a 
sample-preparation tool in metabolomics investigations provides a number of notable advantages, including: (i) 
a simple workflow due to its use of coated devices with tunable extraction phases, geometries, and dimensions; 
(ii) the ability to consolidate several analytical steps—such as sampling, sample preparation/extraction, and 
metabolism quenching—into a single step; (iii) the ability to capture particularly elusive pools of metabolites 
(short-lived and unstable compounds); and (iv) a non-destructive nature and a minimally invasive sampling/
extraction workflow, which make it especially convenient for in vivo studies. In addition, SPME features simple 
device design, which enables efficient workflows and makes it highly suitable for coupling with a Concept-96 
autosampler for high-throughput  analyses21,22.

In this paper, we propose a state-of-the-art analytical pipeline for comprehensive metabolic profiling in order 
to characterize the serum metabolite signatures of patients with various histopathological subtypes of OC. As our 
findings show, the proposed method is capable of providing a comprehensive picture of the metabolic differences 
between subsets of metabolites. Future research could build off of these findings and explore how useful these 
differences are in early diagnoses and interventions for the various subtypes of OC.

Methods
Study participants. Metabolomic alterations in serum were studied using a sample comprised of females 
with serous (n = 11), endometrioid (n = 10), clear cell (n = 10), and mucinous (n = 9) carcinoma. The clinico-
pathological characteristics of these patients are presented in Table 1.

Materials. SPME fibers consisting of 200 µm nitinol wires with extraction phase dimensions of 7 mm × 45 µm 
(length × thickness) were acquired from Supelco (Merck). Two extractive phases were selected for use in this 
study: octadecyl-functionalized silicate particles (C18), and mixed-mode (MM – C8/SCX) particles comprised 
of octyl-bonded material and a strong cation exchanger. The C18-SPME fibers were used for lipidomic investiga-
tions, while the MM-SPME fibers were chosen for general metabolomic investigations.

Extraction of analytes and instrumental analysis. Extractions were performed by immersing the 
fibers into aliquots containing 70 µL of sample for 60 min at 1500 rpm on an orbital shaker. Immediately after 
extraction, the fibers were cleaned with a Kimwipe and rinsed with purified water (MM-SPME probes) or a 
solution containing 10% acetone (v/v; C18-SPME probes) for 10 s to remove any trace biological material from 
the coating surface. Prior to instrumental analysis, the SPME fibers were desorbed in 60 µL of ACN/MeOH/
H2O (4/4/2, v/v/v) (MM probes) or MeOH/IPA/H2O, 45:45:10 (v/v/v) (C18 probes) using mechanical agitation 
at 1500 rpm for 60 min. The extracts obtained from the desorption of the MM-SPME probes were split into two 
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separate fractions for use in subsequent independent instrumental evaluations using two distinct chromato-
graphic modes. In order to monitor LC/MS performance across sample runs, a quality control (QC) sample was 
prepared as a pooled mixture of sample aliquots and injected along the sequence.

LC/MS analysis was performed using a Vanquish UHPLC system (Thermo Scientific) interfaced with a high-
resolution benchtop Exactive Orbitrap mass spectrometer (Thermo Scientific). Metabolomic investigations were 
conducted using Discovery HS F5 (100 × 2.1 mm, 3 µm particle size, Supelco) and ZIC-HILIC (100 × 2.1 mm, 
3.5 µm, Millipore) columns. The binary mobile phase consisted of deionized water (A) and ACN (B) with either 
0.1% formic acid (ESI + mode) or 1 mM acetic acid (ESI- mode). The conditions used for the chromatographic 
separations and relevant mass detection have been detailed in Supplementary Information. For the lipidomic 
investigations, chromatographic separation was achieved using an XSelect CSH C18 column (2.1 × 75 mm, 
3.5 µm) using a two-solvent system combining Solvent A (40:60 MeOH:H2O with 10 mM ammonium acetate 
and 1 mM acetic acid in positive mode, and 0.02% acetic acid in negative mode) and Solvent B (90:10 IPA:MeOH 
with 10 mM ammonium acetate and 1 mM acetic acid in positive mode, and 0.02% acetic acid in negative mode). 
For a detailed description of the analytical method used in this research, please refer to Monnin et al.23 and see 
Supplementary Methods attached to this paper. Instrument control, data collection, and analysis were achieved 
using Thermo Xcalibur 4.0 software.

Data processing and statistical analysis. The raw MS data were converted to mzXML files using Pro-
teoWizard  MSConvert24 and subsequently processed with XCMS package software for peak extraction, group-
ing, retention-time correction, and peak  filling25. The IPO package was used to optimize and further adjust the 
XCMS parameters to be slightly more  inclusive26,27. The extracted peaks were annotated using the xMSannotator 
Integrative Scoring Algorithm with HMDB, KEGG, and LIPID MAPS as the reference  databases28. Only unique 
features with medium to high confidence matches annotated by HMDB/KEGG/LIPID MAPS were selected for 
further investigation. Principal component analysis (PCA) was performed on log-transformed Pareto-scaled 
data in order to detect potential outliers, assess data quality, and visualize major structures in the data. Partial 
least squares-discriminant analysis (PLS-DA) was applied to differentiate the metabolomic/lipidomic profile 
spectra of females affected by specific cancer subtypes. Potential distinguishing features were identified based on 
the variable importance in projection (VIP) values obtained via the PLS-DA model (variables with VIP values 
of ≥ 1.5 were considered relevant for group discrimination). All statistical treatment of data was carried out using 
the web-based MetaboAnalyst 5.0  software29.

Table 1.  Clinicopathological data of the patients included in the study. N/A – data not available. a Data 
expressed as median and range for a given stage of the disease.

Serous carcinoma n (%)
Endometrioid carcinoma 
n (%)

Clear cell carcinoma 
n (%)

Mucinous carcinoma 
n (%)

Number of patients 11 (27.5) 10 (25) 10 (25) 9 (22.5)

Stage of disease

I – 1 (10) – –

IA 3 (27) 3 (30) 2 (20) 2 (22)

IC – – 6 (60) 3 (33)

IIA – 2 (20) – –

IIB – 2 (20) 1 (10) –

III – – – 1 (11)

IIIB 1 (9.1) – – –

IIIC 2 (18) 1 (10) 1 (10) –

IV 5 (45) – – 2 (22)

N/A – 1 (10) – 1 (11)

Malignant site

Ovary 11 (100) 9 (90) 10 (100) 6 (67)

Pancreas – – – 1 (11)

Extrahepatic bile ducts-
distal – – – 1 (11)

Corpus uteri – 1 (10) – –

Not primary ovarian 
cancer – – – 1 (11)

CA125 (U/mL)a 

I 77 (5-832)

II 95 (19-3135)

III 393.5 (3-1454)

IV 947 (7-6880)
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Ethics approval and patient consent statement. Written informed consent was obtained from all 
participants, and the study protocol was approved by the Research Ethics Board (approval ID number 10-0591) 
at the University Health Network (UHN; Toronto, ON, Canada) and conducted in accordance with the 1964 
Declaration of Helsinki.

Results
Clinical and laboratory characteristics of patients. The clinical and pathological characteristics of the 
individuals in the sample are presented in Table 1. This study included a total of 40 subjects who were divided 
into four groups based on cancer type: 1) clear cell adenocarcinoma (CCC, n = 10); 2) endometrioid adenocar-
cinoma (EC, n = 10); 3) mucinous adenocarcinoma (MC, n = 9); and 4) serous cystadenocarcinoma (SeC, n = 10) 
and serous papillary cystic tumour of borderline malignancy (SeC, n = 1). Cancer staging was performed by 
board-certified pathologists at University Health Network (Toronto) who specialize in gynecologic oncology. 
Accordingly, patients were classified as being in FIGO stage 1 (n = 20), 2 (n = 5), 3 (n = 6), or 4 (n = 7), with 2 cases 
being unclassified. Finally, the participants’ CA125 levels were measured and dichotomized by their medians 
into four groups corresponding to the clinical stage of the disease.

Serum metabolomic profiling. Extractions were performed on the collected serum samples using SPME 
extraction phases designed for either hydrophilic or hydrophobic analytes. Following extraction, the SPME 
extracts were analyzed on the UHPLC-HRAM (high-resolution, accurate-mass) platform in both positive and 
negative ion modes. Such comprehensive profiling enabled a broad range of metabolites/lipids to be captured, 
while excluding components such as proteins (macromolecules) not intended for analysis. QC samples and 
internal standards were used to verify technical precision and repeatability within analytical batches. The QC 
samples were clustered together in the relevant PLS-DA score plots (Supplementary Figs. 1, 3, and 5), and more 
than 90% of the coefficients of variation (CVs) for the selected features were below 30%, indicating good instru-
ment reproducibility during the entire batch analysis and high quality of data, regardless of the applied chroma-
tographic mode.

Supervised PLS-DA analysis was then performed on the entire dataset to assess variations in the measured 
metabolomes based on phenotype. Several PLS-DA models with different acquisition modes and coating types 
were constructed using either a four-class or two-class input: (1) CCC vs. EC vs. MC vs. SeC (Figs. 1, 2, 3), or 
(2) non-serous vs. serous carcinoma (NSeC vs. SeC) (Supplementary Figs. 2, 4, and 6). The resultant PLS-DA 
score plots showed a clear and significant difference between the metabolite profiles of the SeC patients and 
those of the NSeC cases (Figs. 1, 2, 3, Supplementary Figs. 2, 4, and 6). Similarly, a distinct trend toward separa-
tion among NSeC subgroups can be seen on the 3D score plots—with differences in lipidomic pattern being the 
most pronounced—likely as a result of SPME’s ability to capture a greater diversity of lipid classes/subclasses 
compared to traditional extraction  methods30 (Figs. 1, 2, 3B, D). Indeed, the minimal matrix effects associated 
with SPME enabled the detection of a large number of low-abundance species, such as phosphatidic acids, 
phosphatidylglycerols, (hexosyl)ceramides, lysophospholipids, which may be of particular importance in studies 
aimed at low-level biomarker discovery. To avoid overfitting the generated PLS-DA models, and to evaluate their 
predictive capability, a cross-validation procedure and testing with 100 random permutations were employed. 
The results of both tests confirmed that the proposed EOC subtype classification approach is statistically valid 
and provides significant predictive power.

Selection of significant features which classify EOC subtypes. To identify the features responsible 
for the measured variance in the PLS-DA prediction models, VIP scores and FDR-adjusted P values were calcu-
lated and screened using significance thresholds of VIP ≥ 1.5 and/or P < 0.05. These thresholds were satisfied by 
27 variables in C18-based chromatographic mode when C18-SPME microprobes were applied; 23 variables in 
PFP-based mode when MM-SPME microprobes were used; and 15 variables in HILIC mode when MM-SPME 
probes were used (Table 2). Notably, some discriminative metabolic features were detected in both ion modes 
(e.g., 18-hydroxycorticosterone, aldosterone, tryptophan, and glycocholic acid (PFP-based mode)), or in differ-
ent acquisition modes (e.g., 4,5-dehydrodocosahexaenoic acid, monoacylglycerol (20:4), aldosterone, trypto-
phan, and androsterone sulfate). Various lipid mediators, mono-, di-, and triacylglycerols, ceramides, fatty acyl 

Figure 1.  Three-dimensional PLS-DA score plots for features detected in positive (A, B) and negative (C, 
D) ion/reversed-phase (C18-based phase) mode and their corresponding VIP values (E, F). Red: clear cell 
carcinoma patients. Green: endometrioid carcinoma patients. Dark blue: mucinous carcinoma patients. Light 
blue: ovarian serous carcinoma patients. The following data-filtering parameters were used during analysis: 
RSD of QC samples < 30%; average of pooled QC samples over blanks ratios > 5; and total number of features 
(ions with unique m/z (mass-to-charge ratio) and retention-time values) = 1564 (ESI +) and 1798 (ESI-). Clear 
discrimination between lipidomic patterns in samples collected from patients with serous and non-serous 
carcinomas was observed. VIP schematic scores of PLS-DA analyses for clear cell (CCC) vs endometrioid (EC) 
vs mucinous (MC) vs serous (SeC) carcinoma (E, F). The labels: component 1, 2 and 3 along the axes represent 
the scores (the first three latent variables) of the model, which are sufficient to build a satisfactory classification 
model. Latent variables were calculated as a linear combination of the associated manifest variables. The 
example variables/metabolic features located within a first component and contributing the most to separation 
between study groups were presented in relevant VIP score plots. ESI + , positive ion mode; ESI-, negative ion 
mode.

◂
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lipid classes, acylcarnitines, tryptophan metabolites, diverse bile acids classes, and intermediates in aldosterone 
synthesis were among those with the greatest effect on EOC subtype differentiation.

Next, receiver operating characteristic (ROC) analysis was performed on variables with a VIP score ≥ 2 to 
evaluate their predictive ability in the discrimination of serous and non-serous OC subtypes. 30 analytes out 
of 57 putatively annotated compounds (Table 2) met this threshold and were involved in the analysis. Since the 
ROC analysis of individual metabolic features is unable to assess the relationships that account for the observed 
variance between them, a multivariate ROC analysis approach was implemented based on the PLS-DA method. 
Figure 4A and B shows the ROC curves and the predictive accuracy model for the examined features. We found 
that the model containing 20 features showed excellent predictive performance, with an ROC AUC (area under 
the curve) value of > 88%. In addition, 12 significant features were selected based on their average importance in 
group classification and displayed in relevant box plots in Fig. 4C–N. As can be seen, the greatest changes can be 
observed in cellular lipid mediators involving phosphatidic acid (38:4) and lysophosphatidylinositol (O-32:1), 
tryptophan catabolites, bile acids, and components of aldosterone synthesis pathways when serous OC meta-
bolic phenotypes were compared against non-serous metabolic phenotypes. Additionally, to verify how levels of 
30 above-mentioned distinguishing metabolites/lipids are changing as the disease progresses, ROC curves for 
discriminating early-stage patients (e.g. stage I and II) and advanced-stage OC patients (stage III and IV) were 
constructed with results presented in Supplementary Fig. 7. Classifiers distinguishing early-stage from advanced 
disease stage had an AUROC of 0.8 thus confirming the accuracy of classification of the study groups/samples 
when multivariate ROC curve analysis was yet employed on the set of 20 analytes.

Discussion
At present, strategies for the early diagnosis and personalized treatment of EOC are  limited3,4. As such, the devel-
opment of non-invasive methods that enable the precise classification of EOC subtypes is critical for cancer man-
agement, as such approaches would provide accurate information about clinical tumor behavior, its prognosis, 
and the most effective treatments for the  disease31. Although diagnostic accuracy relating to several histologically 
distinct types of OC tumor has improved significantly over the last decade, biopsy is still often the only option, 
as pre-diagnostic testing continues to suffer from a lack of sensitivity and  specificity32. To remedy this limitation, 
it will be highly important to explore new biomarkers in combination with statistical learning algorithms that 
are able to consider additional risk factors. Fortunately, this goal has become feasible due to recent technological 
progress with respect to sample-pretreatment techniques for the extraction of a very wide range of stable and 
unstable analytes, as well as advancements in the speed and resolution of LC–MS metabolomic analysis.

In this research, we demonstrate the feasibility of our SPME-HRAM technique for classifying the four main 
EOC subtypes via comprehensive metabolite/lipid species profiling and the identification of the metabolomic 
signature ascribed to a given histopathologic phenotype. To capture and analyze the entire metabolome at once, 
we tested two types of SPME coatings (i.e., C8/benzenesulfonic acid (C8/SCX) and C18) along with three acquisi-
tion modes. This design enabled the identification of over 1000 metabolites/lipid species for each EOC subtype. 
Our data imply that metabolic reprogramming mechanisms are different between EOC subtypes, as significant 
alterations were noted in the following pathways: energy metabolism; tryptophan catabolism; bile acid metabo-
lism; lipid (glycerophospholipid, lysophospholipid, and neutral) metabolism; steroid hormone (androgen and 
aldosterone) metabolism; and polyunsaturated fatty acid (docosahexaenoic acid, linoleic acid, linolenic acid, 
and stearidonic acid) metabolism.

Specifically, our data demonstrate distinct differences in the energy metabolism patterns of the EOC subtypes, 
mainly in relation to glutamine (Gln) and fatty acid (FA) metabolism. It is widely accepted that tumor hypoxia 
and cancer-associated mutations affect central carbon metabolism and enhance cancer cells’ dependence on 
glutamine for their growth/division33. CCC is a unique EOC histotype in this regard, as it is more dependent 
on aerobic glycolysis than other subtypes. This feature allows CCC to be more resistant to chemotherapy, which 
results in higher cell survival under conditions wherein mitochondrial function is suppressed, thus diminishing 
ROS  generation34. Our data appear to support this observation, as the highest amounts of Gln were observed in 
the CCC samples, along with significantly reduced glutamate content. Adding to the above, the CCC samples 
showed increased levels of N-acyl taurines (in particular, nonadecanoyl-taurine), which function as endogenous 
lipid messengers that improve glucose  homeostasis35, further pointing to the glucose-dependent phenotype 
of these cells. In contrast, the accumulation of several long-chain acylcarnitines (i.e., tetradecanoylcarnitine, 
3,5-tetradecadiencarnitine, and 9-hexadecenoylcarnitine) was observed in the SeC samples, which may suggest 

Figure 2.  Three-dimensional PLS-DA score plots for features detected in positive (A, B) and negative (C, 
D) ion/reversed-phase (PFP-based phase) mode and their corresponding VIP values (E, F). Red: clear cell 
carcinoma patients. Green: endometrioid carcinoma patients. Dark blue: mucinous carcinoma patients. Light 
blue: ovarian serous carcinoma patients. The following data-filtering parameters were used during analysis: RSD 
of QC samples < 30%; average of pooled QC samples over blanks ratios > 5; and total number of features left 
for the analysis = 1047 (ESI+) and 458 (ESI-). Similar to the data obtained using the previous acquisition mode 
(reversed-phase/C18-based), a clear discrimination can be observed between metabolomic patterns for samples 
collected from serous and non-serous ovarian cancer patients. VIP schematic scores of PLS-DA analyses for 
clear cell (CCC) vs endometrioid (EC) vs mucinous (MC) and vs serous (SeC) carcinoma (E, F). The labels: 
component 1, 2 and 3 along the axes (the first three latent variables) represent the scores of the model, which are 
sufficient to build a satisfactory classification model. The example variables/metabolic features located within a 
first component and contributing the most to separation between study groups were presented in relevant VIP 
score plots. ESI+, positive ion mode; ESI-, negative ion mode.

◂
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Figure 3.  Three-dimensional PLS-DA score plots for features detected in positive (A, B) and negative (C, D) 
ion/HILIC mode and their corresponding VIP values (E, F). Red: patients affected by clear cell carcinoma. 
Green: endometrioid carcinoma patients. Dark blue: mucinous carcinoma patients. Light blue: ovarian 
serous carcinoma patients. The following data-filtering parameters were used during analysis: RSD of QC 
samples < 30%; average of pooled QC samples over blanks ratios > 5; total number of features for analysis = 540 
(ESI+) and 147 (ESI-). For data collected with HILIC mode, the differentiation in the metabolomic patterns of 
serous and non-serous OC samples may be observable. VIP schematic scores of PLS-DA analyses for clear cell 
(CCC) vs endometrioid (EC) vs mucinous (MC) and vs serous (SeC) carcinoma (E, F). The labels: component 
1, 2 and 3 along the axes (the first three latent variables) represent the scores of the model, which are sufficient 
to build a satisfactory classification model. The example variables/metabolic features located within a first 
component and contributing the most to separation between study groups were presented in relevant VIP score 
plots. ESI+, positive ion mode; ESI-, negative ion mode.
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Namea m/z Rt (min) Adduct Mode VIP FC CCC/EC FC CCC/MC FC EC/MC FC NSeC/SeC

4,5-Dehydrodocosahexaenoic 
acid

327.2320 10.78 [M+H]+ C18/ESI+ 3.67 1.49 2.46 1.65 1.95

344.2585 10.78 [M+NH4]+ C18/ESI+ 3.14 1.44 2.39 1.66 1.94

Monoacylglycerol (20:4) 396.3107 11.57 [M+NH4]+ C18/ESI+ 3.02 1.21 0.32 0.27 0.59

Tetradecanoylcarnitine 372.3108 11.55 [M+H]+ C18/ESI+ 2.87 0.62 0.29 0.46 0.56

3,5-Tetradecadiencarnitine 368.2796 3.11 [M+H]+ C18/ESI+ 2.37 1.03 0.75 0.73 0.71

Monoacylglycerol (18:2) 377.2665 11.54 [M+Na]+ C18/ESI+ 2.36 0.63 0.26 0.41 0.44

9-Hexadecenoylcarnitine 398.3265 7.67 [M+H]+ C18/ESI+ 2.20 0.74 0.72 0.97 0.64

Lysophosphatidylethanolamine 
(22:6) 526.2929 9.58 [M+H]+ C18/ESI+ 2.00 0.95 0.80 0.84 0.62

TG (triacylglycerol) (60:4) 984.8958 31.47 [M+NH4]+ C18/ESI+ 1.89 0.35 0.75 2.17 0.80

TG (triacylglycerol) (59:6) 966.8488 30.22 [M+NH4]+ C18/ESI+ 1.83 0.48 0.60 1.23 0.98

17-keto-docosahexaenoic acid 360.2534 6.41 [M+NH4]+ C18/ESI+ 1.68 1.47 1.50 1.02 1.01

TG (triacylglycerol) (54:5) 903.7413 30.83 [M+Na]+ C18/ESI+ 1.67 0.42 0.68 1.64 0.83

DG (diacylglycerol) (36:3) 601.5191 31.26 [M+H−H2O]+ C18/ESI+ 1.58 0.54 0.65 1.19 0.91

HexCer (hexosylceramide) 
(d49:1) 932.7916 27.97 [M+Na]+ C18/ESI+ 1.57 0.40 0.75 1.88 0.80

TG (triacylglycerol) (52:3) 874.7856 31.26 [M+NH4]+ C18/ESI+ 1.54 0.60 0.79 1.30 0.92

TG (triacylglycerol) (54:3) 907.7727 32.17 [M+Na]+ C18/ESI+ 1.51 0.58 0.80 1.39 0.85

Linoleic acid
559.474 13.42 [2M−H]− C18/ESI− 3.80 0.45 0.29 0.66 0.39

581.4558 13.42 [2M−2H+Na]− C18/ESI− 3.07 0.58 0.39 0.66 0.59

TG (triacylglycerol) (55:7) 889.7251 14.91 [M−H]− C18/ESI− 3.45 0.66 0.46 0.69 0.64

Cardiolipin (CL) (76:14) 745.4627 13.42 [M−2H]2− C18/ESI− 3.28 0.64 0.43 0.66 0.64

N-arachidonoyl taurine (C20:4-
NAT) 470.2623 1.27 [M+CH3COO]− C18/ESI− 3.27 0.99 1.18 1.19 2.29

Phosphatidic acid (PA) (P-38:6) 739.4458 13.42 [M+Cl]−/[2M+2Cl]2− C18/ESI− 3.10 0.60 0.41 0.68 0.65

Ceramide-phosphoethanolamine 
(PE-Cer) (d32:1) 965.7111 14.91 [3M−H+Cl]2− C18/ESI− 3.09 0.66 0.47 0.70 0.68

9-OAHSA/12-OAHSA/9/12-
(Oleoyloxy)stearic acid 563.5047 14.91 [M−H]− C18/ESI− 3.00 0.46 0.45 0.97 0.59

PG (phosphatidylglycerol) 
(P-29:0) 663.4591 13.42 [M−H]− C18/ESI− 2.99 0.60 0.40 0.67 0.58

Stearidonic acid/6,9,12,15-Octa-
decatetraenoic acid 275.2017 10.83 [M−H]− C18/ESI− 2.74 0.97 0.65 0.67 0.35

TG (triacylglycerol) (60:12) 971.7281 14.91 [M+Cl]−/[2M+2Cl]2− C18/ESI− 2.60 0.82 0.55 0.67 0.76

15-hydroperoxy-11,13-eicosadie-
noic acid (15-HpEDE) 339.2544 13.42 [M−H]− C18/ESI− 2.28 0.72 0.52 0.71 0.62

Glycochenodeoxycholate-
3/7-sulfate 263.6282 0.57 [M−2H]2− C18/ESI− 1.76 4.90 2.32 0.47 0.94

Sphingosine-1-phosphate (t16:1) 385.2446 17.58 [M+NH4]+/[2M+H+Na]2+ PFP/ESI+ 6.77 0.85 1.12 1.32 3.45

4,5-Dehydrodocosahexaenoic 
acid 327.2319 24.08 [M+H]+ PFP/ESI+ 4.28 1.58 2.62 1.66 1.99

Dihydroxypregn-4-en-3-one 
20-glucosyl-(1-4)-6-acetyl-
glucoside

699.3517 16.71 [M+H]+ PFP/ESI+ 3.53 0.74 0.95 1.30 2.66

Monoacylglycerol (20:4) 379.2843 22.58 [M+H]+ PFP/ESI+ 3.10 0.86 0.37 0.43 0.59

3α/β-Hydroxy-5-cholenoic acid 375.2894 18.95 [M+H]+ PFP/ESI+ 3.05 1.35 1.20 0.89 0.47

LPI (Lysophosphatidylinositol) 
(O-32:1) 313.1547 24.75 [M+H+K]2+/[M+2ACN+2H]2+ PFP/ESI+ 3.00 0.92 0.79 0.86 1.64

18-Hydroxycorticosterone
363.2167 14.88 M+H]+ PFP/ESI+ 2.78 0.65 1.02 1.56 2.68

421.2234 14.91 [M+CH3COO]− PFP/ESI− 2.72 0.77 1.10 1.43 2.43

Aldosterone
361.201 15.34 [M+H]+ PFP/ESI+ 2.47 0.84 0.99 1.18 1.76

419.2079 15.36 [M+CH3COO]− PFP/ESI− 2.83 0.88 1.04 1.19 1.93

5α/β-Choladien-24-oic acid 357.2789 18.96 [M+H]+ PFP/ESI+ 2.73 1.09 1.10 1.01 0.48

l-Kynurenine 209.0922 11.97 [M+H]+ PFP/ESI+ 2.58 0.59 0.64 1.08 0.69

F4-Neuroprostane (4-series) 379.2488 12.68 [M+H]+ PFP/ESI+ 2.00 1.62 1.07 0.66 0.16

Chenodeoxycholic acid glycine 
conjugate

450.3214 17.58 [M+H]+ PFP/ESI+ 1.86 1.57 1.27 0.81 0.36

472.3033 17.58 [M+Na]+ PFP/ESI+ 1.76 1.81 1.34 0.74 0.39

3,7-Dihydroxy-6/12-oxo-5α/β-
cholan-24-oic acid

448.3057 16.02 [M+ACN+H]+ PFP/ESI+ 1.67 2.37 0.69 0.29 0.50

 448.3057 16.93 [M+ACN+H]+ PFP/ESI+ 1.55 3.41 2.15 0.63 0.46

3-Hydroxycapric acid 189.1487 15.46 [M+H]+ PFP/ESI+ 1.63 1.71 3.17 1.85 0.43

Monoacylglycerol (18:2) 413.2911 22.50 [M+CH3COO]− PFP/ESI− 4.19 0.80 0.37 0.46 0.59

Continued
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increased FA metabolism in this histotype. Even though the heavy dependence of cancer cells on glutamine and 
glucose is well-recognized, it is common for such cells to rewire their metabolism in order to sustain the produc-
tion of ATP and the macromolecules required for cell growth, proliferation, and  survival33,36.

Another interesting alteration of the EOC metabolome was accelerated tryptophan (Trp) catabolism. 
Although enhanced Trp breakdown and elevated kynurenine (Kyn) concentrations is a common indicator of 
tumor progression—and, ultimately, poor clinical outcomes—in cancer  patients37,38, no prior research has exam-
ined the distinct differences in the Kyn/Trp ratios of the EOC subtypes, or the significance of alternative paths 
of Trp degradation in indolelactic acid and acetyl-N-formyl-5-methoxykynurenamine (AFMK) accumulation 
and how they contribute to clinical outcomes. Researchers have explored a variety of tumor immune escape 
 mechanisms39, and clinical studies have proven that the immunoregulatory pathway of Trp catabolism that 
modulates the immunosuppressive microenvironment constitutes a fundamental trait of cancer  progression38,39. 
Several strategies targeting Trp catabolism and the production of immune suppressive catabolites have been 
tested in clinical trials, but the results of these studies have been  inconclusive38,40. A better understanding of the 
changes in Trp catabolites and how they contribute to cancer progression may prove beneficial to EOC patients, 
as it could enable more personalized treatment regimens, thereby significantly improving quality of life.

Apart from alterations in amino acid and energetic fuel metabolism, our findings also revealed apparent dif-
ferences in the levels of numerous bile acids, which supports previous findings relating to their critical role in 
 carcinogenesis41. Although several studies have demonstrated decreased bile acid biosynthesis in EOC patients, 
none have explored how this process differs between EOC histologic phenotypes and whether these differences 
can serve as an accurate metric for discriminating between  them42–44. Intriguingly, the serum samples from the 
CCC patients were characterized by much higher concentrations of bile acids compared to the other histotypes, 
again suggesting that this form of OC possesses heightened resistance to challenging microenvironments con-
taining higher amounts of pro-apoptotic  agents41.

The deregulation of lipid metabolism (beyond energy fuel utilization) constitutes another critical factor in 
 OC45,46. Indeed, numerous dysregulated lipid species have been detected in EOC samples, suggesting that distinct 

Table 2.  Levels of metabolites or lipid species found to be most discriminative for ovarian carcinoma subtype 
classification. Metabolites/lipids were selected according to VIP values (≥ 1.5) and/or Mann–Whitney test 
(adjusted p < 0.05) results. Fold changes (FCs) were the ratios of the average MS ion intensities (peak areas) 
between particular groups studied. CCC – clear cell carcinoma, EC – endometrioid carcinoma, MC – 
mucinous carcinoma, NSeC, SeC – non-serous and serous ovarian carcinoma, respectively. a Metabolites or 
lipids were sorted out with decreasing VIP values and data acquisition mode.

Namea m/z Rt (min) Adduct Mode VIP FC CCC/EC FC CCC/MC FC EC/MC FC NSeC/SeC

Octadecatrienoic acid, FA (18:3) 277.2175 23.19 [M−H]− PFP/ESI− 3.48 1.10 0.41 0.37 0.67

Acetyl-N-formyl-5-methox-
ykynurenamine (AFMK) 285.0859 13.64 [M+Na−2H]− PFP/ESI− 3.11 0.65 0.41 0.64 0.72

Octadecadienoic acid, FA (18:2) 279.2331 23.8 [M−H]− PFP/ESI− 3.07 1.13 0.59 0.52 0.68

l-Tryptophan
203.0822 13.64 [M−H]− PFP/ESI− 2.86 0.65 0.45 0.68 0.70

205.0974 14.42 M+H]+ PFP/ESI+ 2.47 0.61 0.49 0.80 0.79

Dihydroxycholanoic acid 391.2857 18.95 [M−H]− PFP/ESI− 2.08 1.21 1.09 0.90 0.57

N-acyltaurine, NAT (19:0) 464.3019 15.79 [M+CH3COO]− PFP/ESI− 1.78 2.16 0.67 0.31 0.52

Androsterone sulfate 369.1743 14.92 [M−H]− PFP/ESI− 1.54 0.51 0.52 1.01 2.07

Glycocholic acid
446.2916 16.73 [M−H2O−H]− PFP/ESI− 1.51 2.81 1.83 0.65 0.45

466.3163 16.02 [M+H]+ PFP/ESI+ 1.53 2.16 0.68 0.32 0.51

Phosphatidic acid (PA) (38:4) 385.2442 5.03 [M+2Na]2+ HILIC/ESI+ 5.64 0.90 1.13 1.26 3.92

Phosphatidylserine (PS) (42:10) 450.7428 18.59 [M+2Na]2+ HILIC/ESI+ 4.29 2.58 2.02 0.78 3.70

S-Adenosylmethionine 416.1718 2.64 [M+NH4]+ HILIC/ESI+ 2.34 0.96 0.93 0.97 0.033

l-Tryptophan 205.0972 8.14 [M+H]+ HILIC/ESI+ 2.12 0.65 0.49 0.75 0.85

Xanthine 153.0406 2.26 [M+H]+ HILIC/ESI+ 2.04 0.80 0.64 0.80 0.86

Indolelactic acid 188.0706 8.14 [M+H−H2O]+ HILIC/ESI+ 1.99 0.72 0.49 0.67 0.84

5-Hydroxytryptophan 133.0317 8.09 [M+2Na]2+ HILIC/ESI+ 1.47 1.35 1.04 0.77 1.32

l-Phenylalanine 164.071 5.84 [M−H]− HILIC/ESI− 2.67 0.76 0.78 1.03 0.86

Allantoic acid 157.036 5.91 [M−H2O−H]− HILIC/ESI− 2.46 1.25 0.47 0.38 1.38

l-Glutamate

128.0345 11.97 [M−H2O−H]− HILIC/ESI− 2.14 0.73 0.75 1.03 0.89

146.0451 12 [M−H]− HILIC/ESI− 2.11 0.76 0.79 1.04 0.89

168.0272 11.98 [M+Na−2H]− HILIC/ESI− 2.06 0.77 0.80 1.03 0.86

Lysophosphatidylethanolamine 
(LPE) (20:4) 500.2786 3.75 [M−H]− HILIC/ESI− 2.01 1.26 0.77 0.61 0.82

Creatine 130.0613 13.32 [M−H]− HILIC/ESI− 1.98 0.84 0.71 0.84 0.95

Aldosterone 395.1632 0.86 [M+Cl]− HILIC/ESI− 1.61 1.09 0.97 0.89 1.33

l-Glutamine 127.0504 12.93 [M−H2O−H]− HILIC/ESI− 1.59 1.31 1.11 0.84 1.01

Androsterone sulfate 369.1741 0.58 [M−H]− HILIC/ESI− 1.46 0.56 0.50 0.91 2.01
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Figure 4.  ROC curve analysis based on a multivariate PLS-DA algorithm for n = 30 independent metabolite 
features discriminating serous and non-serous carcinomas with VIP ≥ 2.0, and predictive accuracy model with 
a different number of features involved (A, B). Box whisker plots of the twelve most significant metabolites or 
lipids in the analysis of variance results for NSeC, non-serous carcinoma (NSeC, blue boxes) and serous 
carcinoma (SeC, red boxes). The x-axis depicts the specific metabolite/OC group, and the y-axis presents the 
normalized peak intensity (C–N). The lower, middle, and upper lines in the relevant box plots correspond to the 
25th, 50th (the median), and 75th percentiles.
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differences in the pattern of these alterations may function as a signature of a given EOC histotype. The integral 
role of FAs in tumorigenesis has been well established, particularly their association with cancer cells’ increased 
reliance on de novo FA biosynthesis and exogenous FA uptake in order to satisfy the metabolic requirements 
of cell proliferation and to provide essential energetic fuel under conditions of metabolic  stress36. Furthermore, 
researchers studying EOC patients have observed distinct changes in the fluidity of biological membranes and 
the patterns of lipid mediators—either functioning as secondary messengers in various intracellular-signaling 
pathways, or engaging in the remodeling of the entire tumor microenvironment via paracrine-signaling mecha-
nisms—which further points to the essential role of the lipid pool’s vast structural diversity in  carcinogenesis46,47. 
Thus, when targeting FA metabolism in cancer treatment, is necessary to consider the complex framework within 
which FAs and their intermediates/by-products are synthesized and exert their functions, including several com-
pensatory or interconnected pathways activated to sustain FA metabolism, as well as the dynamic interactions 
within the cancer microenvironment.

Finally, accelerated steroid hormone (i.e., androsterone and aldosterone) biosynthesis has been found in non-
serous EOC subtypes. Though the role of steroids in ovarian cancer has yet to be clearly defined, several studies 
have demonstrated that they can be produced by malignant ovarian tumors in addition to the adrenal  glands48. 
Adding to the above, high plasma aldosterone levels have been observed in the advanced stages of OC, likely due 
to primary  aldosteronism49. Notably, the hyperaldosteronism regressed, and the patient’s hypertension improved 
following the surgical removal of the malignancy. Accordingly, a better understanding of alterations in steroid 
metabolism/signaling may play a key role in improving EOC diagnosis and treatment.

In conclusion, this paper presents an untargeted SPME-UHPLC/MS profiling pipeline intended to expand 
serum metabolome coverage and accurately classify EOC subtypes. Despite the significant differences in the 
levels of metabolites or lipid species between EOC subtypes, none of the individual metabolites or lipids inde-
pendently allowed for correct and reliable classification given tumor heterogeneity that appears to be very high 
not only across subtypes but also within a particular single tumor type. However, integrating complex multi-
analyte profiling and multivariate statistical analyses yielded an accurate and robust tool for identifying potential 
diagnostic biomarkers. Nonetheless, this study contains several limitations that should be addressed in future 
research. For instance, future studies could attempt to replicate our results using a larger sample, and validation 
studies are warranted to demonstrate whether the identified compounds have clinical utility in the diagnosis 
or management of EOC patients. Specifically, given the clinical significance of early diagnosis, as a next stage 
larger studies with independent cohorts of OC patients and control group (healthy subjects, benign disease) are 
planned to confirm the usefulness of the analytical protocol proposed to detect ovarian cancer at early stages 
in addition to being specific enough to distinguish particular histotypes thus corroborating our initial findings. 
This expanded study will not only increase the number of patients examined but will also involve detailed clini-
cal characteristics of cases enrolled and investigations of potential impact of clinical variables on metabolomics 
findings identified to build strong conclusions on connection between affected metabolites/lipids and particular 
clinical phenotype. Finally, though our preliminary data provide a good direction towards future research fur-
ther analytical improvements for a larger cohort follow-up study might be considered, such as implementation 
of robust tools for quality assurance (QA) and quality control (QC) in data collection, introducing additional 
technical replicates, effective data normalization methods to minimize batch effects, and applying unsupervised 
methods for proper data visualization, clustering and sample group discrimination. All these additional steps may 
provide a more supplemented and comprehensive approach for effective cancer screening and a better indication 
of discriminating metabolic biomarkers.

Data availability
The datasets supporting the findings of this study are available from the corresponding author upon reasonable 
request.
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