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Accurate surgical pathological assessment of breast biopsies is essential to the proper management of breast lesions.
Identifying histological features, such as nuclear pleomorphism, increased mitotic activity, cellular atypia, patterns
of architectural disruption, as well as invasion through basement membranes into surrounding stroma and normal
structures, including invasion of vascular and lymphatic spaces, help to classify lesions asmalignant. This visual assess-
ment is repeated on numerous slides taken at various sections through the resected tumor, each at different magnifi-
cations. Computer vision models have been proposed to assist human pathologists in classification tasks such as
these. Using MobileNetV3, a convolutional architecture designed to achieve high accuracy with a compact parameter
footprint, we attempted to classify breast cancer images in the BreakHis_v1 breast pathology dataset to determine the
performance of this model out-of-the-box. Using transfer learning to take advantage of ImageNet embeddings without
special feature extraction, we were able to correctly classify histopathology images broadly as benign or malignant
with 0.98 precision, 0.97 recall, and an F1 score of 0.98. The ability to classify into histological subcategories was var-
ied, with the greatest success being with classifying ductal carcinoma (accuracy 0.95), and the lowest success being
with lobular carcinoma (accuracy 0.59). Multiclass ROC assessment of performance as a multiclass classifier yielded
AUC values≥0.97 in both benign and malignant subsets. In comparison with previous efforts, using older and larger
convolutional network architectures with feature extraction pre-processing, our work highlights that modern,
resource-efficient architectures can classify histopathological images with accuracy that at least matches that of previ-
ous efforts, without the need for labor-intensive feature extraction protocols. Suggestions to further refine the model
are discussed.
Introduction

Breast cancer is themost common cancer afflicting females, second only
to skin cancers, and now afflicts nearly 1 in 3 women each year.1 This
condition usually presents either as a palpable breast mass, or, as is more
often the case, detected by screening mammography. Once a lesion is iden-
tified, a core needle biopsy is performed to assess the nature of the abnor-
mality, and a surgical pathologist is tasked with precise identification of
the lesion, as well as a panel of an associated standardized set of biomarker
phenotypes.2,3 Tumor behavior can reasonably be predicted by evaluating
the histological features such as cellular morphology, the degree and nature
of architectural distortion, as well as invasion through basement mem-
branes into normal structures, including blood vessels and lymphatics.4 It
is pertinent to note that each case typically involves the evaluation of nu-
merous slides involving various sections through the tumor, each at differ-
ent magnifications, as features such as architectural patterns are more
apparent with the lower power widefield objective, while cellular and
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nuclear detail are better evaluated using the higher power objectives.
Making an accurate diagnosis in a timely manner is critical, as appropriate
intervention when curative management is possible can lead to improved
survival outcomes.5

Interpretation ofmammographic imaging has benefited from computer-
assisted identification of suspicious radiographic lesions.6 Deep learning
may also assist the pathologist in histological classification of surgical
biopsies.7 Previous efforts have utilized convolutional neural net (CNN)
algorithms to broadly classify breast cancer pathological images into be-
nign and malignant categories, using larger image processing architectures
that have been used to successfully classify non-medical, more everyday im-
ages. Convolutional networks have formed the basis for virtually all
computer vision architectures since the AlexNet model famously won the
ImageNet competition in 2012, achieving an unprecedented top-5 error
rate of 17.0%.8 Since then, other groups have built upon this concept,9

and subsequent years saw the appearance of newer architectures, such as
deep residual networks10 and inception networks,11 among others. These
24
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networks were tested on the ImageNet dataset, a large publicly available
collection of 14.2 million labeled images across 21 841 synsets
(categories),12,13 and this resource has been a benchmark for evaluating
new computer vision architectures.

Convolutional models excel by first learning to detect pertinent features
of an image, such as edges, textures, and shapes. Deeper layers in the archi-
tecture then become trained to detect combinations of these features.14 To
enhance edges and contrast along the borders of features of interest, feature
extraction techniques have been used. Semantic segmentation has been
used to selectively apply coloration to specific features, such as the nuclei,
or to the emphasize the boundaries of an infiltrating tumormass.15,16 By en-
hancing the contrast of the borders between 2 regions of concern, this could
theoretically increase classification accuracy, but this comes at the cost of
time spent pre-processing the data in this manner, and the time and effort
needed to confirm the accuracy and precision of the segmentation. The
ability to accurately classify pathology images without the need for special
pre-processing, such as segmentation, would greatly enhance the ease and
efficiency of machine-learning image classification.

Material and methods

Dataset selection

BreakHis_v1 (BreakHis) is a large dataset consisting of 9109 micro-
scopic images collected from 82 patients. Of these, 7909 images were avail-
able for public downloading.17 This dataset includes 2480 images of benign
breast lesions, and 5429 images of malignant lesions. Regions of interest
(ROIs) have been identified by a pathologist, and the images were obtained
at the indicated magnifications (Fig. 1).

Benign breast lesions were divided into four categories: adenosis,
fibroadenoma, phyllodes tumor, and tubular adenoma. The malignant con-
ditions selected for inclusion were ductal carcinoma, lobular carcinoma,
mucinous carcinoma, and papillary carcinoma. Each histological category
was represented in four magnification levels: 40×, 100×, 200×, and
400×. These refer to the microscope objective magnification multiplied
by the 10× ocular lens (Fig. 2).

We selected the BreakHis dataset as the most suitable for our objectives,
as other breast cancer datasets that have been used in other publications ei-
ther were no longer available, contained fewer or smaller images for classi-
fication, offered only binary classifications (i.e., benign vs. malignant) or
were better suited for the detection of metastatic spread in the background
of lymphoid tissue.
40X 100X 2

ADENOSIS 114 113 1

FIBROADENOMA 253 260 2

PHYLLODES 109 121 1

TUBULAR 
ADENOMA

149 150 1

40X 100X 2

DUCTAL CA 864 903 8

LOBULAR CA 156 170 1

MUCINOUS CA 205 222 1

PAPILLARY CA 145 142 1

Fig. 1. BreaKHis datase
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Exploratory data analysis

It is necessary to evaluate histopathological images at various levels of
magnification. Images examined at lowmagnificationmay reveal glandular
structures, stromal invasion, and architectural distortion by the neoplasm.
Higher magnifications may reveal the presence of mitotic figures, nuclear
atypia, degree of cellular differentiation, and abnormal growth patterns,
as well as the presence or absence of invasion through basement mem-
branes (signifying metastatic spread) as well as abnormal tumor invasion
through lymphatic or vascular channels. Because each magnification con-
tributes useful information that would be important to classification, we
did not restrict the analysis to specific magnifications, but elected to train
the model on all magnifications collectively.

Examining multiple random samples from the dataset revealed that the
images were of good quality and suitable for training. The size of each
image in the BreakHis_v1 dataset is 700 × 460 pixels and is stored in
PNG format. MobileNetV3 requires images of equal height and width,
with three channels for RGB color representation, and the dataset images
were resized accordingly. The crop_to_aspect_ratio parameter was left at
the default setting, allowing for width compression so that the software
would not crop images indiscriminately, potentially eliminating key histo-
logical features from being available for training.

In prior studies, feature extraction has been utilized in other efforts as a
means of strengthening features, such as contrast enhancement to empha-
size edges or semantic segmentation to highlight regions of interest
(ROIs). Implementation of this step has required input from trained pathol-
ogists to confirm the correct identification of ROI, and in the setting of me-
tastatic breast cancer.18 We evaluated the performance of our model
without implementing feature extraction, so as to classify breast pathology
into four benign and four malignant categories, against the background of
normal breast tissue, a potentially more challenging task.

Data augmentation

The BreakHis dataset contains approximately 110–140 images at each
magnification inmost of the neoplasm categories, but for themost common
neoplasms such as fibroadenomas, there are 230–260 images at each mag-
nification, and between 790 and 900 images for ductal carcinomas. Cate-
gorical representation in this dataset reflects the clinical prevalence of
these histological entities, as ductal carcinomas and fibroadenomas are
the most common malignant and benign histologies, respectively.19,20

While a more evenly balanced dataset is usually preferred to decrease
00X 400X TOTAL

11 106 444

64 237 1014

08 115 453

40 130 569

00X 400X TOTAL

96 788 3451

63 137 626

96 169 792

35 138 560

t data distribution.



Fig. 2. Examples from the BreaKHis_v1 ductal carcinoma dataset, seen at magnifications of: (a) 40×, (b) 100×, (c) 200×, (d) 400×. Lower magnifications more clearly
display architectural details of tumor penetration into normal breast tissue, while at higher magnifications, cellular and nuclear detail become more important. Presence
of metastatic cells in the lymphatic channels and capillaries is better appreciated at the higher magnifications.
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overfitting to one category, it may not be entirely disadvantageous to
having a model be trained based on a weighted representation that reflects
the actual prevalence. Nonetheless, data augmentation over all images is a
common technique to manage unevenness in the dataset. In this endeavor,
this was implemented by introducing a simple random horizontal image
reflection (mirror images) to the model, effectively doubling our virtual
sample size. We elected not to implement more distortive effects, such as
shear. Other data augmentative effects, such as rotation would be
meaningless with histology images, and the various magnifications would
provide zoom information. We assessed the effect of data augmentation
on the training and validation accuracy curves, which will be presented
below.

Model selection

The MobileNet family is built on the concept of depthwise-separable
convolutions, which has allowed it to achieve image classification accuracy
comparable to that of larger models while being efficient and and incurring
lower computational cost.21MobileNetV3 built onMobileNetV2’s improve-
ments by introducing the squeeze-and-excite algorithm in parallel to all
components of the residual block; using Neural Architectural Search to im-
prove accuracy22; and replacing some of the sigmoid activations with the
hard swish activation function which is computationally less “expensive”
than the sigmoid activation function (a major factor in mobile devices), to
improve performance but without compromising on accuracy. This enabled
some layer reduction in the last stages of the model without decreasing
Fig. 3. Top accuracy of the MobileNetV3 models as compared with other computer v
(Adopted from Pandey38).
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accuracy. MobileNetV3 is divided into small and large versions, with the
small version to be run on reduced-resource devices (Fig. 3).

Model architecture

The MobileNetV3 large architecture offers improved accuracy over the
companion MobileNetV3 small architecture. The ImageNet dataset embed-
dings are enabled by default,23 however, it was not clear that these param-
eter weights obtained from training on the widely varied images obtained
from the Internet would be helpful in classifying histology images. We de-
cided to implement transfer learning, utilizing weights and biases of earlier
layers, which detect shapes and edges in images, while training on the later
layers, which register activations based on more complex image features.
This will be discussed more in detail in the section on Layerwise Learning.

A key hyperparameter is the model learning rate, which controls how
rapidly the parameters of the model converge to the local minimum of
the categorical cross-entropy loss function,24 used to assess the accuracy
of classification after each training epoch. As the loss function local mini-
mum is approached, optimal adjustments of the learning rate at each train-
ing epoch can help to prevent overshoot, and subsequent deterioration of
accuracy. The optimal freezing layer as well as setting the magnitude of
the learning rate are heuristically determined. We tested a range of epoch
decay values, which were first entered into a spreadsheet to facilitate auto-
mation. In this way, the model could be programmed to autonomously run
multiple training sessions using different hyperparameter values, while
model accuracy was recorded.
ision architectures, stratified by the number of trainable parameters in the model



Fig. 4. Architecture of model used for image classification.
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Training

The BreakHis dataset was split into training, validation, and test subsets
at ratios of 0.75/0.15/0.10. Outputs fromMobileNetV3wereflattenedwith
a Global_Average_Pooling2D layer, then passed to four Dense layers with
ReLU activation, followed by a Dense layer with softmax activation to
eight outputs. Dropout regularization and BatchNormalization were used
to reduce overfitting to the training set. As shown in Fig. 4, the final
model consisted of approximately 3.0 million parameters, with 98% associ-
ated with MobileNetV3 Large. Hyperparameters of learning rate epoch
decay, freezing layer settingwere loaded into a spreadsheet, and used to au-
tonomously train the model for 13 epochs. The workflow is illustrated in
Fig. 5. Workflow diagram. Histology images are pre-processed, then vectorized. Data a
epochs. The trained model is fed an image from the validation set, on which the model
displayed.

4

Fig. 5. Accuracy measurements on the validation set were recorded, and
are displayed below. The full Python code is available at https://github.
com/kdevoe/MobileNetV3_Breast_Cancer_Detection.

Results

Model training and hyper-parameter tuning were focused on three key
areas; data augmentation, layer selection for training, and learning rate
selection.

Fig. 6 depicts the accuracy on the training and validation sets, and the
effect of data augmentation. In our model, accuracy in the training and val-
idation sets exhibited minimal separation. After 10 epochs of training,
ugmentation is applied and fed to the MobileNetV3 model, which is trained for 13
makes a prediction, selecting from one of eight possible labels. The output is then

https://github.com/kdevoe/MobileNetV3_Breast_Cancer_Detection
https://github.com/kdevoe/MobileNetV3_Breast_Cancer_Detection


Fig. 6. Comparison of training vs. validation curves with and without data augmentation. Overall, data augmentation reduces overfitting, bringing the validation results
closer to the training results. Training runs were performed with an initial learning rate of 0.001, epoch decay rate of 0.95, and fine-tuning start layer of 150.

Fig. 7. Validation accuracy of the model after 13 epochs based on the initial fine-tuning layer. For reference, the model includes 268 layers total, with 263 layers from
MobileNetV3. Each training session used an initial learning rate of 0.001 and epoch decay rate of 0.95. This graph represents 21 unique model training runs.

Fig. 8.Validation accuracy of themodel based on the initial learning rate and epoch decay rate. Fine-tuningwas started at layer 150 out of 268 total layers for all models, with
training run for 13 epochs.

K. DeVoe et al. Journal of Pathology Informatics 15 (2024) 100377
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validation accuracy reached a plateau with no further improvement. Train-
ing and validation accuracy tracked closely, and the impact of data augmen-
tation was minimal.

Layerwise learning

Implementation of transfer learning during model training involves set-
ting the hyperparameter that determines the layer at which to freeze (pre-
serve) pre-trained ImageNet embeddings, beyond which training will
occur in the MobileNetV3 model. If the freezing layer is set too distally,
then an insufficient number of layers of the model will be fine-tuned on
the new dataset, and performance on tumor images will be inadequate.
However, if the freezing layer is set too proximally, then too much of the
pre-trained embeddings will be overwritten, and edge-and shape-
detecting functionality garnered from pre-training on ImageNet will be
lost (Fig. 7). Initiating the training prior to layer 130 led to poor, erratic
performance of the overall model, as the ability to recognize basic image
features learned from ImageNet had been overwritten. On the other hand,
delaying the start of training until after layer 150 resulted in a slight decline
in performance, likely due to inadequate fine-tuning with the tumor
dataset. Based on these results, layer 150 was selected as the optimal
Fig. 9. (a) Confusion matrix for accuracy generated for the binary classification of
benign vs. malignant. (b) Confusion matrix for accuracy in classifying histological
subtypes.
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threshold, beyond which the model parameters would be made available
for training.

Learning rate selection (epoch decay rate)

The heuristically determined initial learning rate for training is the coef-
ficient modulating the adjustments made to the weights and biases of the
model parameters after each epoch of training. As the training proceeds
and the loss function converges to the local minimum, it may be advanta-
geous to reduce this value progressively, so as not to overshoot the target
weightings.24 There is no standard learning rate schedule, and various
implementations have been developed empirically to maximize test accu-
racy for particular benchmarks.25 We chose to reduce the learning rate by
a constant factor at each epoch of training, which we refer to as the epoch
decay rate. Fig. 8 shows the model validation accuracy as a function of ini-
tial learning rate and epoch decay rate. As indicated previously, fine-tuning
began at layer 150 out of the total of 268 layers. We tested several learning
rate settings without epoch decay and found that the highest accuracy was
achieved with a learning rate of 0.0003. However, when epoch decay was
incorporated, the highest accuracy was achieved with an initial learning
rate of 0.001 and an epoch decay rate of 0.95. More aggressive epoch
decay rates of 0.9 and 0.8 resulted in further reduction of model accuracy,
suggesting excessive attenuation of training efforts at later epochs. There-
fore, for the final analysis, a start learning rate of 0.001 and epoch decay
of 0.95 was selected.

Classification accuracy

The trainedmodelwas then used to predict on images in the test set, and
was able to classify the histology slides as benign vs. malignant with a recall
of 0.97, a precision of 0.98, and an F1 score of 0.98 (Fig. 9a). 95% confi-
dence intervals were calculated according to the method outlined by
Newcombe.26 Amongst the subtypes of each major category, the model
had the greatest success in identifying ductal carcinoma, adenosis, and
tubular adenoma, with accuracies of≥0.9. Mucinous carcinoma and phyl-
lodes tumorswere accurately identified in 0.85 of cases. Accurate classifica-
tion for papillary carcinoma was 0.74, and lobular carcinoma was 0.56
(Figs. 9b, 10).

The F1 score, precision, and recall scores were calculated for the classi-
fication into the four benign and fourmalignant subtypes. The performance
of the model was highest with classifying ductal carcinoma, likely because
of the larger number of samples on which to train. Performance was lowest
with phyllodes tumor, of which the fewest samples were provided in the
dataset.

The tabular data in Fig. 10 can also be visualized as receiver operating
curves (ROC), as depicted in Fig. 11. The ROC curves confirm the relative
classification performance.

Incorrectly classified images

To gain insight into how the model erred in classifying some of the his-
topathology images, we identified the misclassified images, comparing
their predicted labels with the ground-truth label. A few of these images
are presented in Fig. 8.

In Fig. 12a, the image that was misclassified as lobular carcinoma
contained mainly tissue stroma or possibly tissue necrosis, with very few
identifiable cells. In Fig. 12b, the image misclassified as phyllodes tumor
was reasonable in quality, however, in this selected image, it may be diffi-
cult for even a human pathologist to make the distinction between
fibroadenoma and phyllodes tumor. The image in Fig. 12c, also
misclassified as phyllodes tumor, is of such high magnification that the
image consists of a sheet of nuclei with dispersed chromatin and indistinct
cellular borders, and the possibilities of its provenance are numerous. The
final image in Fig. 12d, misclassified as ductal carcinoma, consists mainly
of cellular outlines, and may possibly represent a region of adipose tissue,
with little material that can be identifiable as carcinoma. It is, therefore,



FF1 score PPrecision score RRecall score CCount

AAdenosis 0.831 ± 0.028 0.818 ± 0.041 0.844 ± 0.038 345

DDuctal carcinoma 0.922 ± 0.007 0.898 ± 0.012 0.948 ± 0.009 2576

FFibroadenoma 0.808 ± 0.020 0.765 ± 0.030 0.857 ± 0.025 753

LLobular carcinoma 0.692 ± 0.030 0.841 ± 0.033 0.587 ± 0.045 468

MMucinous carcinoma 0.855 ± 0.020 0.89 ± 0.025 0.823 ± 0.031 594

PPapillary carcinoma 0.769 ± 0.028 0.741 ± 0.041 0.8 ± 0.038 437

PPhyllodes tumor 0.681 ± 0.036 0.696 ± 0.050 0.667 ± 0.051 331

TTubular adenoma 0.842 ± 0.024 0.906 ± 0.028 0.787 ± 0.039 428

Fig. 10. F1 score, precision score, and recall scores (±95% confidence intervals) for classification into the histological subtypes.
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not unreasonable for images to have beenmisclassified, as they would pose
a challenge for even expert human evaluation (Bayes optimal error rate).

Discussion

We have shown that a fine-tuned convolutional neural network, opti-
mized for image classification and designed for increased accuracy, de-
creased latency, and decreased resource utilization, was able to properly
categorize breast cancer histopathology images as to being benign vs. ma-
lignant with ≥97% precision and recall. Classification of dataset images
into the given histological subtypes was achieved with moderate success.
Accuracy was best with the classification of ductal carcinoma, which is im-
portant since it is the most common subtype of breast cancer, representing
70%–80% of all breast cancers.27 Images representing this histological sub-
type were most represented in the BreaKHis dataset, which could account
for the relative accuracy in classifying ductal carcinoma, as there were
more examples for the model to train on. Because the model trains to de-
crease loss, the increased prevalence of this category might have led to
more rapid reduction in loss function values than for the other categories.
Nevertheless, confident identification of infiltrating ductal carcinoma
would be of value, as it could potentially assist in the confirmation of this
histology in over half of breast cancer cases.

To put our findings into context, we will review some of the work that
inspired our own efforts. Spanhol et al17 used six feature extractors and
four different unsupervised classifiers on the BreaKHis dataset at each of
Fig. 11. ROC AUC curves depicting accuracy of t
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the magnifications available. Their model best classified malignant histol-
ogy correctly, with accuracies of around 0.94, but the accuracy of classify-
ing benign tissue ranged from 0.38 to 0.75 at various magnifications.
Error was most noted in classifying fibroadenomas, which constituted
around 30% of errors at every magnification. The ROC AUC was around
0.8 at each of the fourmagnification levels, however, the AUCwith all mag-
nifications collectively was not reported. As stated above, pathologists ex-
tract architectural information at low magnification and nuclear and
cellular detail and tissue invasiveness at highmagnification, so constraining
the model to classify at one magnification level is an unnecessary
restriction.

Zhu et al28 trained a custom CNN model with ideas taken from the In-
ception architecture (residual network connections), but with the
“squeeze-excite” features of MobileNetV3. Their model was trained on
the BreakHis and BACHbreast cancer datasets. They also reported accuracy
based on each magnification class, and achieved greater than 0.9 AUC on
ROC analysis, but this was based on channel pruning of the model, ostensi-
bly to decrease computing burden, although it raises some concern about
how this model would generalized to other datasets.

Araújo et al29 studied an unspecified CNN (but which resembles
AlexNet) together with a support vector machine classifier, and trained
on the Bioimaging 2015 challenge dataset, consisting normal as well as be-
nign, and malignant breast cancer, some invasive and some in situ.
“Patchwise accuracy” was 0.667–0.776. Image-wise accuracy was 0.778–
0.833, using a voting system, the process of which is not well-described.
he classifier across the histological subtypes.



Fig. 12. A sample of misclassified images. (a) Ductal carcinoma misclassified as lobular carcinoma; (b) fibroadenoma misclassified as phyllodes tumor; (c) fibroadenoma
misclassified as phyllodes tumor; (d) lobular carcinoma misclassified as ductal carcinoma.
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Joshi et al30 trained an Xception model on the BreaKHis and IDC breast
cancer datasets. The objective was the classify the material into benign and
malignant categories. ROC AUC was 0.921 on the BreakHis dataset and
0.881 on the IDC dataset. Accuracy data regarding further subclassification
into histological subsets was not presented.

Amerikanos et al31 used feature augmentation with semantic segmenta-
tion to train Facebook AI Research’s Detectron2 architecture on the
TUPAC16 challenge dataset. The investigators sought to avoid having a
human pathologist determine the segmentation, and used an AlexNet
trained with parameters published previously.32 The objective of this
study, however, was to automate the identification of nuclear to facilitate
feature selection, and not histological classification.

We recognize that there are more histological entities than are repre-
sented in this limited dataset, such as triple-negative breast cancers and
mixed-histologies. Indeed, we coded a predictor that performed well on se-
lected random images from the dataset but performed less accurately on
8

selected histopathology slides obtained from the Internet. These images
were resized to the 700×468 pixel and converted to a dataset as in the
BreakHis dataset. The images obtained from the Internet were chosen so
as to match as closely as possible the images in the BreakHis dataset. How-
ever, despite this effort, the model performed rather poorly on the small in-
ternet dataset, with an accuracy never exceeding 0.6. We feel that the
primary reason for this is the difference in image quality in the BreakHis
dataset and ones available on the Internet (see Supplemental Fig. 2). Differ-
ences in the intensity of hematoxylin and eosin staining can result in differ-
ences in contrast of features such as cellular architecture, nuclear structure,
and stromal detail, all of which can influence training of convolutional
blocks that detect edges, corners and gradients. Tafavvoghi et al highlights
variability in image quality amongst several available public breast cancer
datasets,33 and therefore classification accuracy between image reposito-
ries may more a reflection of differences in intrinsic source characteristics
than model performance.
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Another factor contributing to difficulty withmodel classification when
attempting to predict on new images is the variability attributable to differ-
ences between low- and high-grade malignancies. Details of this kind were
not providedwith the BreakHis dataset, and all examples of one tumor sub-
type were placed into the same diagnosis bin. Accuracy may also be im-
proved if our model were able to train using labels informing about
tumor grade. Morphological pleomorphism in poorly differentiated malig-
nancies can challenge even human pathologists, and therefore immunohis-
tochemical data helps to confirm visual assessment of hematoxylin-eosin
stained slides.

One of the known limitations of deep learning in convolutional architec-
tures is that the trained weight embeddings are notoriously in a black box.
Image data that is passed through CNNs undergo drastic transformations
through convolution, pooling, flattening, such that examination of layers
deep within the model reveal no discernible relationship to the original
input (Fig 3). It has been difficult to elucidate precisely how amodel is pro-
gressively trained to classify images so as to provide step-by-step documen-
tation as to the process of generating predictions. A surrogate means of
validation has been to report performance indicators on standardized
datasets and infer that the accuracy and precision are replicated. At this
time, the inability of convolutional models to justify and document the
basis for classification supports the argument that these deep learning
models will not replace a trained human pathologist, but instead may
play an assistive role as long the pathologist does not second-guess his/
her own reading, and place undue reliance on an erroneous reading of
the trained model.34
Conclusions

Building upon a modern CNN architecture, designed for accuracy and
efficiency, and to be compact enough to run on mobile devices, we were
able to develop and train a model on a dataset of breast histopathological
images, such that it was able to predict the classification of the images as
being benign vs. malignant in nature, with a high degree of precision and
accuracy. It was also moderately successful in classifying the pathology
into one of eight subcategories.

The fine-tuning process was greatly aided by automating the training
process, to heuristically identify optimal hyperparameter settings, such
as freezing layer determination, as well as initial learning rate and epoch
decay rate. Overfitting was addressed with data augmentation as well as
using Dropout and BatchNormalization. Although the process we described
did not require special feature extraction pre-processing, such as semantic
segmentation, it likely that there would still be benefit to the selection
of features that emphasize the best characteristics of each histological
entity.

The latest member of the MobileNet family of CNNs was used in this
project, but there is no consensus as to the “best” convolutional network
for image classification. Abid et al35 reported high accuracy (98.61%) in
the classification of multi-modal medical images as to whether they were
images of pathology slides, hand or chest radiographs, endoscopic and to-
mographic imaging using the ResNet50 model. In the Natural Language
Processing field, it has been hypothesized that larger models with a greater
number of trainable parameters are more “sample-efficient” and more
performant on awider range of sample data.36 This paradigmwas famously
countered by the “Chinchilla” paper,37 which demonstrated that a smaller
model trained with an optimal number of tokens showed better perfor-
mance compared to models with a larger number of parameters, and a sim-
ilar situation might also hold for image classification models. Nonetheless,
larger CNNs such as VGGNet, GoogLeNet/Inception, ResNet, and DenseNet
would be expected to be similarly successful in achieving good accuracy in
pathology image classifications.

As thesemodels improve further, becomingmore efficient and even less
resource-demanding, and as pathologists develop trust in their accuracy,
trained CNNs could become a useful addition to the pathologist’s diagnostic
toolkit.
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