
RESEARCH ARTICLE

Human observer performance on in-plane

digital breast tomosynthesis images: Effects

of reconstruction filters and data acquisition

angles on signal detection

Changwoo LeeID
1, Minah Han2, Jongduk Baek2*

1 Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science (KRISS),

Daejeon, South Korea, 2 School of Integrated Technology and Yonsei Institute of Convergence Technology,

Yonsei University, Incheon, South Korea

* jongdukbaek@yonsei.ac.kr

Abstract

For digital breast tomosynthesis (DBT) systems, we investigate the effects of the recon-

struction filters for different data acquisition angles on signal detection. We simulated a

breast phantom with a 30% volume glandular fraction (VGF) of breast anatomy using the

power law spectrum and modeled the breast mass as a spherical object with a 1 mm diame-

ter. Projection data were acquired using two different data acquisition angles and numbers

of projection view pairs, and in-plane breast images were reconstructed using the Feld-

kamp-Davis-Kress (FDK) algorithm with three different reconstruction filter schemes. To

measure the ability to detect a signal, we conducted the human observer study with a binary

detection task and compared the signal detectability of human to that of channelized Hotell-

ing observer (CHO) with Laguerre-Gauss (LG) channels and dense difference-of-Gaussian

(D-DOG) channels. We also measured the contrast-to-noise ratio (CNR), signal power

spectrum (SPS), and β values of the anatomical noise power spectrum (NPS) to show the

association between human observer performance and these traditional metrics. Our

results show that using a slice thickness (ST) filter degraded the signal detection perfor-

mance of human observers at the same data acquisition angle. This could be predicted by

D-DOG CHO with internal noise, but the correlation between the traditional metrics and sig-

nal detectability was not observed in this work.

Introduction

Breast cancer is the most commonly diagnosed cancer among women and the second-highest

cause of cancer related mortality [1], but its high mortality rate has steadily decreased through

advances in diagnostic imaging systems [2]. Mammography systems are widely used for the

early detection of breast cancer, but superimposed breast tissue is an impediment to degrade

the lesion detection performance. Unlike mammography systems, digital breast tomosynthesis

(DBT) systems acquire projection data from a limited data acquisition angle, and thus, the
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amount of anatomical noise caused by tissue superposition can be reduced significantly, which

has led to improved detection performance of in-plane DBT images [3, 4]. However, several

imaging parameters (e.g., data acquisition geometries, reconstruction algorithms, kVp, etc. [5,

6]) affect the image quality of in-plane images from DBT systems, and finding an optimal

imaging protocol is very important to maximize the signal detection performance.

To optimize the performance of DBT system, image quality assessment plays an important

role, and traditional metrics such as the contrast-to-noise ratio (CNR), signal power spectrum

(SPS), and exponent β value of the anatomical noise power spectrum (NPS) have been used. In

previous studies [7–11], CNR and SPS have been used to find the optimal data acquisition

angle for the DBT system for various imaging tasks; they considered high CNR and SPS as

indicators of better image quality. The β value was also used to compare signal detectability

between breast imaging modalities [12–14], and they considered a small β value to be an indi-

cator of high detection performance.

In filtered back-projection (FBP)-based DBT reconstruction, there are several reconstruc-

tion filters that affect spatial resolution and image noise characteristics (e.g., a ramp or the

Hanning weighted ramp filter). Previously, many researchers focused on a particular recon-

struction filter to assess the image quality of DBT systems by assuming that the various win-

dow do not have significant impact on signal detectability [11, 14–19]. However, the effect of

reconstruction filters on signal detectability needs to be explored as the anatomical noise gen-

erated by different reconstruction filters shows very different background structures in DBT

images, which may have different impact on signal detectability. Another filter type called slice

thickness (ST) filter was also used in DBT reconstruction to avoid aliasing artifacts [20, 21],

and Zhao et al. [22, 23] compared the effects of the ST filter in combination with a ramp and

the Hanning weighted ramp filter on signal detection performance using the signal difference

noise ratio (SDNR). They concluded that the ST filter provided a high SDNR for a 1 mm diam-

eter signal, although the SDNR did not reflect the effect of background correlation on signal

detection performance.

The most desirable way to evaluate the detection performance for the given task is to con-

duct a human observer study; this is because human is the end user of the medical images who

makes the final diagnostic decision. However, conducting a human observer study is time-

consuming and expensive. Moreover, a medical imaging system produces several hundreds of

images for each patient, which would introduce more inter-observer variability for the same

task [24]. To overcome this, mathematical model observers which mimic human observer per-

formance have been proposed [25–27], and several studies have explored how data acquisition

angle, reconstruction algorithm, and background variability affect the signal detection perfor-

mance in DBT images using mathematical observer models [16–18, 28–30]. However, the

effect of reconstruction filters and data acquisition geometries on human detection perfor-

mance has not been studied thoroughly.

The main contribution of this work is to investigate the effects of reconstruction filters and

data acquisition angles in DBT systems on the detection performance of human observer.

Furthermore, this performance is compared with both model observer performance and the

traditional metrics (i.e., CNR, SPS, and β values). To accomplish this, we simulated a breast

phantom with 30% volume glandular fraction (VGF) and a breast mass with a 1 mm diameter,

and in-plane DBT images were acquired using the FBP algorithm. In FBP-based DBT recon-

struction, reconstruction filters and data acquisition geometries have more impact on the sig-

nal and background statistics than other parameters (e.g., focal spot blur and detector pixel

correlation). Thus, we examined signal detectability using three different reconstruction filter

schemes and two different data acquisition angles. The human observer study was conducted

for the given tasks, and then, human observer performance was compared with that of
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channelized Hotelling observers (CHO) with Laguerre-Gauss (LG) channels [16–18, 28, 31]

and dense difference-of-Gaussian (D-DOG) channels [26, 31, 32]. We measured CNR, SPS,

and β values to find the relationship between human observer performance and the traditional

metrics.

Materials and methods

Image generation

Simulated breast phantoms. To mimic the morphology of the breast, simulated breast

phantoms can be modeled by following the power law spectrum [12, 13, 33]:

Pðf Þ ¼ a=f b; ð1Þ

where f is the three dimensional (3D) radial frequency, α is a constant, and β is the power law

exponent (known to be 3 for mammography) [33]. To generate the simulated breast volumes,

we generated a volume with 1024 × 1024 × 1024 voxels of white Gaussian noise and filtered it

using the square root of 1/f 3 [15, 34–36]. Note that the zero frequency value of the filter was

designated as twice the first non-zero frequency component to prevent an infinite value at zero

frequency [34]. Afterward, a central spherical volume with a diameter of 380 voxels was

extracted from the filtered noise volume to avoid the wrap-around effect caused by the discrete

Fourier transform filtering operation [32]. Since the breast anatomy is mostly composed of

fibro glandular and adipose tissues [35, 37], we sorted the voxel values of the spherical volume

in descending order and set the attenuation coefficient of the fibro glandular tissue to the top

F% voxel values (where F represents VGF). The remaining ð100 � FÞ% voxel values were

assigned the attenuation coefficient of the adipose tissue. In this work, we considered a breast

phantom with 30% VGF to investigate signal detectability on the DBT image quality as shown

in Fig 1(a) because 30% VGF is more relevant to the composition of real patient breast anat-

omy [38, 39]. Note that we assigned the attenuation coefficients of the fibro glandular tissue

and adipose tissue to be 0.0802 mm−1 and 0.0456 mm−1, respectively, which are equivalent to

the attenuation coefficients at 20 keV monochromatic energy corresponding to the mean

energy of the nominal 28 kVp incident spectrum [15, 40].

To model a breast mass, we used a spherical object with a 1 mm diameter as a signal, and

replaced the attenuation coefficients of the breast phantom in the signal regions with those of

the signals [17, 36]. The attenuation coefficient of each signal was 0.0844 mm−1 at 20 keV

monochromatic energy [40]. The voxel and volume sizes of the simulated breast phantom

were 0.11 × 0.11 × 0.11 mm3 and 41.80 × 41.80 × 41.80 mm3, respectively.

Digital breast tomosynthesis systems. We used the geometry of the DBT system shown

in Fig 1(b). The X-ray source was positioned at (0 mm, 0 mm, 605 mm), and the 500 × 500

(x-axis × y-axis) flat-panel detector array with a 0.125 × 0.125 mm2 detector cell size was cen-

tered at (0 mm, 0 mm, -45 mm) [17]. The X-ray source and flat-panel detector rotated simulta-

neously along an arc path within a limited data acquisition angle of R� [15, 41, 42]. Projection

data were acquired from N views in step-and-shoot mode [19, 43, 44]. To investigate the effect

of system geometry on image quality, two different data acquisition angles with different num-

ber of projection views were used: 1) R� ¼ 20� and N = 11, and 2) R� ¼ 60� and N = 31. Note

that projection data were acquired with a 2˚ sampling interval over the data acquisition angles

in both geometries.

The angular projection data of breast phantoms were calculated using a forward projector

that computed the radiological path along the ray between the X-ray source and each detector

cell [45]. In the discrete-to-discrete projection procedure, the voxel size of the breast phantom

is required to be smaller than the cell size of the imaginary detector at the iso-center to avoid
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discretization artifacts [46]. In this study, the voxel size of the breast phantoms (i.e.,

0.11 × 0.11 × 0.11 mm3) was smaller than the magnified detector cell size at the iso-center (i.e.,

0.1163 × 0.1163 mm2), which was sufficient to avoid the discretization artifact. To use the

same radiation dose for different data acquisition angles, uniform noise following the Poisson

distribution was generated using 2.3 × 105/N incident photons per detector cell as quantum

noise. Note that using 2.3 × 105 incident photons per detector cell is equivalent to the dose

level of 1.6 mGy for a 4 cm breast with 28kVp spectrum, which is the typical dose level for a

single-view mammography system [17].

In the FDK reconstruction of DBT system [47], three filters are used, including 1) ramp, 2)

Hanning (i.e., one of noise apodization filters) filters applied along the x-direction, and 3) ST

filter which prevents aliasing artifacts applied along the z-direction. The ramp filter is imple-

mented as described in [48], and the Hanning and ST filters used in this study are expressed as

[22]

FhannðfxÞ ¼
0:5þ 0:5cos pfx

fNY

� �
for jfxj < fNY

0 elsewhere

8
<

:
ð2Þ

FSTðfzÞ ¼
0:5þ 0:5cos pfz

gfNY

� �
for jfzj < gfNY and jfzj < tanðR

�

ÞfNY

0 elsewhere

8
<

:
ð3Þ

Fig 1. Breast phantom and breast tomosynthesis system geometry. (a) A simulated breast phantom with 30% VGF. The gray and

black regions indicate fibro glandular and adipose tissues, respectively. The simulated breast phantoms are displayed in [0 0.1] mm−1. (b)

The system geometry of a digital breast tomosynthesis system with a step-and-shoot mode. The X-ray source and flat-panel detector

rotate simultaneously along the arc path. The projection data of simulated breast phantom are acquired within a limited data acquisition

angle.

https://doi.org/10.1371/journal.pone.0229915.g001
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where fx and fz are the coordinate system of the frequency domain along the x- and z-direc-

tions, and fNY is the Nyquist frequency (i.e., 5.88 cycles/mm). In this work, γ was set to 0.07 as

a multiplicative factor to avoid aliasing artifacts. Note that the cutoff frequency of the ST filter

depends on the acquisition angle R�
, and that the degree of image blurring increases as the

acquisition angle increases. Fig 2 shows the profiles of the reconstruction filters, and the three

different filter schemes used in this work are summarized in Table 1.

The noisy projection data were filtered using three different filter schemes, and then voxel-

driven back-projection with linear interpolation was performed [48]. The volume size of the

reconstructed image was about 32.3 × 32.3 × 64.0 mm3 (380 × 380 × 64 array) with a voxel size

of 0.085 × 0.085 × 1.0 mm3 [17]. Note that reconstructed pixel size of in-plane image (i.e.,

0.085 mm) was set to be small enough to avoid noise aliasing. The central in-plane (x-y plane)

images (128 × 128 array) were extracted from the reconstructed breast volume images and

used to evaluate the DBT image quality. The simulation parameters of the DBT system are

summarized in Table 2.

Fig 2. Profiles of the reconstruction filters.

https://doi.org/10.1371/journal.pone.0229915.g002

Table 1. The three filter schemes used in the reconstruction.

Filter scheme Filter combination

Scheme 1 Ramp filter

Scheme 2 Ramp filter + Hanning filter

Scheme 3 Ramp filter + Hanning filter + ST filter

https://doi.org/10.1371/journal.pone.0229915.t001
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Image quality assessment

The human observer study. To evaluate the signal detection performance, we conducted

binary detection tasks with signal-known-exactly (SKE) and background-known-statistically

(BKS) schemes. The two hypotheses (i.e., H0 for signal-absent and H1 for signal-present) are

given by

H0 : g ¼ bsa þ n ð4Þ

H1 : g ¼ bsp þ n ð5Þ

where vector bsa is the anatomical background, and vector bsp is the anatomical background

containing the spherical signal. Vector n is the reconstructed tomosynthesis noise, and vector

g is the reconstructed in-plane image.

In the human observer study, 10 human observers performed six detection tasks, as

reported in Table 3. Each observer simultaneously viewed the signal-present and signal-absent

images displayed on a Nio 3MP LED monitor (Barco, Kortrijk, Belgium), and selected the sig-

nal-present image shown in Fig 3. We set image display window and level using the mean

value and standard deviation of image set, which could not be controlled by the human

observer [18]. In each trial, the signal-present and signal-absent images were randomly posi-

tioned, and there were no restrictions on decision time and viewing distance.

For human observer training, we provided 30 image sets with feedback in each task. After-

ward, 100 image sets without feedback were used to test human observer detection perfor-

mance. Note that training and test image sets were independent for each observer. To evaluate

Table 2. Simulation parameters.

Parameter Value

Source to iso-center distance 605 mm

Detector to iso-center distance 45 mm

Data acquisition angle (R
�

) R�
¼ 20� and N = 11 (From −10˚ through 10˚)

- Number of projection views (N) R�
¼ 60� and N = 31 (From −30 through 30˚)

Detector cell size 0.125 × 0.125 mm2

Detector array size 500 × 500 (x-axis × y-axis)

Reconstructed volume size 32.30 × 32.30 × 64.0 mm3

Reconstructed voxel size 0.085 × 0.085 × 1.0 mm3

Reconstructed matrix size 380 × 380 × 64

X-ray energy 20 keV monochromatic energy

Number of incident X-ray photons 2.3 × 105/N
Reconstruction algorithm FDK

https://doi.org/10.1371/journal.pone.0229915.t002

Table 3. Detection tasks for different data acquisition angles and reconstruction filter schemes.

Task Data acquisition angle Reconstruction filter scheme

Task 1 R�
¼ 20� and N = 11 scheme 1

Task 2 R� ¼ 20� and N = 11 scheme 2

Task 3 R�
¼ 20� and N = 11 scheme 3

Task 4 R� ¼ 60� and N = 31 scheme 1

Task 5 R�
¼ 60� and N = 31 scheme 2

Task 6 R� ¼ 60� and N = 31 scheme 3

https://doi.org/10.1371/journal.pone.0229915.t003
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the signal detectability of the human observers, we calculated the percent correct (Pc) as fol-

low:

Pc ¼
1

Nt

XNt

s¼1

os; ð6Þ

where Nt is the number of test trials. If an observer finds the correct image (i.e., signal-present

image) in the s-th trial, os is 1, else it is 0. The variance of Pc was estimated by bootstrapping o
value 1,000 times [49, 50].

To compare the detection performance of human observers with that of the mathematical

model observer, Pc is converted to the task signal-to-noise ratio (SNRt) as follows [26]:

SNRt ¼ 2� erf � 1ð2� Pc � 1Þ; ð7Þ

where erf −1 represents the inverse of the error function.

The mathematical model observers. We used CHO with two different channels: 1) LG

channels (LG CHO) [16–18, 28] to approximate the performance of the Hotelling observer

and 2) D-DOG channels (D-DOG CHO) [26, 32] to mimic the properties of the human visual

system.

Fig 3. The binary detection task for the human observer study with respect to six detection tasks.

https://doi.org/10.1371/journal.pone.0229915.g003
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• LG channels: these are generated as Gaussian functions as follows:

upðrjauÞ ¼

ffiffiffi
2
p

au
exp

� pr2

a2
u

� �

Lp
2pr2

a2
u

� �

; ð8Þ

with the Laguerre polynomial function

LpðxÞ ¼
Xp

k¼0

ð� 1Þ
k p
k

� � xk

k!
; ð9Þ

where r is a 2D spatial coordinate, au is the width of the Gaussian function, and p is the poly-

nomial order. Note that the Gaussian width au should be determined to maximize the corre-

sponding signal detectability of LG CHO to approximate the performance of Hotelling

observer. Since the reconstruction process introduces signal blurring by reconstruction fil-

ters and data acquisition geometry, even if the signal size is known, we still need to find the

au that maximizes the signal detection performance for each task by brute-force searching

within the range of 3 to 80 pixels. Note that the optimal Gaussian width was proportional to

the diameter of the spherical object. We used 20 LG channels to evaluate the detection per-

formance because the detectability of LG CHO saturated when more than 20 LG channels

were used. Example 10 LG channel images are shown in Fig 4(a).

• D − DOG channels: these are defined using multiple bandpass filters, and the i-th channel

profile is expressed in the frequency domain as

CiðrÞ ¼ exp �
1

2

r

Qsi

� �2
" #

� exp �
1

2

r

si

� �2
" #

; ð10Þ

si ¼ s0a
i; ð11Þ

where ρ is the radial frequency, σi is the standard deviation of each channel, Q is a multiplica-

tive factor that defines the channel bandwidth, and i is the channel index. The channel

parameters given in [32] are σ0 = 0.005, α = 1.4, Q = 1.67, and i = 1–10. Fig 4(b) shows exam-

ple images of 10 D-DOG channels. Note that the D-DOG CHO was derived for low resolu-

tion images (e.g., nuclear resolution) [32], but many researchers have used the D-DOG

CHO as an anthropomorphic model observer to assess breast image quality with high

Fig 4. Exampled channels of LG CHO and D-DOG CHO. (a) Exampled 10 number of LG spatial channel images with au = 11 pixels (left: p = 0, right:

p = 9). (b) Exampled 10 number of D-DOG frequency channel images (left: i = 1, right: i = 10).

https://doi.org/10.1371/journal.pone.0229915.g004
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resolution and showed that the detection performance of the D-DOG CHO correlated with

human observer’s performance [36, 51–53].

To reduce the data dimensionality of g, channelized image v can be expressed by applying

channel matrix T to g as given by

v ¼ Tg: ð12Þ

Matrix T of the LG channels is implemented using discrete sample values from Eq (8). For

the D-DOG channels, matrix T was discrete sample values from the inverse Fourier transform

of Eq (10).

CHO template wv and decision variable tj can be derived as

wv ¼ Kv
� 1Δvs; ð13Þ

tj ¼ wv
tvj; j ¼ 0; 1; ð14Þ

where the covariance matrix Kv is computed by averaging the covariance matrices of the sig-

nal-present (v1) and signal-absent (v0) channelized images, and Δvs is the mean difference

between the two channelized images. The detectability of model observer is typically higher

than that of a human observer, and thus we applied internal noise to D-DOG CHO to match

the human observer performance. In this study, we add decision variable internal noise [54] as

follows:

tintj ¼ tj þ ε; ð15Þ

where variable ε indicates internal noise, which is sampled from a normal distribution with

zero mean and constant standard deviation (i.e., N(0, p)).

As a figure of merit for the detection performance, we calculate the SNRt value [25] given

by

SNRt ¼
< t1 > � < t0 >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðs2

t1
þ s2

t0
Þ

q ;
ð16Þ

where<˚> is an expectation operator. Variables t1 and t0 are the signal-present and signal-

absent decision variables, respectively, and st1
and st0

are the corresponding standard devia-

tions. Note that SNRt of D-DOG CHO with internal noise was calculated using variable tint
1

and tint
0

in Eq (16).

For observer training, we estimated the covariance matrix Kv using 500 image pairs, and

another 500 independent image pairs were used to calculate Δvs. For observer testing, decision

variables tj were computed using 100 image pairs, which were independent from training

images. The variance of the SNRt was estimated by bootstrapping the decision variables 1,000

times [49, 50]. For model observer variability, we used 10 trained model observers using inde-

pendently generated training data sets, and then averaged the 10 SNRt values. For the standard

deviation of internal noise, variable p was selected to minimize the root-mean-square error

(RMSE) in the SNRt values between the mathematical model observer and human observer for

all tasks.

Contrast-to-noise ratio. We computed CNRs [7] using 500 reconstructed in-plane

images containing a 1 mm signal. The signal and background regions of interest (ROIs) were

defined as 5 × 5 pixel squares centered in the signal and background regions, respectively. The
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CNRs were computed using the Eq (17) as follows [7]

CNR ¼
jms � mbj

mbsb
; ð17Þ

where ms and mb are the mean values of the pixels in the signal and background ROIs, respec-

tively, and σb represents the standard deviation of the background ROI. Note that the SDNR is

basically the same as the CNR, but CNR takes into account the mean value of the background

region when calculating the noise part (i.e., denominator part).

Signal power spectrum. To show the effect of reconstruction filters on signal power dis-

tribution, we computed SPS as a function of data acquisition angle. We reconstructed signal

images without anatomical noise for each reconstruction filter and data acquisition angle. To

suppress spectral leakage caused by the discrete Fourier transform, the Hanning tapering win-

dow given by Eq (18) was applied to each signal image [12, 37].

WðrÞ ¼
0:5þ 0:5cosðpr=DÞ ifr � D

0 ifr > D

(

ð18Þ

where r is the radial distance from the center, and D is half of the image width. The 2D SPS

was calculated by taking the square of the absolute value of the discrete Fourier transform of

each reconstructed signal image. Then, we performed radial averaging of the 2D SPS to yield

the 1D SPS.

Exponent β value of anatomical noise power spectrum. We compute the ensemble

mean value using 500 signal-absent reconstructed in-plane images for each reconstruction fil-

ter and data acquisition angle, and subtracte it from each image, yielding zero mean signal-

absent images. We apply the Hanning tapering window in Eq (18) to the zero mean signal-

absent images to prevent the appearance of artifacts caused by the spectral leakage. The 2D

NPS was calculated by ensemble averaging the square of the magnitude of the discrete Fourier

transform of each tapered image [55], and radial averaging of the 2D NPS was performed,

resulting in 1D NPS. The natural logarithm was applied to the radially averaged 1D NPS to

accentuate different noise structures.

To estimate the β value in Eq (1), a linear regression was performed on the logarithm-

applied 1D NPS over frequency ranges, and the ranges were chosen by maximizing the fit of

the linear regression model as determined by the coefficient of determination (i.e., R2) [12].

Results

Fig 5 shows the SNRt values of the 10 human observers (indicated by the blue dotted line and

circle marker) and averaged SNRt value (indicated by the red dashed line and diamond

marker) with 95% confidence intervals for all 6 tasks. Fig 6 shows the SNRt values of the

human and model observers with 95% confidence intervals. Additional data acquisition within

a larger angular range further reduces overlapping tissue, which improves the signal detectabil-

ity, as shown in Figs 5 and 6. Note that these trends were also observed in the results of [15,

17], where Hanning weighted ramp filter was used for FBP reconstruction. The SNRt trends of

both data acquisition angles (Task 1-3 and Task 4-6) are similar, and the filter scheme 3 yields

lower signal detectability than the filter schemes 1 and 2. Although the ST filter is effective to

reduce the aliasing artifacts along the z-direction, it degrades the signal detection performance

of human observer regardless of the data acquisition angles. Note that the the ST filter was

used to improve the imaging performance of the DBT system [23] because of its high SDNR,

although the SDNR did not reflect the effect of background correlation. Although not
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presented in this work, we observed similar detectability trends for small signals (i.e., 1 mm

and 2 mm) and high fibro glandular density (i.e., 60% VGF). More results are provided in S1

Data.

For all tasks, the SNRt of D-DOG CHO is generally smaller than that of LG CHO because

the D-DOG channels suppress the signal energy in the low frequency region [26, 32], but the

overall SNRt trends of both model observers are similar, as shown in Fig 6. The SNRt of

D-DOG CHO is higher than that of the human observer, which is matched well after including

internal noise. Note that the optimal standard deviation for internal noise, p, was 4.7 in this

work. The Pearson correlation coefficient to quantitatively measure the correlation between

detectabilities of human observer and D-DOG CHO with internal noise [56] was 0.95, which

indicates that the SNRt values of the human observer and D-DOG CHO with internal noise

are well correlated.

Table 4 summarizes the CNR values for all tasks. Since the DBT system used in this work

acquires more data sample for the signal as the acquisition angle increases, higher CNRs can

be achieved in the reconstructed DBT image with increased data acquisition angle. From the

reconstruction filter scheme perspective, filter scheme 2 (scheme 3) introduces background

blurring by the Hanning filter (Hanning and ST filters), and thus exhibits a higher CNR than

filter scheme 1 due to the reduced background noise. Consequently, the CNR value is the high-

est when a 60˚ acquisition angle and filter scheme 3 are used (i.e., Task 6). The CNR trend for

Fig 5. SNRt values of human observer study. The SNRt values of each human observer (indicated by the blue dotted

line and circle marker) and averaged SNRt value (indicated by the red dashed line and diamond marker) with 95%

confidence intervals for all tasks.

https://doi.org/10.1371/journal.pone.0229915.g005
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the different tasks shows a negative correlation with the human observer performance since it

does not reflect the effect of background correlation on signal detection.

In Fig 7, the SPS is plotted for the reconstruction filter schemes and data acquisition angles.

Overall, using a larger acquisition angle can achieve higher SPS because of the additional sam-

pling of the signal for reconstruction. For the reconstruction filter schemes, the filter scheme 2

(scheme 3) degraded the SPS values due to blurring effect of the Hanning filter (Hanning and

ST filters) compared to the filter scheme 1. It can also be observed that the SPS of filter scheme

3 for a 60˚ acquisition angle is much lower than that for 20˚ acquisition angle because the ST

filter makes the signal more blurred as the acquisition angle increases, as described in Eq (3).

As a result, in contrast to the CNR results, the filter scheme 1 with 60˚ acquisition angle

achieves the maximum SPS (i.e., Task 4).

Fig 8 illustrates the radially averaged NPS for the reconstruction filter schemes and data

acquisition angles. The radially averaged NPS is plotted up to 1.5 cyc/mm because the signal

power is concentrated below this value, as shown in Fig 7. As with the SPS, the anatomical

NPS from filter scheme 2 (scheme 3) is blurred by the Hanning filter (Hanning and ST filter),

Fig 6. SNRt values of human and model observers. The SNRt values of the human and model observers with 95%

confidence intervals for all tasks.

https://doi.org/10.1371/journal.pone.0229915.g006

Table 4. Contrast-to-noise ratio.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

29.10 41.90 48.18 38.20 62.86 72.74

https://doi.org/10.1371/journal.pone.0229915.t004
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and the blurring effect from the ST filter increases when the data acquisition angle increases as

shown in Fig 8(a) and 8(b). From the radially averaged NPS, we estimated the β values and

reported them in Table 5. Note that the fitting frequency ranges was from 0.3 to 0.7 cyc/mm,

where the R2 was larger than 0.99 [37]. Reducing the high frequency energy by reconstruction

filter increases the slope of the logarithm-applied radial NPS, which results in a higher β values.

When the data acquisition angle increases, the overlapping breast tissues are reduced, yielding

Fig 7. Signal power spectrum. Signal power spectrum for a 1 mm signal diameter with the different reconstruction filter schemes for data acquisition

angles of (a) 20˚ and (b) 60˚.

https://doi.org/10.1371/journal.pone.0229915.g007

Fig 8. Noise power spectrum. Noise power spectrum from the reconstructed in-plane images for data acquisition angles of (a) 20˚ and (b) 60˚.

https://doi.org/10.1371/journal.pone.0229915.g008
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lower β values. However, in the case of filter scheme 3, the noise power blurring by the ST filter

is more dominant when the acquisition angle becomes larger, and thus the reduction of over-

lapping breast tissues does not have a significant effect on the β value. From the β value per-

spectives, Task 4 (smallest β value) can be regarded as a candidate to optimize the DBT system

performance.

To investigate the correlation between signal detection performance of human and tradi-

tional metrics, we computed normalized CNR (nCNR), SPS (nSPS) and the inverse of β value

(nbeta), as shown in Fig 9. Note that the nSPS was computed using the peak value of SPS [11],

and we calculated nbeta as the inverse of β value because a smaller β value was regarded as a

surrogate with better detectability. Since the background correlation of breast is not reflected

in the CNR measurement, the signal detection performance of human observer is not predict-

able using the CNR metric. In the case of SPS and β values, the trends of signal detection per-

formance appear to be similar to detectability of the human observer within the same data

acquisition angle (Tasks 1-3 and 4-6) as shown in Fig 9(b) and 9(c). However, it is difficult to

expect the relative rank between different data acquisition angles, indicating that either SPS or

β value is not proper to predict the relative rank of signal detectability for different data acqui-

sition angles in DBT system.

For qualitative comparison, Fig 10 shows samples of the reconstructed in-plane breast

images used in this work. Reduced anatomical tissue superposition is observed as the

Table 5. β values of the anatomical NPS.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

2.02 2.72 3.28 1.83 2.58 3.30

https://doi.org/10.1371/journal.pone.0229915.t005

Fig 9. Comparison results between human observer and traditional metrics. Comparison between human observer

results and normalized values of (a) CNR (nCNR), (b) SPS (nSPS), and (c) the inverse of β value (nbeta).

https://doi.org/10.1371/journal.pone.0229915.g009

Fig 10. Exampled of reconstructed breast images. Examples of reconstructed in-plane images containing a 1mm diameter signal for all tasks. The

display window is set by [min max] mm−1 for each task to visualize the background structures more clearly.

https://doi.org/10.1371/journal.pone.0229915.g010
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acquisition angle increases, which can help improving the signal detectability as predicted

from Figs 5 and 6. In Fig 10, it is seen that both the signal and background are blurred by the

reconstruction filter, and the degree of the blurring is different across the reconstruction filter

schemes. While the aliasing artifact along the z-direction is reduced by the ST filter, it is diffi-

cult to detect the signal when the ST filter is applied, which is consistent with human and

model observers results. Higher CNR, higher SPS, and smaller β values were known to corre-

late with better DBT image quality. However, based on our results in Figs 5–10 and Tables 4–

5, these metrics do not represent improved signal detection performance for the in-plane DBT

images with various tasks of this study.

Discussion and conclusions

The main purpose of this work was to investigate the effects of reconstruction filters and data

acquisition angles on human observer performance for in-plane DBT images. Our results

showed that the detection performance of human observers was dependent on the reconstruc-

tion filter schemes in the same data acquisition angle. Despite the advantages of reducing alias-

ing artifacts, using the ST filter degraded the detection performance of human observers for

the signal in the same data acquisition angle. This trend was predicted well using a mathemati-

cal model observer with internal noise.

In previous studies [7–14], higher CNR, higher SPS, and smaller β values have been consid-

ered a surrogate measure for DBT image quality. However, SPS and NPS reflect only half of

the numerator or denominator for the Fourier-based ideal observer, and CNR has a limitation

to fully reflect of the human perception. For the tasks in this work, the correlation between

detection performance of human and the traditional metrics was not observed in both the sig-

nal detectability trend and their relative rank.

We used reconstruction filters commonly used in research fields to generate breast tomo-

synthesis images because it is limited to identify the shapes of reconstruction filters used by

commercial vendors due to the confidential properties. To show the effect of reconstruction

filters on resolution performance, we measured in-plane modulation transfer function (MTF)

along the fx-direction and artifact spread function (ASF) along the z-direction. In both data

acquisition angles, the in-plane MTF of filter scheme 2 (scheme 3) is degraded by the Hanning

filter (Hanning and ST filters) compared to that of filter scheme 1 (S1 Data). And, ASFs are

almost the same for the same data acquisition angle regardless of reconstruction filter schemes,

which is consistent with the trend observed in a previous study [57], and the spatial resolution

along the z-direction improved as the data acquisition angle increased (S1 Data). Although we

did not use the reconstruction filters used by commercial vendors, we showed that signal

detectability was dependent on reconstruction filters. Based on this result, we expect that signal

detectability would be changed if the ST filter combined with spectral filters makes the images

sharper.

In the FDK reconstruction, projection data were filtered with linear interpolation [i.e.,
sinc2(f)] which reduced the high frequency components, and to preserve them, sinc interpola-

tion was often used during back-projection [48]. The frequency responses for linear and sinc

interpolations are not significantly different at the low frequency region where the anatomical

noise is dominant over the quantum noise for a detection task with signals larger than 1 mm

diameter [15, 46, 58], and thus, the trends of signal detectability observed in this study are

expected to be similar.

The power spectrum of a large signal is concentrated in low frequency regions where the

anatomical noise is dominant over the quantum noise [15, 46, 58]. As shown in S1 Data, the

blurring effects by reconstruction filters are more severe in high frequency regions than in low
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frequency regions. Accordingly, the effect of quantum noise on detectability of a large signal

(e.g., 5 mm diameter) is reduced further, and thus, the effect of the reconstruction filters on

signal detectability is not noticeable as shown in S1 Data.

To show the effect of sampling intervals on signal detectability, we performed additional

experiments with different sampling intervals (i.e., 1˚ and 3˚), and SNRt values were calculated

using LG CHO. The overall SNRt trends and levels are similar regardless of sampling intervals

(S1 Data), which is consistent with a previous study [17].

In this work, we investigated the image quality of DBT systems through a simulation study.

Since DBT systems have many possible configurations that can be optimized, it is essential to

conduct investigation using a well-designed DBT simulation including real physical factors. In

this study, (1) the blurring effects from the finite focal spot and the detector cell [22] were not

considered. These factors introduce additional blurring, but the overall detectability trends

would remain the same because the blurring effect from these factors is relatively small com-

pared with that from the reconstruction filters. (2) The effects of X-ray scatter [59] were not

considered in the current work because scatter radiation has different effects depending on

system geometry, breast thickness, and VGF. To show the effect of scatter radiation on signal

detectability, we simulated scatter radiation for DBT systems with the scatter-to-primary ratio

(SPR) of 0.475 [60, 61]. The contrast of the reconstructed in-plane images is degraded by scat-

ter radiation, and compared with the detectability without scatter radiation, the overall detect-

ability trends with scatter radiation are similar but the level decreases (S1 Data). (3) Using a

sphere object, we evaluated the human observer performance for each task and compared it

with its upper performance estimated by LG-CHO. While the LG-CHO can provide optimal

detection performance for rotationally symmetric signal shapes, if the signal has more complex

shapes with a preferred orientation, LG-CHO shows suboptimal performance. For more com-

plex signal shapes [35, 62], upper detection performance can be estimated using a partial least

squares (PLS) channel [63] although it requires much more training dataset. Investigating the

detection performance of more clinically relevant signal shapes would be an interesting future

research topic.

Since our detection task is relatively simple (i.e., detecting a sphere object with the SKE/

BKS schemes), the human observer Pc was close to 1 for tasks 4 and 5 of the 2 mm signal, and

all tasks of the 5 mm signal (S1 Data). In actual clinical environments, signal locations, signal

shapes, and background statistics are not known. In addition, higher scatter radiation and

VGFs degrade the detection performance of larger signals. In this scenario, using a larger sig-

nal size would be more appropriate to evaluate the detection performance of human observers.

For the human observer study, 10 human observers were graduate students with individual

experiences of over 2 years in human observer experiments. Although human observers were

not experienced radiologists, we think that 10 human observers were sufficient number for

this work to compare with the model observer because our detection tasks were simple

enough, and thus clinical experience would not be necessary. However, for tasks with more

complex and clinically relevant diseases, it is desirable to conduct a human observer study

with radiologists.

In conclusion, we investigated the signal detectability of the breast tomosynthesis system

using different reconstruction filter schemes and data acquisition angles. In contrast to many

researchers in the past who thought that reconstruction filters would not affect signal detect-

ability, we found that signal detection performance of the human observers depended on the

reconstruction filters in the same data acquisition angle, which is the main finding of this

work. To support this finding, we predicted the trends of signal detectability using traditional

metrics, which did not predict human perception. In contrast, human observer performance
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was well predicted by the mathematical model observer, demonstrating its merits in DBT sys-

tem optimization.

Supporting information

S1 Data. Supplementary data additional investigation results including signal size consid-

eration, 60% VGF breast phantom consideration, in-plane MTF, depth resolution perfor-

mance, sampling intervals consideration, and scatter radiation consideration.

(PDF)
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