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The possible instability of partial indices is one of the
important constraints in the creation of approximate
methods for the factorization of matrix functions.
This paper is devoted to a study of a specific
class of triangular matrix functions given on the
unit circle with a stable and unstable set of partial
indices. Exact conditions are derived that guarantee
a preservation of the unstable set of partial indices
during a perturbation of a matrix within the class.
Thus, even in this probably simplest of cases, when
the factorization technique is well developed, the
structure of the parametric space (guiding the types
of matrix perturbations) is non-trivial.

1. Introduction
In the classical framework, the (right) factorization
problem involves the representation of a square non-
singular matrix function G ∈ G(M(Γ ))n×n, defined on a
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simple closed smooth curve Γ in the complex plane C, in the following form:

G(t) = G−(t)Λ(t)G+(t). (1.1)

Here, non-singular matrices G−(t), G+(t) possess, together with their inverses, analytic
continuations into D− and D+, respectively, where D−, D+ are the domains on the Riemann
sphere lying, respectively, to the right and to the left of the curve Γ , with reference to the
orientation chosen for Γ . Finally, Λ(t) is the n × n diagonal matrix,

Λ(t) = diag
{(

t − t+

t − t−

)ρ1

, . . . ,
(

t − t+

t − t−

)ρn}
, (1.2)

where ρj ∈ Z are the so-called partial indices and t+ ∈ D+, t− ∈ D− are certain (fixed) points.
In particular, when Γ = T (that is, the unit circle on the complex plane), the diagonal matrix

Λ(t) takes the form
Λ(t) = diag

{
tρ1 , . . . , tρn

}
. (1.3)

Factorization plays an important role in the study of many applied problems (see [1,2]). In the
one-dimensional case, the factorization problem possesses a complete and explicit solution [3].
In the matrix case (n > 1), some explicit methods of factorization have been found only for
a few classes of matrices (among these, we point out functionally commutative matrices [4],
triangular matrices with factorizable diagonal elements [5,6], rational matrices [7] and a few
more special classes of matrix functions (e.g. [8])). For extended information on the available
explicit factorizations, see [2,9] and references therein. Therefore, several attempts have been
made to find approximating procedures. An essential constraint in this respect was found
independently by Gohberg & Krein [10] and by Bojarski [11]. They introduced the notion of
a stable set of partial indices for a non-singular matrix function (those that preserve their values
with a small perturbation of the matrix). A criterion for the stability was evaluated, specifically
max ρj − min ρj ≤ 1, and recipes were proposed on how, under the condition max ρj − min ρj > 1,
one might construct another matrix with a different set of partial indices that lies in an arbitrarily
small neighbourhood of a given matrix (see also [11,12]). The above stability criterion is usually
called the Gohberg–Krein–Bojarski (GKB) criterion.

The main differences between the scalar and matrix Wiener–Hopf factorization problems
are the following: an explicit factorization is not always possible even for fairly simple matrix
functions; the total index � = ind det G(t) remains the same under a small perturbation with
respect to a certain matrix norm, but this is not the case for partial indices.

In general, partial indices are not preserved under even a small perturbation of a matrix A(t)
if the GKB condition is not satisfied. However, if A(t) belongs to a certain subclass of the matrix
functions and we consider perturbations only within that subclass, then the partial indices can be
common for all matrices sufficiently close to the original matrix function A(t).

We note that the partial indices can always be ordered such that either ρ1 ≤ ρ2 ≤ · · · ≤ ρn−1 ≤ ρn

or ρn ≤ ρn−1 ≤ · · · ≤ ρ2 ≤ ρ1 [13]. The factors G−, G+ in (1.1) are determined up to a certain rational
block triangular factorization (e.g. [14, theorem 1.2, ch. I], cf. [15, theorem 1.2]). From the above-
mentioned theorem it follows, in particular, that the factorization can be made unique by applying
a number of linear conditions; for details, see [9, theorem 1.4].1 One possible normalization has
already been proposed by Riemann in his work on the construction of the differential equation
with a prescribed group of monodromy (the so-called Riemann–Hilbert problem). Specifically, he
required that G−(z) → I as z → ∞ inside D− (cf. [15,16]), which guarantees the uniqueness of the
factors in some cases.

A challenging problem in factorization theory is that the description of a path (surface) in
the parametric space preserving an unstable set of partial indices remains unsolved. The study
of this problem was initiated by Bojarski [11]. He demonstrated that the set of matrices with
the same partial indices is in general not an open set in the class of invertible matrix functions
with a given order of smoothness, but is still a connected set. It was also shown that the only

1The constructive procedure to determine such conditions in the general case is still unknown.
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open set constitutes the matrices with fixed stable collections of partial indices. Bojarski [17]
also introduced the notion of the homotopic equivalence of matrices, i.e. those connected by a
continuous collection of invertible matrix functions, and formulated the above results in terms of
such a notion. In [18], a class of perturbations of a matrix with unstable partial indices, which
are preserved under the specific perturbation, was studied and constructive, although rather
cumbersome, conditions were established (see also [19]). For an arbitrary matrix function, the
description of possible perturbations that preserve their partial indices remains uncovered.

The aim of the present paper is to analyse the perturbations in a class of 2 × 2 triangular matrix
functions. On one hand, such matrices are among the simpler examples, which also include the
diagonal matrices, and their factorizations can be obtained explicitly (see [13,20–23]), while, as
can be seen from the following, the results are not at all trivial. On the other hand, triangular
matrices play a crucial role in the factorization of a matrix function of general form [24].

In our paper for a given triangular 2 × 2 matrix function A(t), we consider only a set of
triangular matrix functions, Ã(t), close to the original one, ‖A(t) − Ã(t)‖ < ε. In the GKB criterion,
arbitrary (not only triangular) perturbed matrix functions are analysed. In this way, we have
established new stability cases that do not obey the GKB criterion. Moreover, our criterion is
effective as it simultaneously determines the partial indices. However, unsurprisingly, in most
cases, our criterion coincides with the classic GKB criterion.

The paper is organized as follows. Section 2 introduces the main notations and presents
important preliminary results. Section 3 is devoted to the construction of the solution of the
factorization problem for a different relationship between the indices ν1, ν2 of the diagonal
elements of the given matrix of the above class. In §4, we study the stability of the set of partial
indices in their dependence on ν1, ν2 and of the perturbation of the given matrix. Rigorous proofs
for some of the statements are given in appendix A.

2. Notations and preliminary results
Let us denote the unit circle by T = {z ∈ C : |z| = 1}. The Wiener algebra W(T) is the set of all
functions represented by the absolutely converging Fourier series,

f (t) =
∞∑

j=−∞
fjt

j, t ∈ T,

which is equipped with the standard norm ‖f‖ :=∑∞
j=−∞ |fj| < ∞. Thus W(T) is the Banach

algebra [9, sec. 2]. The sets

W+(T) := {
f ∈ W : fj = 0, j < 0

}
, W−(T) := {

f ∈ W : fj = 0, j ≥ 0
}

are closed subalgebras of W(T) , such that W(T) may be decomposed: W(T) = W−(T) ⊕ W+(T).
Thus, any invertible elements of W(T) admit the Wiener–Hopf factorization [9, sec. 2, cor. 2.13].

The algebra of 2 × 2 matrix functions with entries aij(t) in W(T) will be denoted by W2×2(T).
This is a Banach algebra with respect to one of the usual matrix norms, e.g.

‖A(t)‖ = max {‖a11(t)‖ + ‖a21(t)‖, ‖a21(t)‖ + ‖a22(t)‖}
and W2×2

− (T), W2×2
+ (T) are its closed subalgebras. GW2×2(T) is the group of all invertible elements

from W2×2(T). Any A(t) ∈ GW2×2(T) admits the Wiener–Hopf factorization in this algebra.
Let us denote by T W2×2(T) a class of triangular 2 × 2 matrix functions

A(t) =
(

a11(t) 0
a21(t) a22(t)

)

with entries aij(t) in W(T). This is a closed subalgebra of W2×2(T). We denote the group of all
invertible elements from T W2×2(T) by GT W2×2(T). In general, A(t) ∈ GT W2×2(T) admits the
Wiener–Hopf factorization in GW2×2(T), but the factors are not necessarily triangular matrices;
see [5].
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For any A(t) ∈ GT W2×2(T), the factorizations of the diagonal elements are known, ajj(t) =
a−

jj (t)tνj a+
jj (t), νj = ind ajj(t), and such factorizations are unique provided that a+

jj (0) = 1.
Let

aj = 1
2π i

∫
|t|=1

t−j−1 a21(t)
a+

11(t)a−
22(t)

dt (2.1)

be the Fourier coefficients of the function

a(t) = a21(t)
a+

11(t)a−
22(t)

. (2.2)

Since we deal only with matrix functions defined on the unit circle T, we will use the shorter
notations GW2×2, T W2×2, GT W2×2 etc. for the corresponding classes of matrix functions.

3. Relationship between the partial indices of a matrix functionGT W2×2 and
the indices of its diagonal elements

Here, we explicitly solve the Wiener–Hopf factorization problem for the class GT W2×2.
A relationship is established between the partial indices ρ1, ρ2 of the matrix function A(t) and
the indices ν1, ν2 of its diagonal elements.

Remark 3.1. As mentioned in the Introduction, it is always possible to rearrange the order of
partial indices in a delivered factorization to guarantee the condition ρ1 ≥ ρ2. We can directly
check that the transformation A(s) = A−(s)Dρ1,ρ2 (s)A+(s) = A−(s)J · JDρ1,ρ2 (s)J · JA+(s) = A−(s)J ·
Dρ2,ρ1 (s) · JA+(s) rearranges the initial factorization to that with the opposing order of partial
indices. Here

J =
(

0 1
1 0

)
, and J2 = I.

Taking this into account and noting that the factors in a factorization are not defined uniquely,
below we will not pay any attention to the particular order of the partial indices in a delivered
factorization.

To construct a factorization of A(t), we distinguish two cases (see §3a,b), since they require
different techniques in analysis.

(a) The case of ν2 ≤ ν1 + 1
The factorization in this case can be constructed following the method reported, for example, in
[5]. Indeed, let us represent A(t) in the form

A(t) =
(

a−
11(t) 0

0 a−
22(t)

)
A0(t)

(
a+

11(t) 0

0 a+
22(t)

)
, (3.1)

where

A0(t) =
(

tν1 0
a(t) tν2

)
(3.2)

and a(t) is defined by formula (2.2). Now let us split the function a(t) into

a(t) =
ζ∑

j=−∞
ajt

j +
∞∑

j=ζ+1

ajt
j,

where ν2 − 1 ≤ ζ ≤ ν1. Then

A0(t) =
(

1 0

t−ν1
∑ ζ

j=−∞ ajtj 1

)(
tν1 0

0 tν2

)(
1 0

t−ν2
∑∞

j=ζ+1 ajtj 1

)
(3.3)
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is the Wiener–Hopf factorization of A0(t), since the skew-diagonal elements of the matrices are

t−ν1

ζ∑
j=−∞

ajt
j ∈ W−(T), t−ν2

∞∑
j=ζ+1

ajt
j ∈ W+(T).

By (3.1)–(3.3) we obtain a factorization of A(t) with partial indices ρ1 = ν1, ρ2 = ν2. Let us consider
three subcases that differ in their choice of ζ .

First special case: ν1 = ν2. Using the technique discussed above, we can construct two triangular
factorizations, taking ζ1 = ν1 or ζ2 = ν1 − 1. We then have

A(k)
0 (t) =

(
1 0

a(k)
− (t) 1

)(
tν1 0

0 tν1

)(
1 0

a(k)
+ (t) 1

)
, k = 1, 2, (3.4)

where

a(1)
− (t) = t−ν1

ν1∑
j=−∞

ajt
j, a(2)

− (t) = t−ν1

ν1−1∑
j=−∞

ajt
j, (3.5)

and

a(1)
+ (t) = t−ν1

∞∑
j=ν1+1

ajt
j, a(2)

+ (t) = t−ν1

∞∑
j=ν1

ajt
j. (3.6)

Second special case: ν1 = ν2 − 1. In this case the only possible option for ζ is to choose ζ = ν1. We
note that this case corresponds to the stable configuration of the partial indices (as well as to the
previous special case). Now the matrix function A0(t) is factorized as follows:

A0(t) =
(

1 0
a−(t) 1

)(
tν1 0
0 tν1+1

)(
1 0

a+(t) 1

)
, (3.7)

where

a−(t) = t−ν1

ν1∑
j=−∞

ajt
j, a+(t) = t−ν1−1

+∞∑
j=ν1+1

ajt
j.

Third special case: ν1 − ν2 + 1 = s > 0. In this case, there are exactly s + 1 choices for ζ . Thus we
have s + 1 formulae for factorization, specifically

A(k)
0 (t) =

(
1 0

a(k)
− (t) 1

)(
tν1 0

0 tν2

)(
1 0

a(k)
+ (t) 1

)
, k = 0, 1, . . . , s, (3.8)

where

a(k)
− (t) = t−ν1

ν2−1+k∑
j=−∞

ajt
j, a(k)

+ (t) = t−ν2

+∞∑
j=ν2+k

ajt
j. (3.9)

The partial indices in this case coincide with the orders of the diagonal elements, ρ1 = ν1, ρ2 =
ν2 = ν1 + 1 − s.

Example 3.2. Let

A0(t) =
(

t2 0
t−3 − 2t−1 + 3 − 4t + t2 + t5 t−2

)
, ν1 = 2, ν2 = −2.

Then one of the possible representations (3.8) for k = s,

A(5)
0 (t) =

(
1 0

t−5 − 2t−3 + 3t−2 − 4t−1 + 1 1

)(
t2 0
0 t−2

)(
1 0
t7 1

)
,

is the Wiener–Hopf factorization of A0(t).
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(b) The case of ν2 ≥ ν1 + 2
We split this case into two subcases, as follows.

(i) aν1+1 = · · · = aν2−1 = 0. Then in formula (3.3) we obtain

t−ν2

∞∑
j=ν1+1

ajt
j = t−ν2

∞∑
j=ν2

ajt
j ∈ W+

and (3.3) gives the factorization of A0(t). The factorization of A(t) is constructed by formulae
(3.1)–(3.3) and the partial indices are the same as those previously determined, ρ1 = ν1, ρ2 = ν2.

Example 3.3. Let

A0(t) =
(

t−2 0
t−3 + t2 + t5 t2

)
, ν1 = −2, ν2 = 2, a−1 = a0 = a1 = 0.

Then the representation

A0(t) =
(

1 0
t−1 1

)(
t−2 0
0 t2

)(
1 0

1 + t3 1

)
is the Wiener–Hopf factorization of A0(t).

(ii) The sequence aν2−1
ν1+1 := {aν1+1, . . . , aν2−1} is non-zero. Let us represent A0(t) by the following:

A0(t) =
(

tν1 0
a(t) tν2

)
=
(

1 0
t−ν1

∑ν1
j=−∞ ajtj 1

)(
tν1 0∑ν2−1

j=ν1+1 ajtj tν2

)(
1 0

t−ν2
∑∞

j=ν2
ajtj 1

)
. (3.10)

Here the left factor belongs to W2×2
− , and the right factor belongs to W2×2

+ . Hence the factorization
is reduced to the factorization of the special rational triangular matrix function

P(t) =
(

tν1 0∑ν2−1
j=ν1+1 ajtj tν2

)
. (3.11)

Let ν1 + 1 = ν2 − 1, that is, ν2 = ν1 + 2 and aν2−1
ν1+1 is a one-term sequence, i.e. aν1+1 	= 0. Then

P(t) = tν1+1

(
t−1 0

aν1+1 t

)
.

The factorization of P(t) can then be constructed directly

P(t) = tν1+1

(
t−1 −a−1

ν1+1

aν1+1 0

)(
1 a−1

ν1+1t

0 1

)

=
(

t−1 −a−1
ν1+1

aν1+1 0

)(
tν1+1 0

0 tν1+1

)(
1 a−1

ν1+1t

0 1

)
. (3.12)

Thus, in this case, the factorization of A(t) is constructed by formulae (3.1)–(3.12) and
ρ1 = ν1 + 1, ρ2 = ν1 + 1.

Example 3.4. Let

A0(t) =
(

t 0
t−3 − 2t−1 + 3 − 4t + 2t2 + t5 − t6 t3

)
, ν1 = 1, ν2 = 3, a2 = 2 	= 0.

Then

A0(t) =
(

1 0
t−4 − 2t−2 + 3t−1 − 4 1

)(
t 0

2t2 t3

)(
1 0

t2 − t3 1

)
.
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If we factor the middle multiplier by formula (3.12), we obtain the Wiener–Hopf factorization of
A0(t),

A0(t) =

⎛⎜⎝ t−1 − 1
2

t−5 − 2t−3 + 3t−2 − 4t−1 + 2 − 1
2 t−4 + t−2 − 3

2 t−1 + 2

⎞⎟⎠(t2 0
0 t2

)

×

⎛⎜⎝1 + 1
2 t2 − 1

2 t4 1
2 t

t2 − t3 1

⎞⎟⎠ .

A non-trivial case arises when the non-zero sequence aν2−1
ν1+1 := {aν1+1, . . . , aν2−1} consists of more

than one term, that is, for ν2 ≥ ν1 + 3. The factorization of P(t) now requires a special technique,
which is presented in appendix A.

Let M = ν1 + 1, N = ν2 − 1 and [(M + N)/2] = [(ν1 + ν2)/2] = ν, where

ν :=

⎧⎪⎪⎨⎪⎪⎩
ν1 + ν2

2
, if ν1 + ν2 is even,

ν1 + ν2 − 1
2

, if ν1 + ν2 is odd.

We recall that ν1 + ν2 = � = ind det A(t).
Let μ1, μ2 be the indices and R1(t), R2(t) be essential polynomials of the sequence aν2−1

ν1+1 = aN
M

(see appendix A(a)).
By proposition A.4, the indices of the sequence aν2−1

ν1+1 can be found by the formula

μ1 = ν1 + ρ, μ2 = ν2 − ρ.

Here ρ is equal to the rank of the (ν2 − ν) × (ν − ν1) Toeplitz matrix Tν = Tν (aN
M). For � = 2ν, the

matrix Tν is the square (ν − ν1) × (ν − ν1) matrix

Tν =

⎛⎜⎜⎝
aν . . . aν1+1
...

. . .
...

aν2−1 . . . aν

⎞⎟⎟⎠ , (3.13)

and for � = 2ν + 1 it is the rectangular (ν − ν1 + 1) × (ν − ν1) matrix

Tν =

⎛⎜⎜⎜⎜⎝
aν . . . aν1+1
...

. . .
...

aν2−2 . . . aν

aν2−1 . . . aν+1

⎞⎟⎟⎟⎟⎠ . (3.14)

We denote by aN
M(t) =∑N

j=M ajtj the generating function of the sequence aN
M and present the

function aν2−1
ν1+1(t)Rj(t) in the following way:

aν2−1
ν1+1(t)Rj(t) = tμjα−

j (t) − tν2β+
j (t), j = 1, 2

(see appendix A(b), equation (A 10)).
Then the Wiener–Hopf factorization of P(t) can be found via the following formula (see

appendix A(c), equation (A 12)):

P(t) = σ−1
0

(
R−

1 (t) R−
2 (t)

α−
1 (t) α−

2 (t)

)(
tν1+ρ 0

0 tν2−ρ

)(
β+

2 (t) −R2(t)

−β+
1 (t) R1(t)

)
, t ∈ T. (3.15)

Now the Wiener–Hopf factorization of the original triangular matrix function A(t) is
constructed via formulae (3.1), (3.10) and (3.15) with the right partial indices ρ1 = ν1 + ρ, ρ2 =
ν2 − ρ.

A final result concerning the calculation of the right partial indices ρ1, ρ2 of a triangular 2 × 2
matrix function can be formulated into the following theorem.
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Table 1. The dependence of the right partial indices ρ1, ρ2 on the indices ν1, ν2 of the diagonal elements of triangle matrix
A(t). Hereρ = ν − ν1 is the rank of the matrix Tν , where ν = [(ν1 + ν2)/2], and Tν is the Toeplitz matrix (3.13) or (3.14).

ν1, ν2 the sequence {aj} ρ1 ρ2 GKB criterion

1 ν2 ≤ ν1 + 1 ν1 ν2 stable/unstable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ν2 ≥ ν1 + 2 aν1+1 = · · · = aν2−1 = 0 ν1 ν2 unstable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 ν2 = ν1 + 2 aν1+1 	= 0 ν1 + 1 ν1 + 1 stable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 ν2 ≥ ν1 + 3 the sequence aν2−1
ν1+1 is non-zero ν1 + ρ ν2 − ρ stable/unstable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 3.5. Let

A(t) =
(

a11(t) 0
a21(t) a22(t)

)
∈ T W2×2

be an invertible matrix function.
Suppose that

a11(t) = a−
11(t)tν1 a+

11(t), a22(t) = a−
22(t)tν2 a+

22(t), a+
11(0) = a+

22(0) = 1

are the Wiener–Hopf factorization of the diagonal elements.
If ν2 ≤ ν1 + 1, then

ρ1 = ν1, ρ2 = ν2.

If ν2 ≥ ν1 + 2, then
ρ1 = ν1 + ρ, ρ2 = ν2 − ρ.

Here ρ is the rank of the matrix Tν , ν = [(ν1 + ν2)/2], and Tν is the Toeplitz matrix (3.13) or (3.14),
consisting of the Fourier coefficients aν1+1, . . . , aν2−1 of function (2.2), i.e. a(t) = a21(t)/(a+

11(t)a−
22(t)).

Remark 3.6. In order not to complicate the presentation of the results in the theorem, we have
used different orderings for the partial indices: if ν2 ≤ ν1 − 1 then we assume that ρ1 ≥ ρ2, and
ρ1 ≤ ρ2 in other cases.

Remark 3.7. It follows from theorem 3.5 that the partial indices of a triangular 2 × 2 matrix
function can take any intermediate values between the least and greatest values of the indices of
diagonal elements. It is interesting that this property is not preserved for higher order triangular
matrix functions. It turned out that some of the intermediate values are prohibited [22,23,25].

Remark 3.8. We now know the partial indices of A(t) and we can list the cases of
stability/instability in the sense of GKB. Recall that the indices are GKB-stable iff max ρj −
min ρj ≤ 1. In table 1 we present the dependence of the right partial indices on the indices of
the diagonal elements and indicate the cases of stability/instability in the partial indices.

In those cases when both options are open with respect to the validity of the GKB criterion, we
present below the accurate descriptions.

Corollary 3.9. The condition max ρj − min ρj ≤ 1 is fulfilled in the following cases only:

(1a) ν2 = ν1 − 1, then (ρ1, ρ2) = (ν1 − 1, ν1),
(1b) ν2 = ν1, then (ρ1, ρ2) = (ν1, ν1),
(1c) ν2 = ν1 + 1, then (ρ1, ρ2) = (ν1, ν1 + 1),
(3) ν2 = ν1 + 2 and aν1+1 	= 0, then (ρ1, ρ2) = (ν1 + 1, ν1 + 1),

(4a) ν2 ≥ ν1 + 3, ν1 + ν2 is even and rank Tν = ν − ν1, then (ρ1, ρ2) = (ν, ν), ν = (ν1 + ν2)/2,
(4b) ν2 ≥ ν1 + 3, ν1 + ν2 is odd and rank Tν = ν − ν1, then (ρ1, ρ2) = (ν, ν + 1), ν = (ν1 + ν2 − 1)/2.

Thus it is only for these cases that the indices of a triangular 2 × 2 matrix function will be
preserved under an arbitrary sufficiently small perturbation.
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av1+3

av1+1

av1+2

0

Figure 1. The loci of the partial indices in the affine spaceR
3. (Online version in colour.)

Example 3.10. Let ν2 = ν1 + 4. Then the partial indices are completely defined by the three
parameters aν1+1, aν1+2, aν1+3 and the matrix Tν has the form

Tν1+2 =
(

aν1+2 aν1+1
aν1+3 aν1+2

)
.

By theorem 3.5 we have

(ρ1, ρ2) =

⎧⎪⎪⎨⎪⎪⎩
(ν1 + 2, ν1 + 2) if a2

ν1+2 − aν1+1aν1+3 	= 0,

(ν1 + 1, ν1 + 3) if a2
ν1+2 − aν1+1aν1+3 = 0, {aν1+1, aν1+2, aν1+3} is a non-zero sequence

(ν1, ν1 + 4) if aν1+1 = aν1+2 = aν1+3 = 0.

The geometric meaning of the above statement in the real case can be given in terms of triples
of parameters, (aν1+1, aν1+2, aν1+3) being points in the affine space R

3.

— The locus of the points for which (ρ1, ρ2) = (ν1 + 1, ν1 + 3) is the cone a2
ν1+2 − aν1+1aν1+3 = 0,

excluding the vertex.
— The locus for which (ρ1, ρ2) = (ν1, ν1 + 4) is the vertex of the cone.
— The other points from the space R

3 correspond to the stable system of the indices:
(ρ1, ρ2) = (ν1 + 2, ν1 + 2) (figure 1).

Remark 3.11. At first glance, this picture contradicts Bojarski’s statement, as discussed in
the Introduction. Specifically, it is clear that the set of matrices with common partial indices—
(ρ1, ρ2) = (ν1 + 2, ν1 + 2) (domains inside and outside of the cone)—is not connected. Since the
parameters are real, we could represent the geometrical structure in three-dimensional real space.
However, Bojarski’s result deals with three-dimensional complex space, in which the respective
domain is clearly connected.

4. Preserving/changing partial indices upon perturbation in the class T 2×2

In §3 we constructed the right Wiener–Hopf factorization of a triangular 2 × 2 matrix function
A(t) and explicitly obtained its right partial indices (see theorem 3.5). The explicit formulae for
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the indices allowed us to obtain the effective conditions for the stability of the indices under an
arbitrary sufficiently small perturbation of A(t), i.e. the conditions for the GKB stability. These
conditions are given in corollary 3.9.

However, in the stability analysis of the factorization of triangular 2 × 2 matrix functions, it
is more natural to assume that a perturbation does not remove a matrix function from the given
class. This leads to the following definition.

Definition 4.1. Let A(t) ∈ GT 2×2. The right partial indices of A(t) are called T -stable if there
exists ε > 0 such that any matrix function Ã(t) ∈ T 2×2, satisfying the inequality ‖A(t) − Ã(t)‖ < ε,
has the same system of right partial indices as A(t).

We note that for a sufficiently small ε the matrix function Ã(t) is invertible; hence, it admits the
Wiener–Hopf factorization Ã(t) = Ã−(t)D̃(t)Ã+(t), where D̃(t) = diag[tρ̃1 , tρ̃2 ].

The regular perturbations introduced in [18] are obviously T -stable for A(t) ∈ GT 2×2.
We now address the main question of this section; namely, what happens when we perturb a

given triangular matrix with a triangular perturbation. We would like to find out whether new
cases of the stability can appear under such perturbations.

Theorem 4.2. Let A(t) ∈ GT W2×2 and the indices ν1, ν2 of its diagonal elements a11(t), a22(t) satisfy
the inequality ν2 ≤ ν1 + 1. We denote

ε = min
{

min
t∈T

|a11(t)|, min
t∈T

|a22(t)|
}

.

If a matrix function Ã(t) ∈ T W2×2 satisfies the inequality ‖Ã(t) − A(t)‖ < ε, then Ã(t) is invertible
and has the same partial indices as A(t),

ρ̃1 = ρ1 = ν1, ρ̃2 = ρ2 = ν2.

Proof. The proof is straightforward and we present it here only for completeness. By
theorem 3.5, for the original matrix function A(t) we have ρ1 = ν1, ρ2 = ν2.

It is clear that

max
t∈T

|̃a11(t) − a11(t)| ≤ ‖̃a11(t) − a11(t)‖ ≤ ‖Ã(t) − A(t)‖ < min
t∈T

|a11(t)| = 1

maxt∈T |a−1
11 (t)|

.

Let us introduce

w(t) = 1 + ã11(t) − a11(t)
a11(t)

, t ∈ T,

and consider
ã11(t) = a11(t)w(t),

where we observe that maxt∈T |w(t) − 1| < 1 by the previous inequality. Hence ã11(t) 	= 0 on T.
Moreover,

ν̃1 = ind ã11(t) = ind a11(t) + ind w(t).

Note that ind w = 0 since the curve w(t), t ∈ T, lies in the disc |w − 1| < 1 and does not rotate about
the origin. Thus ν̃1 = ν1. Similarly, ã22(t) 	= 0 on T and ν̃2 = ν2.

Therefore, Ã(t) is invertible and, by theorem 3.5, ρ̃1 = ν1, ρ̃2 = ν2. �

Thus if ν2 ≤ ν1 + 1, then the right partial indices are always T -stable. We see that there are new
cases of the stability if we narrow down the class of perturbation.

We now turn to the case ν2 ≥ ν1 + 2. From table 1 it follows that if the matrix Tν is of full rank
ρ = ν − ν1, then the system of partial indices is GKB-stable and ρ1 = ρ2 = ν for even ν1 + ν2 and
ρ1 = ν, ρ2 = ν + 1 for odd. Next, we will prove that this condition is sufficient for T -stability. We
will not use the GKB criterion to prove this statement.

Theorem 4.3. Let A(t) ∈ GT W2×2, the indices ν1, ν2 of its diagonal elements a11(t), a22(t) satisfy the
inequality ν2 ≥ ν1 + 2, and the matrix Tν be of full rank ρ = ν − ν1. Then there is ε > 0 such that any
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matrix function Ã(t) ∈ T W2×2 satisfying the inequality ‖Ã(t) − A(t)‖ < ε is invertible and has the same
partial indices as A(t),

ρ̃1 = ρ1, ρ̃2 = ρ2.

Proof. First, we choose

ε ≤ min
{

min
t∈T

|a11(t)|, min
t∈T

|a22(t)|
}

.

Then, as in theorem 4.2, the matrix function Ã(t) is invertible and ν̃1 = ν1, ν̃2 = ν2. We can then
apply theorem 3.5 to Ã(t), and hence

ρ̃1 = ν1 + ρ̃, ρ̃2 = ν2 − ρ̃.

Here ρ̃ is the rank of the matrix T̃ν , consisting of the corresponding Fourier coefficients of the
function ã(t) = ã21(t)/( ã+

11(t)̃a−
22(t)).

Since Tν is of full rank, there exists an invertible submatrix Sν of Tν . Let S̃ν be the submatrix of
T̃ν that is located in the same rows as Sν . We can then estimate ‖̃Sν − Sν‖. For an m × l matrix M,
we employ the norm ‖M‖ = max1≤j≤l

∑m
i=1 |Mij|. Since T̃ν , Tν are Toeplitz matrices generated by

the sequences ãν2−1
ν1+1, aν2−1

ν1+1, the following inequalities hold:

‖̃Sν − Sν‖ ≤ ‖T̃ν − Tν‖ ≤ ‖̃aν2−1
ν1+1 − aν2−1

ν1+1‖ ≤ ‖̃a(t) − a(t)‖.

If a scalar function f (t) ∈ W(T) admits the Wiener–Hopf factorization f (t) = f−(t)tν f+(t), f+(0) = 1,
then the factors f±(t) and their inverses continuously depend on f (t). Hence, for the factors a+

11(t),
a−

22(t) there exist constants C1, C2 such that∥∥∥∥∥ 1
ã+

11(t)
− 1

a+
11(t)

∥∥∥∥∥≤ C1‖̃a11(t) − a11(t)‖ ≤ C1‖Ã(t) − A(t)‖,

∥∥∥∥∥ 1
ã−

22(t)
− 1

a−
22(t)

∥∥∥∥∥≤ C2‖̃a22(t) − a22(t)‖ ≤ C2‖Ã(t) − A(t)‖.

Therefore, there exists a constant C3 such that ‖̃a(t) − a(t)‖ ≤ C3‖Ã(t) − A(t)‖ and we obtain the
final estimate

‖̃Sν − Sν‖ ≤ C3‖Ã(t) − A(t)‖.

Now let

ε ≤ min
{

min
t∈T

|a11(t)|, min
t∈T

|a22(t)|, 1

C3‖S−1
ν ‖

}
.

In this case, if ‖Ã(t) − A(t)‖ < ε, then the matrix S̃ν is invertible, and T̃ν is of full rank ρ̃ = ρ =
ν − ν1, and thus ρ̃1 = ρ1, ρ̃2 = ρ2. �

Here we have proved that the inequality max ρj − min ρj ≤ 1 is sufficient for T 2×2-stability of
the partial indices. We note that the proof does not use the GKB criterion and that this condition
is effective.

Now we will consider the case of a Tν of incomplete rank.

Theorem 4.4. Let A(t) ∈ GT W2×2, the indices ν1, ν2 of its diagonal elements a11(t), a22(t) satisfy the
inequality ν2 ≥ ν1 + 2, and the rank ρ of the matrix Tν be such that the inequalities 0 ≤ ρ < ν − ν1 are
fulfilled.

Then for any sufficiently small ε > 0 and for any r, ρ ≤ r ≤ ν − ν1, there exists a matrix function Ã(t) ∈
GT W2×2 such that ‖Ã(t) − A(t)‖ < ε and the partial indices of Ã(t) are

ρ̃1 = ν1 + r, ρ̃2 = ν2 − r.

Matrix functions Ã(t) with other partial indices ρ̃1, ρ̃2 do not exist in the ε-neighbourhood of A(t).
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Proof. Let ε ≤ min{mint∈T |a11(t)|, mint∈T |a22(t)|} and ‖Ã(t) − A(t)‖ < ε. Then, as above, Ã(t) is
invertible, ν̃1 = ν1, ν̃2 = ν2, and ρ̃1 = ν1 + ρ̃, ρ̃2 = ν2 − ρ̃, where ρ̃ = rank T̃ν . As in theorem 4.3 we
have

‖T̃ν − Tν‖ ≤ C3‖Ã(t) − A(t)‖.

The rank of any matrix under a sufficiently small perturbation can only increase. Hence ρ̃ ≥ ρ,
ρ̃1 ≥ ρ1 and ρ̃2 ≤ ρ2 if ‖Ã(t) − A(t)‖ < ε for sufficiently small ε.

First we prove that for the Toeplitz matrix Tν generated by the sequence aν2−1
ν1+1, which is of

incomplete rank ρ, it is possible to choose the sequence δ
ν2−1
ν1+1 such that, for ãν2−1

ν1+1 = aν2−1
ν1+1 + δ

ν2−1
ν1+1 ,

the corresponding matrix T̃ν has rank r, ρ < r ≤ ν − ν1.
Let r = ρ + 1. If ρ = 0, that is, aν2−1

ν1+1 is a zero sequence, then it is sufficient to put δ
ν2−1
ν1+1 =

{δν1+1, 0, . . . , 0}, δν1+1 	= 0.
Now let ρ > 0 and Sρ be an invertible ρ × ρ submatrix of Tν . Suppose that Sρ consists of

the elements of Tν on the intersection of the rows with number i1, . . . , iρ and the columns with
numbers j1, . . . , jρ ,

S = Tν

(
i1 . . . iρ
j1 . . . jρ

)
.

Let i /∈ {i1, . . . , iρ}, j /∈ {j1, . . . , jρ} and Sρ+1 be the bordering submatrix Tν

(
i1 ... iρ ,i
j1 ... jρ ,j

)
. The entry in

the ith row and jth column of this matrix is aν+i−j. In Tν we replace this element with ãν+i−j =
aν+i−j + δν+i−j and denote the new matrix by T̃1

ν and the new submatrix by S̃ρ+1. Obviously,
det S̃ρ+1 = det Sρ+1 + δν+i−j det Sρ = δν+i−j det Sρ 	= 0 if δν+i−j 	= 0. It is not difficult to verify that
all bordering submatrices of S̃ρ+1 in T̃1

ν are singular. This means that rank T̃1
ν is equal to ρ + 1.

Continuing this process and replacing ρ − r elements of the sequence aν2−1
ν1+1, we obtain the

matrix T̃ν , which is of rank r.
Now let us consider the matrix function

Ã(t) = A(t) +
(

0 0
a+

11(t)a−
22(t)

∑ν2−1
j=ν1+1 δjtj 0

)
.

If we choose the sequence δ
ν2−1
ν1+1 such that

∑ν2−1
j=ν1+1 |δj| < ε

‖a+
11‖‖a−

22‖
, then ‖Ã(t) − A(t)‖ < ε, and

with respect to the matrix function Ã(t) the matrix T̃ν has a rank equal to the given r. Thus ρ̃1 =
ν1 + r, ρ̃2 = ν2 − r. �

It follows from theorems 4.3 and 4.4 that, in the case of ν2 ≥ ν1 + 2, the partial indices of A(t)
are stable iff the matrix Tν is of full rank. In this case ρ1 = ρ2 = ν or ρ1 = ν, ρ2 = ν + 1.

Remark 4.5. We have proved that, in the case of ν2 ≤ ν1 + 2, the partial indices of A(t) ∈
GT W2×2 are completely defined by the finite number of the parameters aν1+1, . . . , aν2−1. Let us
suppose that we have a priori information about the values of these Fourier coefficients for a
certain matrix function A(t), and that we can guarantee that some perturbations will preserve
these values. Then under these perturbations the matrix function Ã(t) has the same indices as
A(t).

Example 4.6. Let the factorizations of the diagonal elements have the form

a11 = tν1 a−
11, a22 = a+

22tν1+2

and a21 = tν1+2c(t), where c(t) ∈ W+. Consider the following class of triangular matrix functions:

A(t) =
(

tν1 a−
11 0

tν1+2c(t) a+
22tν1+2

)
.

Then the indices of A are ρ1 = ν1, ρ2 = ν1 + 2 and they are stable under small perturbations from
this class.
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Summarizing the results of this section, we can conclude that the conditions for stability of the
partial indices in the class GT W2×2 are weaker than the GKB criterion in the general space GW2×2,
and can be formulated as follows.

Corollary 4.7. A small perturbation Ã ∈ GT W2×2 of the matrix A ∈ GT W2×2 preserves its right
partial indices (ρ̃j = ρj, j = 1, 2) in the following cases (the values of ρj are collected in table 1):

(1) ν2 ≤ ν1 + 1,
(3) ν2 = ν1 + 2 and aν1+1 	= 0,

(4a) ν2 ≥ ν1 + 3 and rank Tν = ν − ν1,
(4b) ν2 ≥ ν1 + 3, 0 ≤ rank Tν < ν − ν1 and rank T̃ν = rank Tν .

5. Discussion and conclusion
In our paper we have discussed the behaviour of the partial indices of a given matrix function
A(t) under perturbations from the ε-neighbourhood in different classes of matrix functions. We
consider both stable and unstable configurations of the partial indices. Our study is restricted to a
specific class of triangular matrix functions given on the unit circle with entries from the Wiener
algebra. Even in this case, when the factorization technique is well developed, the structure of the
parametric space (guiding the types of matrix perturbations) is non-trivial.

The developed approach can be applied for matrices of a larger order as well as for those
belonging to different classes of matrix functions. We choose here the case of triangular 2 × 2
matrices with Wiener entries since in this case it is possible to determine an explicit factorization
and thus illustrate the main ideas by simple examples.

We have shown, in particular, that, when the orders ν1, ν2 of the diagonal elements of an initial
matrix A(t) satisfy the condition ν2 ≤ ν1 + 1, for any small perturbation Ã(t) ∈ T 2×2 from a certain
small neighbourhood of A(t) the partial indices remain the same.

It follows from theorems 4.3 and 4.4 that for ν2 ≥ ν1 + 2 the corresponding partial indices are
stable iff the Toeplitz matrix Tν is of full rank. We note that the proof of this fact is given without
appealing to the GKB criterion. In this case, we have also singled out a class of perturbation
which yields the preservation of partial indices: if we have preliminary information on the values
of the Fourier coefficients aν1+1, . . . , aν2−1 for the matrix A(t), then those perturbations of A(t) that
preserve these values lead to the matrix Ã(t), with identical partial indices to those in A(t).

Note that, when computing an approximate factorization, the algorithm should be naturally
designed in the direction of selecting the approximate factors in a unique way. For example, one
might want to prescribe the values of the factors at a certain point. Thus, in formula (3.4), the
plus-factor would be the unit matrix at z = 0 for k = 1, but the minus-factor would be the unit
matrix at z = ∞ for k = 2. It can be directly checked that, under one of these conditions, (A0+(0) = I
or A0−(∞) = I) we get a unique factorization in the case ν1 = ν2. Surely these conditions can be
achieved (e.g. [26]). A detailed discussion on possible uniqueness conditions is to follow.

Note also that an extension of our results to higher order triangular matrix functions is not
trivial and requires development of a constructive factorization. Primachuk & Rogosin [6] have
suggested an inductive approach to the transition from triangular 2 × 2 matrix functions to a
higher order one, based on the Chebotarev method. Another inductive approach was proposed
in [21]. The factorization problem for higher order triangular matrix functions has been reduced to
the factorization problem for analytic matrix functions. In turn, the latter problem can be explicitly
solved by the method of essential polynomials. However, a stability analysis of the problem for
the analytic matrix functions is still under development.
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Appendix A. The technique of essential indices and essential polynomials in the
factorization problem

(a) Essential indices and essential polynomials of a sequence
Let M, N be integers, M < N, and c N

M = (cM, cM+1, . . . , cN) be a non-zero sequence of complex
numbers. In this section we introduce notions of essential indices and essential polynomials for
the sequence c N

M . These notions were given in a more general setting in [20]. Here we will consider
the scalar case only, and thus the complicated considerations in [20] can be greatly simplified.

Let us form the family of Toeplitz matrices

Tk(c N
M) = (ci−j) i=k,k+1,...,N

j=0,1,...,k−M
, M ≤ k ≤ N,

and study the sequence of the spaces ker Tk(c N
M), M ≤ k ≤ N. Further, it is more convenient to

deal not with vectors Q = (q0, q1, . . . , qk−M)t ∈ ker Tk but with their generating polynomials Q(z) =
q0 + q1 z + · · · + q k−M zk−M. We will use the spaces Nk of the generating polynomials instead of
the spaces ker Tk. The generating function

∑N
j=M ckzk of the sequence c N

M will be denoted by c N
M(z).

Let us introduce a linear functional σ by the formula: σ {zj} = c−j, −N ≤ j ≤ −M. The functional
is defined on the space of rational functions of the form Q(z) =∑−M

j=−N qjzj. In the theory of
orthogonal polynomials it is called the Stieltjes functional. Besides this algebraic definition of
σ we will use the following analytic definition:

σ {Q(z)} = 1
2π i

∫
Γ

t−1c N
M(t)Q(t) dt. (A 1)

Here Γ is any closed contour around the point z = 0.
Denote by Nk (M ≤ k ≤ N) the space of polynomials Q(z) with the formal degree k − M,

satisfying the orthogonality conditions:

σ
{
z−iQ(z)

}= 0, i = k, k + 1, . . . , N. (A 2)

From definition (A 1) it follows that σ {z−iQ(z)} is the coefficient in zi in the Laurent expansion
of cN

M(z)Q(z). Hence the conditions (A 2) mean that in the expansion of cN
M(z)Q(z) there exists a

lacuna, that is, the coefficients in zi for i = k, . . . , N are equal to zero. This fact will be used later.
It is easily seen that Nk is the space of generating polynomials of the vectors in ker Tk. For

convenience, we put NM−1 = 0 and denote by NN+1 the (N − M + 2)-dimensional space of all
polynomials with formal degree N − M + 1. If necessary, the more detailed notation Nk(c N

M) is
used instead of Nk.

Let dk be the dimension of the space Nk and �k = dk − dk−1 (M ≤ k ≤ N + 1). The following
proposition is crucial for further considerations.

Proposition A.1. For any non-zero sequence cN
M the following inequalities

0 = �M ≤ �M+1 ≤ · · · ≤ �N ≤ �N+1 = 2 (A 3)

are fulfilled.
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Proof. It follows from definition (A 2) that Nk and zNk are subspaces of Nk+1. Let us find
dim(Nk + zNk). To do this, we will prove that

Nk
⋂

zNk = zNk−1.

Indeed, a polynomial Q(z) belongs to Nk
⋂

zNk iff Q(z) = zQ1(z), where deg Q1(z) ≤ k − M − 1,
σ {z−iQ1(z)} = 0, for i = k, k + 1, . . . , N, and σ {z−izQ1(z)} = 0, for i = k, k + 1, . . . , N. This precisely
means that Q1(z) ∈Nk−1.

Then by the Grassman formula we have

dim(Nk + zNk) = dimNk + dim(zNk) − dimNk
⋂

zNk = 2dk − dk−1.

Hence
dimNk+1 − dim(Nk + zNk) = �k+1 − �k ≥ 0.

�

It follows from inequalities (A 3) that there exist integers μ1 ≤ μ2 such that

�M = . . . = �μ1 = 0,

�μ1+1 = . . . = �μ2 = 1

and �μ2+1 = . . . = �N+1 = 2.

⎫⎪⎪⎬⎪⎪⎭ (A 4)

If the second row of these relations is absent, we assume μ1 = μ2.

Definition A.2. The integers μ1, μ2 will be called essential indices of the sequence c N
M .

Proposition A.3. For any non-zero sequence cN
M we have

μ1 + μ2 = M + N.

Proof. From the definition of the differences �k we have

N+1∑
k=M

�k = dN+1 = N − M + 2.

On the other hand, it follows from (A 4) that

N+1∑
k=M

�k = μ2 − μ1 + 2(N − μ2 + 1).

Comparison of these relations gives μ1 + μ2 = M + N. �

The following proposition provides formulae for the essential indices.

Proposition A.4. Let ρ = rank T[(N+M)/2], where [(N + M)/2] is the integral part of (N + M)/2.
Then the essential indices μ1, μ2 are found by the formulae

μ1 = M + ρ − 1, μ2 = N − ρ + 1. (A 5)

Proof. Let us denote ν = [(M + N)/2]. Since μ1 + μ2 = M + N, we have μ1 ≤ ν ≤ μ2. If μ1 = ν,
then dν = 0, that is, the matrix Tν is of full rank: ρ = ν − M + 1. This means that μ1 = ρ + M − 1,
hence μ2 = N − ρ + 1.

Now let μ1 < ν ≤ μ2. From (A 4) we have

dν =
ν∑

k=M

�k = ν − μ1,

that is, ν − M + 1 − ρ = ν − μ1. Formulae μ1 = ρ + M − 1, μ2 = N − ρ + 1 once again hold. �

As noted above, Nk and zNk are subspaces of Nk+1, M − 1 ≤ k ≤ N. Let hk+1 be the dimension
of any complement Hk+1 of the subspace Nk + zNk in the whole space Nk+1.
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From (A 4) we see that hk+1 	= 0 iff k = μj (j = 1, 2), hk+1 = 1 if μ1 < μ2, and hk+1 = 2 for μ1 = μ2.
Therefore, Nk+1 =Nk + zNk for k 	= μj, and Nk+1 = (Nk + zNk) ⊕ Hk+1 for k = μj.

Definition A.5. Let μ1 = μ2. Any polynomials R1(z), R2(z) that form a basis for the two-
dimensional space Nμ1+1 are called the essential polynomials of the sequence c N

M , corresponding
to the essential index μ1 = μ2.

If μ1 < μ2, then any polynomial Rj(z) that is a basis for a one-dimensional complement Hμj+1
is said to be the essential polynomial of the sequence corresponding to the essential index μj,
j = 1, 2.

It follows from theorem 4.1 of [20] that in the scalar case the following criterion of essentialness
is fulfilled. We will use only the necessary part of the following proposition and we will give the
proof only for this part.

Proposition A.6. Integers μ1, μ2 such that μ1 + μ2 = M + N are the essential indices, and
polynomials R1(z) ∈Nμ1+1, R2(z) ∈Nμ2+1 are the essential polynomials of the sequence cN

M iff

σ0 := σ {z−N−1[R2(0)R1(z) − R1(0)R2(z)]} 	= 0.

Proof of necessity. Let μ1, μ2 be essential indices and R1(z) ∈Nμ1+1, R2(z) ∈Nμ2+1 be the essential
polynomials of the sequence. Let us extend this sequence to the right by an arbitrary number cN+1.
Then the formula for σ0 can be rewritten in the form

σ0 = det

⎛⎝σ̃ {z−N−1R1(z)} σ̃ {z−N−1R2(z)}
R1(0) R2(0)

⎞⎠ .

Here σ̃ is the Stieltjes functional for the extended sequence cN+1
M .

Suppose that σ0 = 0. Then there exist constants α1, α2, not all zero, such that

α1σ̃R{z−N−1R1(z)} + α2σ̃R{z−N−1R2(z)} = 0 (A 6)

and
α1R1(0) + α2R2(0) = 0. (A 7)

Let us introduce the polynomial

Q(z) = α1R1(z) + α2R2(z) ∈Nμ2+1.

From (A 7) it follows that Q(z) = zQ1(z) and that the degree of Q1(z) is not greater than μ2 − M,
and from (A 6) it follows that σ {z−NQ1(z)} = 0. Since Q(z) ∈Nμ2+1, we have Q1(z) ∈Nμ2 . Now

α2R2(z) = zQ1(z) − α1R1(z) ∈Nμ2 + zNμ2 . (A 8)

However, by the definition of the right essential polynomials we have R2(z) 	∈Nμ2 + zNμ2 .
Hence condition (A 8) is fulfilled iff α2 = 0. By repeating these arguments for the essential index
μ1, we obtain α1 = 0. This contradiction shows that σ0 	= 0.

(b) From the essential indices and essential polynomials to the factorization
We will now obtain the connection between the problem of finding the essential indices and
essential polynomials for the sequence cN

M and the problem of the Wiener–Hopf factorization of
the triangular 2 × 2 matrix function of the special form

P(z) =
⎛⎝ zM−1 0∑N

i=M cizi zN+1

⎞⎠ , z ∈ Γ , (A 9)

relative to any simple smooth contour Γ around 0. Here the sequence cN
M = {cM, . . . , cN} is non-

zero.
Let μ1, μ2 be the essential indices and R1(z), R2(z) be the right essential polynomials of the

sequence cN
M.
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For the appropriate essential polynomials Rj(z) ∈Nμj+1, as indicated above, the Laurent
expansion of cN

M(z)Rj has a lacuna. This yields the following relationship:

cN
M(z)Rj(z) = zμjα−

j (z) − zN+1β+
j (z), j = 1, 2. (A 10)

Here α−
j (z) (β+

j (z)) is a polynomial in z−1 (in z) with degree that is less than or equal to μj − M.
Now equation (A 10) can be written in the matrix form,

(
cN

M(z) zN+1
)⎛⎝R1(z) R2(z)

β+
1 (z) β+

2 (z)

⎞⎠=
(
α−

1 (z) α−
2 (z)

)⎛⎝zμ1 0

0 zμ2

⎞⎠ . (A 11)

We denote

R−
j (z) = z−μj+M−1Rj(z).

Since Rj(z) has a formal degree in z equal to μj − M + 1, then R−
j (z) is a polynomial in z−1 with

the same formal degree. Then from (A 11) we obtain⎛⎝zM−1 0

cN
M(z) zN+1

⎞⎠⎛⎝R1(z) R2(z)

β+
1 (z) β+

2 (z)

⎞⎠=
⎛⎝R−

1 (z) R−
2 (z)

α−
1 (z) α−

2 (z)

⎞⎠⎛⎝zμ1 0

0 zμ2

⎞⎠ .

Denote

P̃+(z) =
⎛⎝R1(z) R2(z)

β+
1 (z) β+

2 (z)

⎞⎠ , P−(z) =
⎛⎝R−

1 (z) R−
2 (z)

α−
1 (z) α−

2 (z)

⎞⎠ , D(z) =
⎛⎝zμ1 0

0 zμ2

⎞⎠ .

Here P̃+(z) is a matrix polynomial in z, P−(z) is a matrix polynomial in z−1 and

P(z)P̃+(z) =P−(z)D(z).

Let us pass from this equation to its determinants. Since μ1 + μ2 = N + M, we obtain

det P̃+(z) = detP−(z).

By the Liouville theorem we have det P̃+(z) = detP−(z) = const. We will now prove that this
constant is non-zero. To do this, we find

P̃+(0) =
⎛⎝R1(0) R2(0)

β+
1 (0) β+

2 (0)

⎞⎠ .

From (A 10) we see that −β+
j (0) is the coefficient of zN+1 in the Laurent expansion of cN

M(z)Rj, that

is, −σ̃ {z−N−1Rj(z)}. Hence

P̃+(0) =
⎛⎝ R1(0) R2(0)

−σ̃ {z−N−1R1(z)} −σ̃ {z−N−1R2(z)}

⎞⎠
and det P̃+(0) = σ0 	= 0 by proposition A.6.

Thus, P̃+(z) and P−(z) are unimodular matrix polynomials and

P+(z) := P̃−1
+ (z) = σ−1

0

⎛⎝ β+
2 (z) −R2(z)

−β+
1 (z) R1(z)

⎞⎠ .
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Thus P(z) =P−(z)D(z)P+(z), or, in detail,

P(z) = σ−1
0

⎛⎝R−
1 (z) R−

2 (z)

α−
1 (z) α−

2 (z)

⎞⎠⎛⎝zμ1 0

0 zμ2

⎞⎠⎛⎝ β+
2 (z) −R2(z)

−β+
1 (z) R1(z)

⎞⎠ , z ∈ Γ , (A 12)

is the Wiener–Hopf factorization of the triangular matrix function P(z) and the essential indices
of the sequence cN

M are the right partial indices of P(z).
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