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Abstract: Regulatory T cells are critical for maintaining immune tolerance. Recent studies have
confirmed their therapeutic suppressive potential to modulate immune responses in organ transplant
and autoimmune diseases. However, the unknown and nonspecific antigen recognition of polyclonal
Tregs has impaired their therapeutic potency in initial clinical findings. To address this limitation,
antigen specificity can be conferred to Tregs by engineering the expression of transgenic T-cell receptor
(TCR) or chimeric antigen receptor (CAR). In contrast to TCR Tregs, CAR Tregs are major histocom-
patibility complex (MHC) independent and less dependent on interleukin-2 (IL-2). Furthermore,
CAR Tregs maintain Treg phenotype and function, home to the target tissue and show enhanced
suppressive efficacy compared to polyclonal Tregs. Additional development of engineered CAR
Tregs is needed to increase Tregs’ suppressive function and stability, prevent CAR Treg exhaustion,
and assess their safety profile. Further understanding of Tregs therapeutic potential will be necessary
before moving to broader clinical applications. Here, we summarize recent studies utilizing CAR
Tregs in modulating immune responses in autoimmune diseases, transplantation, and gene therapy
and future clinical applications.
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1. Introduction

Regulatory T cells (Tregs) are a T-cell subset known for their immunomodulatory
function. Expression of CD4, CD25, and the master transcription factor, forkhead box
P3 (FOXP3), are the main characteristic markers of conventional Tregs. However, other
regulatory immune cells with different properties such as CD8+ Tregs [1], or type 1 reg-
ulatory T cells (Tr1) [2] have been described. Tregs are divided into “natural” Tregs that
develop in the thymus or “induced” Tregs that are generated in the periphery [3]. Regula-
tory T cells suppress immune responses through multiple mechanisms including direct
interaction with other immune cells or by producing immunosuppressive cytokines such
as interleukin-10 (IL-10) and Transforming growth factor beta (TGF-β) [4,5]. Tregs are
powerful suppressive cells due to the intrinsic properties of broadly suppressing T cells
with differing antigen specificity through bystander suppression and induction of other
suppressive cells by infectious tolerance. In bystander suppression, antigen-activated Tregs
can suppress colocalized conventional T cells regardless of their antigen specificity [6–8].
Moreover, through infectious tolerance, Tregs can convert conventional T cells into induced
Tregs by secretion of immune suppressive cytokines TGF-β, IL-10 or IL-35 or by interacting
with dendritic cells [9]. Hence, Tregs have been used to modulate immune responses in
transplantation, autoimmune diseases, and gene therapy [10–13]. Adoptive transfer of
polyclonal Tregs that contain multiple T-cell receptor (TCR) specificities and regulate T cells
through antigen-independent bystander suppression has been performed in early clinical
trials [14,15]. However, utilizing the polyclonal Tregs may result in nonspecific tolerance
which is known to limit robust immune responses when necessary, such as in response to
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dangerous pathogens, and may also increase the patient’s risk of cancer [16,17]. Addition-
ally, a major hurdle for nonengineered Tregs is their conversion into proinflammatory T
helper 17 cells (Th17) cells in response to certain immunological environments [18]. There-
fore, directing Tregs towards a desired antigen may boost the overall response and lower the
risk of broad and systemic immunosuppression or generation of an inflammatory response.

Alternatively, preclinical studies have shown antigen-specific Tregs may be more
efficient due to their homing ability towards the cognate antigen [19,20]. Antigen specificity
can be conferred to regulatory T cells by transducing them with recombinant TCR [21–23].
TCR-engineered T cells recognize peptides from both intracellular and surface derived
proteins. Moreover, TCR-T cells have high affinity to cognate major histocompatibility
complex (MHC)-peptide and induce a potent immune synapse formation [24–26]. However,
TCR-engineered Tregs are MHC dependent, and mismatch hybridization of the exogenous
and endogenous chains limit their application [27]. Conversely, chimeric antigen receptor
(CAR) technology offers a non-MHC-dependent approach with clinical efficacy achieved
in B-cell malignancies [28,29]. Moreover, CAR Tregs are less dependent on IL-2 than
TCR-Tregs [30]. CAR T cells utilize an extracellular antigen recognition domain from
a single-chain variable fragment (scFv) of an antibody combined with an intracellular
signaling domain. This combination allows for the construct to activate a T-cell response
without interacting with the antigen in the context of MHC [31].

1.1. Engineering Antigen-Specific Tregs

Engineering cells to express CAR constructs is commonly accomplished through viral
vector systems such as lentivirus [30,32], Gamma-retroviral [29], and adeno-associated viral
(AAV) vectors [33]. Additionally, viral-free systems such as the Sleeping Beauty (SB) [34],
or piggyBac transposon have been used to integrate CAR encoding DNA with favorable
integration into the target genome [35]. Furthermore, Clustered regularly interspaced short
palindromic repeats (CRISPR)- CRISPR associated protein 9 (Cas9) gene-editing technology,
which allows for the insertion of DNA at specific locations directed by RNA, has also been
used to engineer CAR T cells. CRISPR-engineered CAR T cells, which express CAR from
an endogenous TCR locus remain active for longer periods than their virus-transduced
counterparts [36].

The origin of transduced cells for the creation of CAR Tregs may be isolated polyclonal
T cells, CD4+ T cells or Tregs (Figure 1). In CAR Tregs derived from polyclonal Tregs, Tregs
are isolated and transduced with a CAR construct. However, this strategy is limited not
only by low levels of Tregs in peripheral blood, but also the potential for downregulation of
the Treg phenotype. Additionally, Tregs have been engineered by cotransducing CD4+ or
CD3+ T cells with CAR constructs and FoxP3 cDNA. Studies have shown that transfection
of T cells with FoxP3 induces regulatory activity [37,38]. This strategy aims to resolve the
low population of primary Tregs in peripheral blood [39] and loss of FoxP3 expression in
endogenous Tregs [18,37,40].

1.2. CAR-T Generations

CAR constructs are stratified into multiple generations by the combination of signaling
domains, as shown in Table 1. The first-generation signaling domain only contains CD3ζ,
whereas second and third generations include one or multiple additional costimulatory
domains such as CD28 and/or 4-1BB, respectively [41–44]. Dawson et al. compared
second-generation CAR constructs with multiple costimulatory domains. Their result
suggested Tregs expressing CAR encoding wild-type CD28 are significantly more effective
than other costimulatory domains in suppression of an immune response in a Graft versus
hosed disease (GvHD) disease model [43]. Furthermore, Lamarthee et al. showed 4-1BB
CAR Tregs exhibit decreased lineage stability and reduced in vivo suppressive capacities.
Yet, transient exposure to mTOR inhibitors and vitamin C improves 4-1BB CAR Treg
in vivo function [45]. In a separate study, Shrestha et al. showed CAR Tregs generated
with the 4-1BB domain are able to prevent GvHD in murine model [46]. In addition,
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CAR T-cell studies also suggest 4-1BB costimulation will increase CAR T-cell persistence
and ameliorate T-cell exhaustion [47,48]. Therefore, recent approaches created the third
generation of CAR Tregs by including both 4-1BB and CD28 costimulatory domains [49,50].
Additional comparative studies are required to select the best combination for optimal and
stable Treg functionality. Since the costimulatory domains and cell type used to generate
CAR Tregs greatly determine their function, these attributes for each study described can
be found in Table 2.

Figure 1. Generation of chimeric antigen receptor regulatory T cells (CAR Tregs). CAR Tregs are
generated by transduction of polyclonal Tregs with CAR construct (left) or cotransduction of T cells
with CAR construct and forkhead box P3 (FoxP3) gene (right).

Table 1. Chimeric antigen receptor (CAR)-T Generations.

CAR
Generation

Stimulatory
Domain

Costimulatory
Domain(s)

Graphical
Representation Functional Observations

1st CD3ζ none

1st generation CARs are not used
in CAR Treg studies as they are
unable to activate resting T cells

nor promote a continuous
active response.
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Table 1. Cont.

CAR
Generation

Stimulatory
Domain

Costimulatory
Domain(s)

Graphical
Representation Functional Observations

2nd CD3ζ

CD28

A CD28 costimulatory domain
containing CAR showed the

greatest function in GvHD mouse
models when compared to 10

other signaling domains. These
CARs can also show

antitumor effects [43].

4-1BB

4-1BB-containing CARs are more
resistant to T-cell exhaustion [48].

Function is improved by exposure
to mTOR inhibitors
and vitamin C [45].

3rd CD3ζ CD28 + 4-1BB

Designed to combine benefits of
both CD28 and 4-1BB and increase
functional capabilities of the CAR

cells [49,50].

Table 2. Summary of applications of CAR Tregs in multiple disease conditions. *** indicates unknown.

Disease Condition Cell Type CAR Generation Target Results References

GvHD

Human nTreg cells Second generation
(CD28)

HLA–A2 MHC
complexes

Expression of regulatory cell markers
and transcription factors in vitro and

in vivo. Prevented GvHD in
murine models.

Noyan et al.,
2017 [51]

Human CD4+CD25+

Treg cells
Second generation

(CD28)
HLA–A2 MHC

complexes
Antigen-specific suppression reducing

alloimmune-mediated skin injury.
Boardman et al.,

2017 [52]

Human T cells Second generation
(41BB) CD83+ dendritic cells Prevented GvHD in murine models. Shrestha et al.,

2020 [46]

Human Treg cells Second generation
(CD28) CD19+ B cells Suppressed GvHD associated

antibody production.
Imura et al.,

2020 [53]

Human CD8+

CD45RClow/− Treg
cells

Second generation
(CD28)

HLA–A2*02 MHC
complexes

Suppressed immune responses caused
by HLA mismatch. Human skin graft
preserved in mouse models 100 days

post engraftment.

Bézie et al.,
2019 [54]

Type 1 Diabetes

Murine CD4+ FoxP3+

T cells
Second generation

(CD28) FITC mAB conjugate Prolonged islet allograft survival. Pierini et al.,
2017 [55]

Murine CD4+ T cells Second generation
(CD28) Insulin CAR Tregs remained in spleen 17 weeks

post infusion.
Tenspolde et al.,

2019 [40]

Human CD4+ and
CD8+ T cells

Second generation
(CD28) HiP2 Increased levels of IL-2 but limited

expansion due to tonic signaling.
Radichev et al.,

2020 [56]

Murine Treg cells *** GAD65 Beta cell
epitopes

Localization to pancreatic islets 24 h post
infusion. Large Treg population in the
pancreas and spleen and lower blood

glucose levels in CAR Treg
treated groups.

Imam et al.,
2019 [57]
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Table 2. Cont.

Disease Condition Cell Type CAR Generation Target Results References

Rheumatoid Arthitis Human Treg cells *** Citrullinated
vimentin (CV) Studies in progress. Raffin et al. [58]

Multiple Sclerosis Murine CD4+ T cells Second generation
(CD28)

Myelin
oligodendrocyte

glycoprotein (MOG)

Suppressed effector T-cell proliferation
in vitro. In vivo, CAR Tregs localized to

the brain and reduced levels
proinflammatory cytokine mRNA and

disease symptoms.

Fransson et al.,
2012 [37]

Vitiligo Murine CD4+ FoxP3+

Treg cells
Second Generation

(CD28)
Ganglioside D3

(GD3)

Elevated IL-10, regulated melanocyte
cytotoxicity, and

delayed depigmentation.

Mukhatayev et al.,
2020 [59]

Inflammatory
Bowel Disease

Murine CD4+CD25+

Treg cells
Second Generation

(CD28)
2,4,6-trinitrophenol

(TNP)

Suppression of effector T-cell
proliferation in vitro. Increased survival
rate in vivo and reduced UC symptoms.

Elinav et al.,
2008 [60] Elinav
et al., 2009 [32]

Murine CD4+CD25+

Treg cells
Second Generation

(CD28)
Carcinoembryonic

antigen (CEA)
Reduced severity of UC in

murine models. Blat et al., 2014 [61]

Murine Treg cells Second Generation
(CD28) IL-23R

Suppression of conventional T-cell
proliferation in vitro. Reduced intestinal

inflammation and reduced peak
of disease.

121 ASGTC [62]

Asthma Murine embryonic
stem cells

Second Generation
(CD28)

Carcinoembryonic
antigen (CEA)

CAR Treg localization to the lungs and
reduced inflammation.

Skuljec et al.,
2017 [63]

Hemophilia

Human Treg Cells Second Generation
(CD28) FVIII

Suppression of B-cell and T-cell
responses and regulated FVIII-specific T

effector cell proliferation.

Yoon et al.,
2017 [64]

Murine CD4+ T cells Third Generation
(CD28 + 41BB) FVIII Inhibited FVIII antibody production and

maintained FVIII clotting ability. Fu et al., 2020 [50]

Murine CD4+CD25+

Treg cells
Second Generation

(CD28) FVIII
FVIII-specific CAR Tregs lost

suppressive activity where TruC Tregs
did not.

Rana et al., [65]

Immune Response to
Gene Therapies CD3+ T cells Third generation

(CD28 + 41BB) AAV Capsid

Suppression of effector T-cell
proliferation and cytotoxicity. Inhibition

of capsid induced immune responses
through increased immunosuppressive

cytokines and reduced cellular
infiltration. Transgene expression
remained stable long-term in vivo.
Isolated immune cell showed AAV

capsid antigen specificity.

Arjomandnejad
et al., 2021 [49]

2. Application for CAR Treg Therapy

Herein, we review the Treg application in modulating immune responses in multiple
disease conditions focusing on the recent advancements of CAR Tregs.

2.1. GvHD

Graft-versus-host disease (GvHD) is caused by immune cells in the grafted tissues
attacking recipient cells following allogeneic transplantation of organs rich in lymphoid
cells, such as liver or nonirradiated blood transfusion [66]. Immune responses to solid
tissue transplantation can be classified to direct and indirect pathways of allosensitization.
In direct allorecognition, donor APCs migrate into the recipient lymphoid tissue where
they present donor antigens to naïve T cells [67–70]. In indirect allorecognition, damage
associated molecular patterns (DAMPs), which are released due to transplantation or cell
death activate recipient APCs that migrate to draining lymph nodes (dLNs) where they
engage recipient naive T cells, leading to T-cell activation [71–73].

In contrast to transplant rejection, which is mediated by the host immune response,
graft-versus-host disease (GvHD) is caused by donor immunocompetent T cells primed by
either donor or host APCs inducing an immune response against the host. The pathophysi-
ology of GvHD can be acute or chronic depending on timing and range of symptoms [74].

Modulation of Tregs for therapeutic use has become an important area of investi-
gation in GvHD, with the majority of studies focusing on in vitro-expanded polyclonal
Tregs [75–78]. The first clinical trial of Tregs in GvHD showed modest impacts on acute
GvHD symptoms but significant alleviation of the symptoms in chronic GvHD and re-
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duction in the use of immunosuppressive agents [10]. Following trials demonstrated that
adoptive transfer of ex vivo-expanded CD4+CD25+CD127− Tregs prevented both acute and
chronic GvHD [11,79,80]. Additionally, a pilot study of 10 liver transplant patients treated
with ex vivo-generated Tregs showed normal graft function with few adverse events after
withdrawal of immunosuppressive agents [81].

Subsequent studies began using CAR Tregs which were alloantigen-specific human
Tregs engineered to express an HLA–A2–specific CAR (A2-CAR) [30]. These A2-CAR
Tregs maintained high expression of FoxP3, CD25, Helios, and CTLA-4 in vitro and in vivo.
Further, they prevented xenogeneic GvHD in immune-deficient NOD.SCID.γc −/− (NSG)
mice, which was not observed in animals treated with polyclonal Tregs. Additional studies
examined A2-CAR Tregs in skin allograft models that completely prevented rejection of
allogeneic target cells and tissues in immune-reconstituted humanized mice in the absence
of any immunosuppression [51]. Concurrently, Boardman et al. developed a second
generation of CAR Tregs targeting the same antigen, HLA–A2. This A2-CAR showed
antigen-specific suppression without eliciting cytotoxicity in vitro. Moreover, these A2-
CAR Tregs migrated to HLA–A2-expressing cells and alleviated the alloimmune-mediated
skin injury in mice [52]. Following the success of A2-targeting CAR Tregs, recent studies
have focused on generating CAR Tregs with distinct targeting domains such as CD83 [46],
which prevents GvHD in murine models, or CD19, which suppresses B-cell antibody
production and pathology leading to GvHD [53]. In addition to the development of CD4+

CAR Tregs, CD8+ Tregs are emerging as potential candidates for suppression of GvHD [54].
These promising results have led to first CAR Treg clinical trial authorization by UK

MHRA and US (NCT04817774) for kidney transplant patients, sponsored by Sangamo
Therapeutics. This trial (STeadfast) utilizes CD4+/CD45RA+/CD25+/CD127low/− Tregs
that have been ex vivo engineered with a CAR construct to recognize HLA–A2 [82]. The
STeadfast trial may support advantages of CAR Tregs over polyclonal expanded Tregs
in a clinical trial setting, further expanding the possibility of using CAR Tregs in other
disease conditions. Other biopharmaceutical companies are following close behind in
hopes of starting clinical trials, such as Quell Therapeutics, focused on CAR Tregs for liver
transplant recipients.

2.2. Diabetes

Type 1 diabetes (T1D) is an autoimmune disorder characterized by insulin deficiency
due to the destruction of pancreatic β cells [83]. Several studies have focused on T1D
due to its high prevalence rate (more than 1.6 million in the United States) [62]. Current
therapies include insulin administration, diet and exercise [84]. Morbidity associated with
T1D includes constant monitoring of blood glucose levels and lifelong insulin usage.

Studies have shown reduced immune suppressive functionality of Tregs in patients
with T1D [85,86]. This observation and the success of Treg transplantation in maintaining
immunologic tolerance [87] has led to the application of Treg infusion in T1D patients to
rescue remaining β cells. Infusion of expanded antigen-specific Tregs showed promising
results in animal models in blocking and reversing diabetes [20,88,89]. Yet, isolating suffi-
cient antigen-specific Tregs is challenging due to their rarity in circulation. Hence, studies
have focused on transduction of the more abundant polyclonal CD4+ T cells with FoxP3
gene to convert them to Tregs. Although the ectopic expression of FoxP3 conferred a sup-
pressor phenotype in naïve CD4+ T cells, this was not effective in diabetic mice. In contrast,
FoxP3-transduced islet-specific T cells stabilized and reversed diabetes in vivo [90]. This
suggested a marked benefit to antigen specificity, which alternatively could be conferred
to polyclonal T cells by engineered TCR or CAR technology. In this context, Brusko’s
group showed the ability of glutamic acid decarboxylase (GAD)-specific TCR-transduced
Tregs to suppress the proliferation of both antigen-specific T cells and T cells with different
antigen specificities in vitro [22]. Concurrently, Hull et al. transferred islet-specific TCRs
to regulatory T cells and confirmed their ability to suppress the proliferation of CD4 and
CD8 T cells in vitro [23]. Companies such as GentiBio and Abata are developing TCR-
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engineered Tregs for treatment of T1D. Since the application of TCR-transduced Tregs is
limited by MHC restriction, other studies have focused on the development of CAR Tregs
specific to other diabetes antigens. Tenspolde et al. created insulin-specific CAR Tregs by
transducing CD4 T cells with second-generation CAR and FoxP3 gene. Insulin-specific
CAR Tregs showed a similar phenotype to natural Tregs, and their function was confirmed
in vitro by suppressing proliferation of effector T cells. Although insulin CAR Tregs did
not prevent diabetes in NOD/Ltj mice, the cells were found in the spleen 17 weeks after
infusion [40]. In another study, human pancreatic endocrine marker, HPi2-specific CAR
Tregs, were generated by transducing Tregs with a second generation of CAR construct, but
failed to maintain expansion due to tonic signaling [56]. In another study, CAR Tregs were
designed against two immunodominant GAD65 beta-cell epitopes. Both CAR Tregs homed
to pancreatic islets of humanized T1D mouse model 24 h after infusion. Moreover, the Treg
population was significantly increased in the pancreas and spleen of the CAR Treg-treated
groups compared to the control groups. CAR Treg-treated groups also showed lower blood
glucose compared to the control groups [57].

Additionally, allogeneic islet transplantation is a promising cell-based therapy for T1D.
However, host-mediated immune rejection is a limiting factor in broad application of islet
transplantation [91]. In a recent study, poly lactic-co-glycolic acid (PLGA) microparticles
(MPs) were engineered for the localized and controlled release of immunomodulatory
TGF-β1. In vitro, the incubation of the particles with CD4+ T cells resulted in the induction
of polyclonal and antigen specific Tregs. However, the presence of particles did not lead
to significant graft protection in vivo [92]. Pierini et al. utilized the transduction of Tregs
with a second-generation CAR construct to generate FITC-specific CAR Tregs (mAb CAR
Treg). In this system, the CAR construct expresses an FITC binding domain allowing the
use of any FITC-conjugated antibody to target the desired antigen. Utilizing mAb CAR in
combination with FITC-conjugated antibodies targeting MHC class I proteins, they were
able to prolong islet allograft survival in vivo [55]. These findings further indicate the
ability of CAR Tregs to regulate the immune responses leading to T1D.

2.3. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is the most common inflammatory arthritis characterized
by synovial inflammation, hyperplasia, autoantibody production, cartilage and bone de-
struction, and systemic features, including cardiovascular, pulmonary, psychological, and
skeletal disorders [93,94]. Multiple immune cell subsets are involved in the development
of RA. Among them, the interactions between T cells and macrophages play an essential
role [95]. The current therapy for RA includes disease-modifying antirheumatic drugs
(DMARDs, methotrexate), anti-TNF-α, anti-CTLA-4 or small-molecule targeted DMARDs.
However, these therapies are lifelong and accompanied with side effects and incomplete
clinical response [96,97]. Therefore, inducing self-tolerance prior to serious tissue damage
would be advantageous. Studies have investigated the benefit of increasing Treg numbers
or improving Treg functionality [98–100]. Wright et al. utilized Tregs specific for ovalbumin
(OVA) to suppress OVA-induced arthritis by generating either TCR-transduced primary
Tregs or TCR-FoxP3-transduced CD4+ T cells, to induce the Treg phenotype [21]. In vitro,
TCR-FoxP3 CD4+ T cells, but not TCR-Tregs, proliferated in response to antigen. Further-
more, both engineered Tregs showed OVA-dependent suppression of proliferation of T cells
specific for a different antigen through bystander suppression. In vivo, both TCR-Tregs
and TCR-FoxP3-induced Tregs localized into the damaged tissue, with neither converting
to proinflammatory Th17 cells. Moreover, engineered Tregs reduced the number of inflam-
matory Th17 cells and significantly decreased arthritic bone destruction [21]. Utilizing
T cells differentiated into Tregs targeting type II collagen, Sun et al. showed that Tregs
differentiated from CD4+ T cells isolated from RA mice after onset of disease reversed
collagen-induced arthritis (CIA) progression in mice. Moreover, these antigen-specific Tregs
suppressed inflammatory cytokines and were stable in vivo [101]. In contrast, Raffin et al.
applied the CAR technology to generate antigen-specific Tregs directed against citrullinated
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vimentin (CV), which is present abundantly in the extracellular matrix of inflamed joints
in RA patients [58]. Sonoma Biotherapeutics is currently developing at CAR Treg therapy
for RA.

2.4. Multiple Sclerosis

Multiple Sclerosis (MS) is an autoimmune demyelinating and neurodegenerative
disease caused by autoreactive T cells recognizing myelin epitope, resulting in irreversible
disability in more than 1 million people in the United States [102]. The treatment of MS
includes nonspecific immune-suppressive drugs or B-cell-depleting monoclonal antibodies.
However, the current treatments may result in severe side effects and cause global immune
suppression, hence more specific and local treatments are needed [103,104]. Tregs in patients
with MS have been found to secrete more IFN-γ and less IL-10 compared with healthy
controls [105,106]. Considering the impaired function of Tregs in MS patients [107,108],
utilizing Treg cell therapy has been suggested.

Preclinical studies using an experimental autoimmune encephalomyelitis (EAE) model,
a flawed but adequate murine model of MS, confirmed the effectiveness of Tregs in sup-
pressing antigen-specific autoreactive immune responses [109] through a mechanism that
involves IL-10 [110]. Expectedly, adoptive transfer of antigen-specific Tregs derived from
TCR transgenic mice was successful in controlling a murine model of MS [111]. To achieve
a greater number of cells for adoptive transfer, Fransson et al. modified CD4+ T cells with
CAR targeting myelin oligodendrocyte glycoprotein (MOG) and murine FoxP3 gene to
create antigen-specific Tregs. The MOG-CAR Tregs suppressed effector T cells’ proliferation
in vitro. Moreover, the engineered Tregs localized into various regions in the brain after
intranasal cell delivery. The MOG-CAR Tregs reduced disease symptoms and decreased
proinflammatory cytokine mRNAs in brain tissue in EAE mice [37]. Later, Kim et al. engi-
neered Tregs with myelin-basic protein-specific TCR that was derived from MS patients.
These engineered Tregs upregulated Treg markers and were activated in response to the
antigen. In vitro, they suppressed the effector T cells for that were specific for the same anti-
gen and T cells with different antigen specificity through bystander suppression. In vivo,
the TCR-Tregs localized in the brain and spinal cord and significantly reduced disease score
in the EAE MS mouse model [112]. The application of immunomodulatory engineered
Tregs in preclinical studies highlights their potential role in reducing morbidity and mortal-
ity associated with MS, with several biopharmaceutical companies are pursuing this such
as Abata Therapeutics and TeraImmune.

2.5. Inflammatory Bowel Disease

Inflammatory Bowel Disease (IBD) describes conditions characterized by chronic
inflammation of the gastrointestinal tract. Ulcerative colitis (UC) and Crohn’s disease (CD)
are the most common forms of IBDs. In CD, all layers of entire gastrointestinal tract can be
affected by inflammation, whereas in UC inflammation occurs in colonic mucosa [113–115].
Common symptoms in CD include fatigue and abdominal pain, while in UC, bloody stool
and diarrhea are most common [116]. Depending on the severity of the disease, treatments
include nonsteroid anti-inflammatory (anti-TNF) drugs, steroids, and antibiotics [117].

Studies suggest the imbalance between gut microbiota and the immune response play
an important role in the IBD [118]. Moreover, evidence suggests that Tregs have a crucial
role in maintaining tolerance and preventing autoimmune disease. However, intestinal
inflammation is not associated with a reduction in Treg population. Yet, mice with deficient
Treg activity are more susceptible to developing severe colitis [119,120]. Therefore, multiple
studies have attempted to harness the Treg suppressive activity to maintain tolerance in UC.
In one study, isolated CAR Tregs against a known antigen of colitis (2,4,6-trinitrophenol
(TNP)) from transgenic mice suppressed effector T-cell proliferation in vitro. In vivo, after
induction of colitis, increased survival rate was observed in the CAR Treg transgenic mice
compared with wild-type animals. Moreover, transfer of TNP-CAR Tregs into a colitis mice
model reduced the symptoms and increased survival rates. The TNP-CAR Tregs were also
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able to localize in the inflamed colonic mucosa. In addition, TNP-CAR Tregs bystander
suppressed the oxazolone-induced colitis [60]. In a subsequent study, they transduced
murine Tregs with TNP-CAR which maintained FoxP3 expression and proliferated in
response to the antigen ex vivo. In vivo, transfer of TNP-CAR Treg resulted in antigen-
specific and dose-dependent amelioration of colitis [62]. Following these studies, CAR
Tregs were generated against a different antigen, carcinoembryonic antigen (CEA), which
is overexpressed in both human colitis and colorectal cancer. CEA-CAR Tregs were found
in the colons of the diseased mice and suppressed the severity of the colitis compared to
control animals [61].

Studies suggest an important role of IL-23 receptor (IL-23R) in the pathogenesis of
autoimmune diseases including CD [121,122]. In addition, increased expression of IL-23R
was shown in patients with CD compared to healthy controls. Therefore, in a recent study,
Tregs were transduced with a second generation of CAR containing CD28 costimulatory
domain targeting IL-23R. CAR Tregs suppressed conventional T-cell proliferation in vitro,
homed to the target organs and reduced peak of disease and intestinal inflammation in
mice [62]. Cell-based therapies may be a promising and effective modality for treatment or
attenuation of UC and CD.

2.6. Asthma

Asthma is a chronic respiratory disease affecting 300 million people worldwide [123].
The symptoms associated with asthma include wheezing, shortness of breath, chest tight-
ness, cough and fixed airflow obstruction in severe chronic patients [124,125]. The standard
of care for asthma includes anti-inflammatory and bronchospasmolytic drugs. However,
10–20% of patients are resistant to these symptomatic treatments [126]. Asthmatic pa-
tients are shown to have impaired and reduced number of Tregs [127,128]. Therefore, new
approaches have focused on preventing airway inflammation by transferring regulatory
T cells in a preclinical model of asthma [129]. Adoptive transfer of Tregs resulted in in-
creased expression level of IL-10 [130]. Further, one study utilized T regulatory cell epitope
(Tregitopes) to induce highly suppressive allergen-specific Tregs. Tregitopes are linear
sequences of amino acids contained within the framework of monoclonal antibodies and
immunoglobulin G that activate natural regulatory T cells [131].

Treatment with Tregitopes inhibited allergen-induced airway hyperresponsiveness
and lung inflammation [132]. To direct Tregs towards asthma associated antigens, Skuljec
et al. applied CAR technology. They engineered second-generation Tregs against CEA,
a glycoprotein present on the surface of adenoepithelia in the lung and gastrointestinal
tract, were isolated from transgenic mice; the same antigen used in the UC study described
above [61]. They showed the activation and homing of the CEA-CAR Tregs in the inflamed
lung of asthmatic mice. Moreover, the CEA-CAR Tregs ameliorated the inflammation to a
greater degree compared to the nonmodified Tregs [63].

2.7. Vitiligo

Vitiligo is a skin disease characterized by progressive skin depigmentation with 0.5–1%
frequency around the world [133]. Studies have shown that depigmentation is associated
with the infiltration of T cells and macrophages to the dermis [134,135]. Further studies
indicated that isolated T cells from patients’ skin are cytotoxic against melanocytes [136]. In
addition, impaired Treg activity and decreased population of Treg were reported in Vitiligo
patients [137,138]. Treatments include phototherapy, topical corticosteroids, calcineurin
inhibitors, and depigmentation with p-(benzyloxy)phenol, or systemic treatment with
corticosteroids, ciclosporin and other immunosuppressive agents [139]. Adoptive transfer
of Tregs and use of rapamycin resulted in remission of the disease in mice [140]. These
findings led researchers to generate CAR Tregs against ganglioside D3 (GD3), a surface
marker overexpressed in melanocytes. The CD4+ FoxP3+ Tregs were transduced with the
GD3-targeting CAR construct. In vivo, animals treated with CAR Tregs showed greater
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levels of IL-10, regulated cytotoxicity against melanocytes and delayed depigmentation
compared to the group that received untransduced Tregs [59].

2.8. Hemophilia

Deficiency in Factor VIII (FVIII) or Factor IX (FIX), known as hemophilia A or B, re-
spectively, are x-linked inherited bleeding disorders caused by mutations in clotting factor
genes [141,142]. The current clinical treatment for hemophilia includes protein replacement
therapy, which requires frequent administration of the coagulation factors and fails to
completely prevent bleeds and joint damage [143]. Moreover, introducing coagulation
factors, especially in patients with severe hemophilia, may provoke an antidrug immune
response. To promote tolerance to coagulation factors, immune tolerance induction (ITI)
through daily exposure to high-dose FVIII, has been used [144]. However, ITI is costly
and not successful in all patients [145,146]. Several clinical trials have focused on gene
therapy as a long-term and single-dose treatment to avoid frequent administration [147].
Other researchers have developed additional strategies utilizing Tregs to induce toler-
ance. Initially, Miao et al. confirmed the ability of FVIII-specific CD4+ FoxP3+ T cells to
suppress FVIII antibody production in vivo [148]. Another study showed transferring
ex vivo expanded polyclonal Tregs suppressed antibody formation against FVIII protein
therapy even after the transferred cells became undetectable [13]. However, the need for a
large number of Tregs and the risk of general immune suppression led researchers to the
development of antigen-specific Tregs. Smith et al. enhanced specific Tregs by primming
them with FVIII, which resulted in greater suppressive function compared to expanded
naïve Tregs. However, the number of the FVIII-specific Tregs is a very small percentage of
the total Treg population [149] even with expansion, hence other approaches are needed.
While some groups are focused on engineering Tregs with an antigen-specific TCR [150], as
well as companies such as TeraImmune, others utilized CAR technology [144]. Yoon et al.
generated second-generation, FVIII-specific CAR Tregs from isolated Tregs that suppressed
both B-cell and T-cell responses to FVIII. Their data also suggest bystander suppression
by modulating proliferation of FVIII-specific T-effector cells with specificity for different
FVIII domains [64]. In addition, Herzog et al. isolated FVIII-specific CD4+ T cells and
transduced them with FoxP3, creating Tregs which showed suppression of FVIII antibody
production [151]. Further, Fu et al. converted CD4+ T cells to FVIII-CAR Tregs by transduc-
ing them with a third-generation CAR construct and FoxP3 gene. Using this approach, they
benefited from a greater number of cells and overcame the plasticity and transient nature of
the adoptively transferred Tregs. Their data confirmed that the ectopic expression of FoxP3
creates effective and functional Tregs with the ability to inhibit antibody production against
FVIII in vivo [50]. In a recent study, Rana et al. compared the functionality of FVIII-specific
CAR and TruC (TCR fusion construct) Tregs. To generate TruC Tregs, they fused FVIII
scFv to murine CD3ε and observed in vivo suppression with limited persistence. A second-
generation CAR was compared to the TruC Tregs, and they observed loss of suppressive
activity in CAR Tregs. Single amino acid mutations in CD3 or CD28 increased the Tregs’
persistence and changed cytokine profile, respectively, but did not restore tolerance [65].

Antigen-specific CAR Tregs are proving to be successful treatments to modulate the
inhibitor formation associated with coagulation factors.

2.9. CAR Tregs in Gene Therapy

Recombinant adeno-associated virus (rAAV) is one of the most successful gene de-
livery tools with currently 2 FDA- and 1 EMA-approved treatments for a broad range of
diseases. However, the immune responses observed in clinical trials have limited the thera-
peutic application. The T-cell responses against AAV capsid were first observed in a clinical
trial using intravenous delivery of AAV for hemophilia, and led to the loss of transgene
expression, a result never predicted by preclinical studies. To maintain transgene expres-
sion, immunosuppression is now widely used in AAV clinical trials [152–156]. Steroids
are commonly used to modulate immune responses, but they do not specifically target
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the capsid-specific T cells and may also result in Treg depletion [157,158]. Interestingly,
clinical studies suggest that the induction of local Tregs in gene therapy studies, specifically
noted in intramuscular delivered AAV, enhance long-term transgene expression [159–161].
Induction of capsid-specific Tregs could enhance transgene expression and clinical out-
comes of AAV gene therapy. In a novel study, administration of encapsulated rapamycin
(ImmTOR) was codelivered with AAV gene therapy and resulted in reduced humoral and
T-cell responses to capsid, immune infiltration, and stable transgene expression. Moreover,
inductions of Tregs were shown to be a vital component of the ImmTOR response, as Treg
depletion greatly inhibited immunomodulatory effect [162–164].

Arjomandnejad et al. therefore designed a third-generation CAR Treg that was spe-
cific for AAV capsid. AAV-CAR Tregs in vitro display phenotypical Treg surface marker
expression, and functional suppression of effector T-cell proliferation and cytotoxicity. In
mouse models, AAV-CAR Tregs mediated continued transgene expression from an im-
munogenic capsid, despite antibody responses, produced immunosuppressive cytokines,
and decreased tissue inflammation [49].

In addition to the capsid-specific immune responses, immune response against the
delivered transgene is another limiting factor for broad applications of gene therapy. Hence,
various studies have investigated different strategies to inhibit these responses, including
broad immunosuppression [165], administration of monoclonal antibodies [166] and utiliz-
ing tissue-specific promoters [167]. One study utilized polyclonal Tregs to induce tolerance
against coagulation factors 8 and 9 in hemophilia protein replacement therapy [13]. How-
ever, due to the low cellular input and the possibility of nonspecific immune suppression,
transgene-specific CAR Tregs were generated [50,64,65,151]. AAV-CAR Tregs directed
against the AAV capsid were also shown to bystander suppress immune responses to the
immunogenic OVA transgene, similarly mediating continued transgene expression, produc-
ing immunosuppressive cytokines, and reducing tissue infiltration [49]. These data suggest
the AAV-CAR Treg can suppress both AAV capsid immune responses and vector-expressed
transgene immune responses.

Gene editing has the potential to revolutionize the gene therapy field, and with the
discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9
system, the interest in the ability to precisely edit specific genes of interest has been
enhanced [168]. However, studies have detected Cas9-associated humoral and cellular
immune responses [169–171] and the prevalence of anti-Cas9 antibodies and T cells within
the human population [172,173]. Although much success of CRISPR editing has been de-
scribed for ex vivo therapies, numerous in vivo editing strategies have suggested immune
responses to Cas9 may inhibit therapeutic effects [171,174]. Ferdosi et al. modified Cas9
protein to eliminate immunodominant epitopes by utilizing targeted mutations while still
preserving its function and specificity [175]. In addition, Moreno et al. showed immune-
orthogonal orthologues of Cas9 circumvent the immune response and allow for multiple
dosing [176].

Regulatory T cells, due to their immunomodulatory role, are superior candidates to
inhibit the immune responses against Cas9. A study by Wagner et al. found Cas9-specific
Tregs in addition to effector T cells in human samples. They further reported Cas9 Tregs
suppress Cas9-effector T cells’ proliferation and function in vitro [173]. To avoid systemic
suppression, engineering Tregs with a Cas9-specific TCR or CAR is one of the possible
strategies to overcome Cas9-mediated immune responses [177,178].

3. CAR Treg Limitations

Antigen-specific T-regulatory cells are powerful tools for immunosuppression, with a
wide variety of uses, from treatment of autoimmune diseases, to modulation of immune
responses, to gene therapy, and the first clinical trial is currently approved for kidney
transplants (NCT04817774). Additional investments are being made in the platform across
several companies focusing on creating engineered Treg products for the treatment of
autoimmune and inflammatory diseases [179]. However, further optimization is required
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to increase Tregs’ suppressive function and stability, prevent CAR Treg exhaustion, and
assess their safety profile.

An additional hurdle to the widespread use of cell-based products is the cost. Even
without engineering, cell-based products are expensive and require specialized equipment.
For example, in the year 2020, a single-dose administration of CAR T cells in hematological
malignancy is estimated to cost around USD 454,611 [180]. Therefore, the optimization
of CAR Treg production and efficacy is necessary for widespread therapeutical use, and
further optimization such as moving towards universal CAR Tregs is needed. One approach
which may reduce the production cost is generation of allogeneic CAR Tregs by removing
TCR to avoid GvHD. This off-the-shelf product could potentially treat many patients from
a single batch of engineered CAR-T cells. They could also be used in patients where
autologous therapy is not possible. Moreover, repeated dosing is feasible in the event of
relapse [181].

Promise of CAR Treg and Perspective

Despite the discussed limitations, there are significant advantages to utilizing engi-
neered antigen-specific T cells, especially CAR Tregs. Compared to polyclonal Tregs, CAR
Tregs are MHC independent, home to the target tissue due to antigen expression, and show
enhanced suppressive efficacy. Furthermore, intrinsic properties of Tregs have provided
a benefit to CAR Tregs over CAR T cells, including their ability to suppress T cells with
different antigen specificity through bystander suppression and to induce endogenous
tolerogenic cells through infectious tolerance [22,49,60,64,112]. In particular, in the case
of AAV-CAR Tregs, a single product can not only suppress immune responses against
various AAV capsid variants, but also vector-delivered transgenes, without having to create
a new CAR construct for every capsid or vector-delivered transgene, creating a versatile
therapy [49].

Expanded Tregs have shown promise as therapies for several autoimmune and inflam-
matory diseases, and may be effective in similar types of diseases. Companies are currently
investigating lupus, systemic sclerosis, and inclusion body myositis among others. One
candidate is Myasthenia Gravis (MG), which is a chronic autoimmune disease leading to
muscle weakness and fatigability [182]. Current MG therapies include immunosuppression,
which results in severe adverse effects [183]. One study showed Treg impairment in MG
patients [184]. Later, Aricha et al. administered ex vivo-generated Tregs in an MG rat
model, which led to inhibition of disease progression [185]. These findings suggest that
MG may be a candidate for CAR Treg therapy. The neurodegenerative disease amyotrophic
lateral sclerosis (ALS) is a promising potential candidate. Neuroinflammation plays a role
in ALS but is usually attributed to microglia. However, Beers et al. reported that regulatory
T cells from ALS patients show less suppressive activity ex vivo and their dysfunctional-
ity is related to disease progression and severity [186]. Moreover, ex vivo expansion of
Tregs and reinfusion in an ALS mouse model resulted in significant reduction in disease
progression [187]. Further, the reinfusion of expanded Tregs from ALS patients with IL-2
resulted in increased Treg suppressive functions and reduced disease progression in hu-
man subjects [188]. These findings make ALS an ideal candidate to evaluate the efficacy
of antigen-specific CAR Tregs. AZTherapies is currently testing a CAR-Treg approach
for treatment of several neurodegenerative diseases. Additionally, SCM LifeScience and
TeraImmune are developing CAR Tregs for atopic dermatitis using a virus-free gene deliv-
ery system. In addition, several studies have reported the role of Tregs in multiple fibrotic
diseases including cystic fibrosis, systemic sclerosis, cardiac and liver fibrosis [189–192].
Therefore, utilizing CAR Treg may prove beneficial to ameliorate fibrotic diseases as the
leading cause of mortality. Engineered Tregs have additionally been suggested to control
immune responses to gene therapies. This dual-cell and gene therapy approach could vastly
broaden the breadth of disease types engineered Tregs could treat. In AAV, gene therapy
studies suggest that AAV-CAR Tregs can modulate the immune response to the vector and
delivered transgenes, which may eliminate the use of immunosuppressive drugs. More-
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over, vector readministration may be required and CAR Tregs are a potential candidate to
suppress preexisting immunity [193]. Similarly, adoptive transfer of CAR Tregs directed
towards Cas may modulate the preexisting immunity towards CRISPR gene-editing tools,
allowing for exciting new therapeutic tools for genetic diseases. However, the combined
costs of these two expensive therapies currently limits their therapeutic application.

4. Conclusions

Although the field of engineered Tregs is early in development, many important
studies described here have generated great excitement in the field. To date, studies have
largely focused on the preclinical characterization, mechanism of action, and efficacy of
CAR Tregs, but clinical development is on the horizon and significant investment is being
made by pharmaceutical companies. Further optimizations are required for the widespread
use of engineered Tregs, yet they remain a powerful and promising modality. These
engineered T cells are starting to enter clinical trials and may provide significant therapeutic
benefit to numerous diseases reaching beyond transplantation and autoimmune diseases.
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