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Abstract: Staphylococcus aureus is amongst the most virulent pathogens, causing chronic and life-
threatening human infections. Methicillin-resistant S. aureus (MRSA) are multidrug-resistant strains,
and the ability of forming a biofilm reduces their sensitivity to antibiotics. Thus, the alternative
compounds inhibiting both resistant strains and biofilm formation are in high demand. In our
study, the strain FJKB0103 was isolated from the rhizosphere of Garcinia mangostana, showing strong
anti-MRSA activity. We performed molecular phylogenic analysis, analyzed average nucleotide
identity (ANI), in silico DNA-DNA hybridization (isDDH), and biochemical characteristics to identify
strain FJKB0103 as Pseudomonas protegens. Herein, the genome of strain FJKB0103 was sequenced and
subjected to antiSMASH platform, mutational, and functional analyses. The FJKB0103 draft genome
was 6,776,967 bp with a 63.4% G + C content, and 16 potential secondary compound biosynthetic
clusters in P. protegens FJKB0103 were predicted. The deletion mutant and complementary analysis
suggested that DAPG was the anti-MRSA compound. Further tests showed that MRSA strains were
sensitive to DAPG, and the lysis of bacterial cells was observed at a high concentration of DAPG.
Additionally, DAPG inhibited the biofilm formation of MRSA at subinhibitory concentration. These
results suggested that DAPG might be a good alternative treatment to control infections caused
by MRSA.

Keywords: Staphylococcus aureus; Pseudomonas; DAPG; biofilm

1. Introduction

Staphylococcus aureus is a common opportunistic Gram-positive pathogen that has
ubiquitous distribution in nature, such as on the skin and mucosae of the human pop-
ulation, food, air, and water. S. aureus can cause wound infections and toxin-mediated
syndromes as well as systemic and life-threatening diseases [1]. Antibiotic application is
the major method to control an S. aureus infection, but the extensive use and misuse of
antibiotics in both human and animal medicine have led to an escalating challenge with
multidrug-resistant bacterial strains, especially Methicillin-resistant S. aureus (MRSA) [2].
MRSA was first reported in the 1960s [3], and it has been recognized as a major cause of
healthcare-associated infections worldwide due to its multidrug resistance to almost all
the currently available antibiotics except vancomycin and teicoplanin [4]. Furthermore,
biofilm-associated bacteria show resistance to antibiotics: biofilm matrix protects the bacte-
ria from antibiotics by limiting their diffusion or repulsion, and cells within the biofilm,
particularly those deep within the matrix, exist in a slow-growing state, which can limit the
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efficacy of antibiotics, especially those that target active cell processes [5]. Therefore, new
treatment strategies affecting both resistant strains and bacterial biofilm formation are in
crucial demand [5].

Pseudomonas is a diverse genus of γ-proteobacteria with more than 200 validly named
species exhibiting varied lifestyles in a wide range of environments, including soil, wa-
ter, plant surfaces, and animals (https://lpsn.dsmz.de/genus/pseudomonas, accessed on
20 November 2021). The complex ecological environments of Pseudomonas spp. promote
genomic diversity. The bacteria acquire and discard genomic fragments in the process of
developing a genetic repertoire customized to their special niche, especially the biosynthetic
gene cluster of secondary metabolites. Pseudomonas spp. have received much attention
in recent decades due to the production of a remarkable array of medically and agricul-
turally important secondary metabolites, including 2,4-diacetylphloroglucinol (DAPG),
nonribosomal peptide synthase (NRPS), pyrrolnitrin (PRN), and pyoluteorin (PLT), all
of which have been proved to have antimicrobial activity [6]. DAPG could suppress a
wide variety of plant pathogens, including bacteria, fungi, and omycetes [7]. The main
antimicrobial mechanism of DAPG is an alteration of the cell membrane leading to the
dissipation of the proton gradient across the biological membranes, disorganization of
hyphal tips, including alteration of the plasma membrane, vacuolization and cell content
disintegration, and inhibition of zoosporogenesis, motility, and germination of zoospore [8–
10]. DAPG is a phloroglucinol derivative and is synthesized by phl biosynthetic gene
cluster (BCG) that comprises nine genes such as phlA, phlC, phlB, phlD, phlE, phlF, phlG,
phlH, and phlI. Four genes (phlABCD) are directly involved in DAPG biosynthesis [11].
Type III polyketide synthase (encoded by gene phlD) catalyzes the condensation of three
malonyl-CoA molecules to produce phloroglucinol (PG) [12], and the multimeric acetyl-
transferase complex Phl(A2C2)2B4 (encoded by gene phlACB) mediates the acylation of
PG to form monoacetylphloroglucinol (MAPG) and of MAPG to form DAPG [13]. PhlE is
involved in the transport of DAPG [14]. Gene phlF encodes a TetR family transcriptional
regulator that represses DAPG production [15]. Gene phlG that codes for a DAPG special
hydrolase is regulated by another TetR regulatory protein PhlH [16].

S. aureus Sta24-1 is one of the prevalent MRSA strains in China and is resistant to more
than ten antibiotics [17]. In the present work, we reported a novel isolate FJKB0103 that
inhibited the growth of MRSA strain Sta24-1. The taxonomic status of strain FJKB0103 was
determined by phylogenetic analyses, genomic analysis, and phenotypic characteristics.
The anti-MRSA compound was identified by genome mining and genetic analysis. The
data we obtained will enrich the compound database that might be used as an alternative
to control infections caused by MRSA.

2. Materials and Methods
2.1. Strains and Growth Conditions

Bacterial strains and plasmids used in this study are listed in Supplementary Table S1.
Strain FJKB0103 and its mutants were grown in Luria-Bertani broth (LB) or King’s B
medium (Proteose peptone No. 3, 10 g; K2HPO4, 1.5 g; MgSO4·7H2O, 1.5 g; Mannitol, 10 g;
KB) at 28 ◦C. Escherichia coli DH5α was grown at 37 ◦C in LB medium. Staphylococcus aureus,
Listeria monocytogene, and Bacillus cereus were grown at 37 ◦C in LB or PDA medium. Where
indicated, media was supplemented with ampicillin (50 µg/mL) or kanamycin (50 µg/mL)
and/or 5-bromo-4-chloro-3-indolyl-D-galactopyranoside (X-Gal; 40 µg/mL).

2.2. Isolation and Assays for Antagonistic Capacity of Strain FJKB0103

The soil samples were collected from the rhizosphere of Garcinia mangostana in
Zhangzhou, China. Five grams of soil sample suspended in 30 mL of sterile water was
incubated at 28 ◦C with shaking at 140 rpm. After 4 h, the suspension was serially diluted
with sterile water, and 100 µL of the diluted soil suspension was spread onto KB agar.
The individual colonies with different colors or morphology were selected for further
purification by streaking onto fresh LB agar. For antibacterial assays, 5 µL of an overnight
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culture of isolated strains were dropped onto the PDA plate center, and after inoculating at
28 ◦C for 2 days, the LB mixed with 10% saturated pathogenic bacteria was poured on the
PDA plate, inoculated at 37 ◦C for 12 h.

2.3. Genome Sequencing and Annotation

The genomic DNA of FJKB0103 was extracted by using a DNA purification kit (Magen,
Guangzhou, China) according to the manufacturer’s protocols. The paired-end library
was used to sequence on the Illumina Miseq 550 platform. De novo genome assembly
was performed using SPAdes pipeline version 3.12, and sequences shorter than 200 bp
were trimmed. The draft genomes of FJKB0103 were annotated by Prokka 1.13.7, cod-
ing sequences were identified and annotated using Prodigal, rRNAs were predicted by
RNAmmer, and tRNAs and noncoding RNAs were predicted using Aragorn and Infer-
nal, respectively.

2.4. Identification of Strain FJKB0103 Based on Genome

The 16S rRNA gene was amplified using primers 27F and 1492R (Table S2). The
result sequence was deposited to the EzBioCloud database (https://www.ezbiocloud.
net, accessed on 25 October 2021) for preliminary identification based on the sequence
similarity values between strain FJKB0103 and the related species. The genes 16S rRNA,
gyrB, rpoB, and rpoD of Pseudomonas species closely related to strain FJKB0103 based on
16S rDNA similarities were retrieved from their GenBank depositions or their whole
genome sequences. The multiple sequence alignments were made by using CLUSTAL_W
software. Phylogenetic trees were reconstructed using both neighbor-joining and the
maximum likelihood methods by Mega 5 [18]. Bootstrap analysis was performed using
1000 replications. Average nucleotide identity (ANI) values were determined by using
the Orthologous Average Nucleotide Identity Tool (OAT) (http://www.ezbiocloud.net/
sw/oat, accessed on 28 October 2021) [19], and the two ANI scores, ANI algorithm using
blast (ANIb), and ANI of orthologous genes (OrthoANI) were calculated between strain
FJKB0103 and the type strains of the closely related Pseudomonas species. The Genome-to-
Genome Distance Calculator (GGDC) was employed for in silico DNA-DNA hybridization
(isDDH) analysis, and all three equations in the GGDC program were used (version 2.1;
http://ggdc.dsmz.de/distcalc2.php, accessed on 29 October 2021) [20].

2.5. Genome Analysis of Putative Secondary Metabolite Clusters

The Antibiotics and Secondary Metabolite Analysis Shell pipeline (antiSMASH) was
used to analyze the secondary metabolite gene clusters of strain FJKB0103 [21]. Briefly, the
detection strictness was “relaxed”, and all “Extra Features”, including KnownClusterBlast,
ClusterBlast, SubClusterBlast, Cluster Pfam analysis, Pfam-based GO term annotation, and
ActiveSiteFinder, were employed for biosynthetic gene cluster (BGC) border prediction
and analysis.

2.6. Construction of P. protegens FJKB0103 Deleted Mutants and Complementary Strain

To confirm the effect of predicted gene clusters on antibiotic activity, the gene clusters,
of which the similarity was more than 90%, were selected for further study. We constructed
in-frame deleted mutants of gene clusters encoding DAPG, PRN, PLT, and orfamide as in
previous reports, respectively [16]. An in-frame deletion of the phlD gene involved in the
biosynthesis of DAPG was made using a two-step homologous-recombination strategy.
Briefly, the upstream and downstream fragments of phlD gene were PCR amplified using the
primer pairs listed in Table S2. The PCR fragments were digested with restriction enzymes
and then cloned into the suicide vector p2P24-Km to generate plasmid p2P24-∆phlD. The
suicide plasmid p2P24-∆phlD was introduced into strain FJKB0103 by electroporation.
Colonies that appeared on LB plates containing kanamycin were picked up and inoculated
in liquid LB medium without antibiotics. Overnight cultures were then plated on LB agar
supplemented with 20% sucrose to generate the mutants, and the mutants were confirmed

https://www.ezbiocloud.net
https://www.ezbiocloud.net
http://www.ezbiocloud.net/sw/oat
http://www.ezbiocloud.net/sw/oat
http://ggdc.dsmz.de/distcalc2.php


Microorganisms 2022, 10, 315 4 of 13

by PCR. The same approach was used to construct in-frame deletion mutants of the prnA,
pltA, and orfA genes, yielding the mutants ∆prnA, ∆pltA, and ∆orfA, respectively (Table S1).
For complementary analysis, the DAPG biosynthetic gene cluster phlACBD was amplified
using primers phl-2425-HindIII and phl-7049-KpnI and inserted into the shuttle vector
pRK415, yielding the complementary plasmid pRK415-phl. The resultant plasmid was
introduced into phlD gene deletion mutant to generate complementary strain ∆phlD-C.
Mutants and complementary strains were tested for their abilities to inhibit S. aureus.

2.7. Extraction and Detection of DAPG

The extraction and detection of DAPG were performed according to a previous
method [22]. P. protegens FJKB0103 and its mutants were grown in KB broth for 48 h
at 28 ◦C. Samples (800 µL) were acidified with 100 µL of 10% trifluoroacetic acid (TFA)
and extracted with 900 µL of ethyl acetate. The organic phase containing DAPG was
evaporated to dryness and suspended in 50 µL methanol. Volumes of the extracts of 10 µL
were detected by an Agilent 1260 system equipped with a C18 column (4.6 × 150 mm).
The samples were eluted from the column using a gradient of 55% acetonitrile: 45% water
containing 0.1% phosphoric acid over 8 min at a flow rate of 1.0 mL/min. DAPG was
monitored at 270 nm.

2.8. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) of DAPG, MAPG, PG, or Vancomycin on S. aureus

The values of MIC were evaluated following the CLSI guideline: suspension of
S. aureus strain with 0.5 McFarland was prepared by making a direct broth suspension of
isolated colonies selected from a 24 h agar plate; the suspension was diluted as 1:300 into
2 mL of cation-adjusted Muller Hinton broth (CAMHB), of which the final inoculum was
approximate to 5 × 105 CFU/mL; 10 µL DAPG, MAPG, PG, and vancomycin (various
concentrations) were added to a tube, respectively; the MIC was the concentration of the
drug that resulted in no visible bacterial growth after 20 h incubation at 37 ◦C in an ambient
air incubator [23]. Content of the tube with no visible growth was spread on LB agar and
incubated for 24 h at 37 ◦C. LB agar with the lowest concentration and no bacterial growth
was scored as MBC [24].

2.9. Bacteriolytic Assay

The bacteriolytic activity of DAPG to MRSA bacterial cells was evaluated as in a
previous report [25]. Briefly, the S. aureus Sta24-1 strain was grown in tryptic soy broth
(TSB) overnight at 37 ◦C, 180 rpm. The overnight culture of S. aureus Sta24-1 was diluted as
1:100 into 2 mL of TSB. S. aureus Sta24-1 was exposed to DAPG with different concentrations
at the early stage of exponential growth, and the negative control (CK) was exposed to
methanol. The optical density (OD600) was measured at 0, 6, 18, and 24 h after incubation
with DAPG.

2.10. Biofilm Formation and Swarming Motility

The effect of subinhibitory levels of DAPG on S. aureus biofilm formation were detected
as in a previous study. S. aureus culture was diluted as 1:100 into 3 mL TSB glass tubes,
and 3 µL of DAPG at subinhibitory level was added and incubated at 37 ◦C stationary.
After 24 h of incubation, the medium was removed by pipetting, and tubes were gently
washed with sterile water, biofilms on the inner surface of glass tubes were stained with
0.1% crystal violet and quantified at 570 nm [26]. The swarming motility of P. protegens
FJKB0103 and its mutants was studied by spotting 5 µL of an overnight cell suspension on
soft (0.3% w/v) LB agar and evaluating surface swarming motility after incubation at 28 ◦C
for 24 h [27].
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3. Results
3.1. Antibiotic Activity of Isolates from Rhizosphere

Thirty-seven bacterial strains were isolated from the rhizosphere of Garcinia man-
gostana. All isolates were tested for their antibiotic activities against methicillin-resistant
Staphylococcus aureus (MRSA) Sta24-1. A total of five isolates showed antibacterial ability
against MRSA Sta24-1, including the strain FJKB0103, whose anti-MRSA activity was the
best (Figure S1). Moreover, the strain FJKB0103 exhibited broad-spectrum antibiotic activ-
ities against food-borne pathogens like Listeria monocytogenes and Bacillus cereus, but not
Escherichia coli (Figure S1).

3.2. General Genome Characteristics of Strain FJKB0103

The size of strain FJKB0103 draft genome was 6,776,967 bp with a G + C content of
63.4%. It consisted of 40 contigs. A total of 6170 genes were predicted, which included 6096
coding sequences (CDSs) and 74 RNA genes including 7 rRNA genes, 66 tRNAs genes, and
one tmRNA gene. The general features of the strain FJKB0103 genome are summarized in
Table 1.

Table 1. Genome statistics for P. protegens FJKB0103.

Features Chromosome

Number of contigs
Size (bp)

40
6,776,967

G + C content 63.4%
Number of genes 6170
Number of CDSs 6096

Number of rRNAs 7
Number of tRNAs 66

Number of tmRNAs 1

3.3. Identification of Strain FJKB0103 Based on Polyphasic Taxonomy

The 16S rRNA gene sequence of strain FJKB0103 showed the highest similarities to
P. protegens CHA0 T and P. saponiphila DSM 9751 T, which are members of the P. fluorescens
group. A phylogenetic tree based on 16S rDNA and multilocus sequence analysis (MLSA)
of the housekeeping genes (16S rRNA, gyrB, rpoB and rpoD) were built with 28 Pseudomonas-
type strains, and Cellvibrio japonicus DSM 16015 T was selected as an outgroup (n = 30). Both
the phylogenetic trees showed that strain FJKB0103 formed a monophyletic cluster with
P. protegens subgroup strains including P. protegens CHA0 T and P. saponiphila DSM9751 T,
and the bootstrap values were high (Figures 1 and S2). These data indicated that strain
FJKB0103 belonged to the P. protegens subgroup within the P. fluorescens lineage.

To more accurately determine the phylogenetic position of strain FJKB0103, ANI and
isDDH analysis were performed based on genomic sequence. The ANI values between
FJKB0103 and P. protegens strains that included type strain P. protegens CHA0 T were higher
than the threshold range (95–96%) for species delineation (Table 2). Furthermore, three
isDDH values were also higher than 70% cut-off within these species. Both ANI and isDDH
scores were lower than the values for species delineation between FJKB0103 and other
Pseudomonas type strains (Table 2). The high similarity between FJKB0103 and CHA0 T was
also confirmed at the biochemical level using API 50CH (bioMérieux, France; Table S3). All
these data demonstrated that the strain FJKB0103 belonged to P. protegens.
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Figure 1. (A) Maximumlikelihood phylogenetic tree based on 16S rRNA gene sequences showing
the relationship of strain FJKB0103 to the closely related strains. GenBank accession numbers of
16S rRNA genes are given in parentheses. (B) Maximum likelihood phylogenetic tree based on MLSA
(16S rRNA, gyrB, rpoD, and rpoB) showing the relationship of strain FJKB0103 to the closely related
strains. The sequences of their genes 16S rRNA (1377 bp), gyrB (734 bp), rpoB (915 bp) and rpoD
(723 bp) were retrieved from their GenBank depositions or from their whole-genome sequences.
GenBank accession numbers are given in parentheses (accession numbers are given in parentheses in
the following order: 16S rRNA, gyrB, rpoB, and rpoD genes. Cellvibrio japonicas DSM 16015 T was used
as an outgroup. Numbers at nodes are bootstrap values (≥50%) from 1000 repetitions. The strain
FJKB0103 was highlighted in bold. T means type strain.
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Table 2. Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values
between the genome sequence of strain FJKB0103 and closely related Pseudomonas species.

Species
ANIb (%) a isDDH (%) b

ANIb OrthoANI Formula 1 Formula 2 Formula 3

P. protegens Cab57
(AP014522.1) 98.44 98.51 96.80 86.90 97.10

P. protegens CHA0 T

(LS999205.1)
98.13 98.27 95.10 84.00 95.60

P. protegens H78
(CP013184.1) 98.09 98.21 94.00 83.70 94.70

P. protegens SN15-2
(CP043179.1) 98.01 98.09 92.10 83.00 93.10

P. protegens
FDAARGOS_307

(CP022097.2)
98.00 98.11 92.10 83.00 93.10

P. protegens Pf-5
(NC_004129.6) 97.98 98.11 92.10 83.00 93.10

P. saponiphila DSM 9751 T

(FNTJ00000000.1)
89.30 89.71 62.90 38.60 57.50

P. cerasi 58 T (LT222319.1) 77.25 78.07 19.60 22.50 19.10
P. meliae CFBP 3225 T

(JYHE00000000.1)
77.23 77.96 19.10 22.50 18.70

P. congelans DSM 14939 T

(NJH0000000)
77.13 78.10 19.50 22.40 19.10

P. tremae ICMP9151 T

(LJRO00000000.1)
76.67 77.50 18.10 22.30 17.80

P. caspiana FBF102 T

(LOHF00000000.1)
76.45 77.20 17.80 22.60 17.60

a The average nucleotide identity (ANI) (ANIb and OrthoANI) was calculated using OAT software; b The isDDH
values were calculated using the Genome-to-Genome Distance Calculator (http://ggdc.dsmz.de/distcalc2.php,
accessed on 29 October 2021); T means type strain.

3.4. Genome Mining to Reveal the Putative Secondary Metabolite Clusters

To predict putative secondary metabolites, such as antibiotics, bacteriocin, and NRPS
genes, the genome sequence was analyzed using antiSMASH platform version 5.0. Six-
teen secondary compound biosynthetic gene clusters (BGCs) were predicted in P. prote-
gens FJKB0103 (Tables 3 and S4), including DAPG, PRN, PLT, and NRPS, which showed
antibiotic activity in the previous study [6]. To uncover the specific secondary metabo-
lites, the secondary compound BGCs of several genome complete P. protegens strains
Cab57, CHA0 T, H78, SN15-2, FDAARG, and Pf-5, and six closely related type strains
P. saponiphila DSM9751 T, P. cerasi 58 T. P. meliae CFBP3225 T, P. congelans DSM14939 T,
P. tremae ICMP9151 T, and P. caspiana FBF102 T were predicted and compared with FJKB0103
secondary compound BGCs. Strain FJKB0103 had the largest BGC numbers, while P. caspi-
ana FBF102 T had the fewest (Table 3). NRPSs production was the only common feature
presented in all strains, whereas DAPG, PRN, PLT, and orfamide BGCs were conserved
in all the P. protegens strains (Table 3). The results indicated that DAPG, PRN, PLT, and
orfamide might be the specific compounds for P. protegens species, which might be involved
in the antibiotic activity of P. protegens FJKB0103.

http://ggdc.dsmz.de/distcalc2.php
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Table 3. Secondary metabolite and antibiotic gene clusters in P. protegens FJKB0103 and related strains
predicted by antiSMASH a.

Strains Total DAPG PLT PRN NRPS Bacteriocin Others

P. protegens FJKB0103 16 1 1 1 7 2 4
P. protegens Cab57 14 1 1 1 5 2 4

P. protegens CHA0 T 14 1 1 1 5 3 3
P. protegens H78 15 1 1 1 5 3 4

P. protegens SN15-2 16 1 1 1 6 2 5
P. protegens FDAARG 15 1 1 1 5 3 4

P. protegens Pf-5 15 1 1 1 5 3 4
P. saponiphila DSM 9751 T 14 1 0 0 4 3 6

P. cerasi 58 T 9 0 0 0 5 1 3
P. meliae CFBP 3225 T 9 0 0 0 5 0 4

P. congelans DSM 14939 T 9 0 0 0 7 0 2
P. tremae ICMP9151 T 15 0 0 0 9 0 6
P. caspiana FBF102 T 6 0 0 0 2 2 2

a Clusters identified by antiSMASH 5.0 using the “Extra Features” settings; Abbreviations are as follows:
2,4-diacetylphloroglucinol, DAPG; pyrrolnitrin, PRN; pyoluteorin, PLT; non-ribosomal peptide synthase, NRPS;
T means type strain.

3.5. DAPG as the Anti-MRSA Compound in P. protegens FJKB0103

To confirm the roles of several compounds, including DAPG, PRN, PLT, and orfamide
in antibiotic activities, the genes phlD, prnA, pltA, and orfA deleted mutants were con-
structed, and their anti-MRSA activities were tested. The mutant ∆phlD failed to inhibit
MRSA growth, and the other mutants ∆prnA, ∆pltA, and ∆orfA had the same antibac-
terial activities as the wild-type strain FJKB0103 (Figure 2). To further evaluate the role
of gene phlD on antibacterial ability and DAPG production, the ∆phlD complementary
strain ∆phlD-C was constructed. The anti-MRSA ability of strain ∆phlD-C was restored
to the same level as wild-type strain FJKB0103, and also DAPG production was restored
(Figure 2), these data supported that the DAPG biosynthetic gene cluster was involved in
anti-MRSA activity of P. protegens FJKB0103. The anti-MRSA activity of DAPG biosynthetic
gene cluster products, including DAPG, MAPG, and PG, was confirmed by detecting the
MIC values. The MIC values of DAPG of all S. aureus strains were lower than 10 µg/µL,
which were similar to those of vancomycin, but the MIC of both MAPG and PG were
higher than 128 µg/µL (Table 4). Moreover, after 18 h, the bacterial suspension decreased
that deal with DAPG of the MBC, 2MBC, and 4MBC level (Figure 3), indicating that the
bacterial cells were lysed. All these data showed that DAPG was the anti-MRSA compound
in P. protegens FJKB0103.

3.6. DAPG Affected the Biofilm Formation of S. aureus

Knowing that DAPG inhibits the biofilm formation of Bacillus subtilis at the subin-
hibitory level [28], we wanted to ask if DAPG affected the biofilm formation of S. aureus.
As biofilm formation was regulated by QS, which was related to bacterial growth [29], the
subinhibitory level that did not affect the S. aureus strain growth was selected for detecting
the effect on biofilm formation. At a subinhibitory level of DAPG, the biofilm formation
of S. aureus Sta24-1 was decreased compared with that without DAPG (Figures 4 and S3),
which was consistent with data from previous studies [9,28]. These data supported the
idea that DAPG affected S. aureus strains by both antibiotic ability and repression of
biofilm formation.
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Figure 2. (A) Antimicrobial activity of P. protegens FJKB0103 and its mutants. For antibacterial assays,
5 µL of overnight culture of P. protegens FJKB0103 and its mutants were dropped onto the PDA
plates center. After inoculating at 28 ◦C for 2 days, the LB mixed with 10% saturated S. aureus
Sta24-1 was poured on the PDA plates, inoculated at 37 ◦C for 12 h. (B) HPLC analysis of 2,4-DAPG
production of P. protegens FJKB0103 and its mutants in KB medium. FJKB0103, the wild-type strain of
P. protegens FJKB0103; ∆phlD, the phlD gene deleted mutant of P. protegens FJKB0103; ∆phlD-C, the
complementary strain of ∆phlD with pRK-phlACBD.

Table 4. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) of DAPG, MAPG, PG, and vancomycin on S. aureus strains.

Strains
MIC (µg/mL) MBC (µg/mL)

DAPG MAPG PG Vancomycin DAPG MAPG PG Vancomycin

S. aureus ATCC25293 4 >128 >128 2 32 >128 >128 32
S. aureus ATCC29213 4 >128 >128 2 32 >128 >128 16

S. aureus Sta403 4 >128 >128 2 16 >128 >128 16
S. aureus Sta24-1 4 >128 >128 1 32 >128 >128 32
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Figure 4. DAPG inhibited the biofilm formation of S. aureus Sta24-1. S. aureus Sta24-1 was incubated
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4. Discussion

Pseudomonas species produce diverse secondary metabolites that have antibiotic abil-
ity. For example, DAPG, PLT, PRN, and NRPS belong to the broad-spectrum antibiotics
that inhibit both bacteria and fungi, and mupirocin is used to control S. aureus, partic-
ularly methicillin-resistant S. aureus (MRSA), when other antibiotics are ineffective [30].
Phenazine-1-carboxamide and 1-acetyl-beta-carboline produced by Pseudomonas species
also have an inhibitory effect against MRSA [31,32]. The strain FJKB0103 has 16 metabolite
biosynthetic gene clusters, including DAPG and PLT, that are conversed in P. protegens
species [26]. PG, an intermediate in DAPG biosynthesis, has a concentration-dependent
influence on the expression of PLT biosynthetic genes and the production of PLT [33]. In
our study, the mutant ∆phlD failed to inhibit MRSA growth completely, but the deletion
of pltA involved in PLT biosynthesis did not affect the anti-MRSA ability, indicating that
the DAPG biosynthetic gene cluster participates in the anti-MRSA ability of P. protegens
FJKB0103. Furthermore, the MRSA strains were resistant to MAPG and PG, but sensitive
to DAPG, which was in correspondence with previous reports that DAPG is more active
than MAPG and PG [34]. Having said all above, DAPG is the anti-MRSA compound in
P. protegens FJKB0103.

Pseudomonas species could appear in different environments, including the soil, plant
surfaces, and insects, and acquire more than one gene cluster conferring antibiotic biosyn-
thesis during the evolutionary progress. The several antibiotics produced by one strain
might be beneficial to its competition with certain competitors and predators or occupation
of specific habitats [6]. For example, nunamycin plays the role primarily in Rhizoctonia solani
AG3 mycelial growth inhibition, whereas nunapeptin was essential for Pythium aphanider-
matum inhibition in P. fluorescens In5 [35], and cyclic lipodepsipeptides WAP-8294A is the
antibacterial compound, while HSAF (dihydromaltophilin) inhibits the fungal growth in
Lysobacter enzymogenes OH11 [36]. P. protegens FJKB0103 has 16 BGCs (Tables 3 and S4),
which might be related to its special environmental niche [37]. DAPG produced by P. pro-
tegens FJKB0103 was the major antibacterial and antifungal compound (Figures 2 and S4),
and orfamide participated in the swarming motility of P. protegens FJKB0103 (Figure S5),
however, the roles of most of the multiple secondary metabolites with diverse chemical
properties produced by P. protegens FJKB0103 remain unclear, which will be subject to
future study.

Antibiotics play a significant role in biofilm formation, and most antibiotics tend to
stimulate biofilm formation at subinhibitory concentrations. For example, subinhibitory
concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and
Escherichia coli [38]. DAPG stimulates biofilm formation in Azospirillum brasilense Sp245-Rif
at a subinhibitory concentration [39], whereas polymyxin B had no effect on biofilm forma-
tion of P. aeruginosa and Escherichia coli [38]. By contrast, the biofilm formation was reduced
when DAPG at a subinhibitory concentration was applied to Bacillus subtilis NCIB3610 and
MRSA (Figure 3) [28]. Antibiotics might act as signal molecules at subinhibitory concen-
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trations, and the effect on biofilm formation can differ between antibiotic types and the
strains [40].

DAPG might be a good alternative for controlling infections caused by MRSA: DAPG
could lyse the bacteria and inhibit the growth at high concentrations, and represses biofilm
formation at low concentrations [9,25,41,42]. Additionally, the MIC values of DAPG are
similar to those of vancomycin (Table 4), which is the common antibiotic used to control
MRSA infections. Furthermore, DAPG was not acutely toxic to mice when administered
orally at single doses of up to 100 mg/kg [41], but the toxicity of DAPG by injection, ab-
sorbability in the digestive tract, and other pharmacodynamic properties remain unknown,
thus there is more work needed for its application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020315/s1, Figure S1: (A) Anti-MRSA activ-
ity of strains isolated from rhizosphere. (B) Antibacterial activity of strain FJKB0103; Figure S2:
(A) Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the relationship
of strain FJKB0103 to the closely related strains. (B) Neighbour-joining phylogenetic tree based on
MLSA (16S rRNA, gyrB, rpoD and rpoB) showing the relationship of strain FJKB0103 to the closely
related strains; Figure S3: The growth curves of S. aureus Sta24-1 with DAPG at different concentra-
tions; Figure S4: Antifungal activity of P. protegens FJKB0103 and its mutants against Rhizoctonia solani;
Figure S5: The swarming motility of P. protegens FJKB0103 and its mutants on soft (0.3% w/v) LB
agar plates; Table S1: Strains and plasmids used in this study; Table S2: Primers used in this study;
Table S3: Biochemical characteristics of strain P. protegens FJKB0103 and P. protegens CHA0 T; Table S4:
Secondary metabolite and antibiotic gene clusters in P. protegens FJKB0103 predicted by antiSMASH.
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