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Abstract

In the area of genetic epidemiology, studies of the genotype-phenotype associations have

made significant contributions to human complicated trait genetics. These studies depend

on specialized statistical methods for uncover the association between traits and genetic

variants, both common and rare variants. Often, in analyzing such studies, potentially con-

founding factors, such as social and environmental conditions, are required to be involved.

Multiple linear regression is the most widely used type of regression analysis when the out-

come of interest is quantitative traits. Many statistical tests for identifying genotype-pheno-

type associations using linear regression rely on the assumption that the traits (or the

residuals) of the regression follow a normal distribution. In genomic research, the rank-

based inverse normal transformation (INT) is one of the most popular approaches to reach

normally distributed traits (or normally distributed residuals). Many researchers believe that

applying the INT to the non-normality of the traits (or the non-normality of the residuals) is

required for valid inference, because the phenotypic (or residual) outliers and non-normality

have the significant influence on both the type I error rate control and statistical power, espe-

cially under the situation in rare-variant association testing procedures. Here we propose a

test for exploring the association of the rare variant with the quantitative trait by using a fully

adjusted full-stage INT. Using simulations we show that the fully adjusted full-stage INT is

more appropriate than the existing INT methods, such as the fully adjusted two-stage INT

and the INT-based omnibus test, in testing genotype-phenotype associations with rare vari-

ants, especially when genotypes are uncorrelated with covariates. The fully adjusted full-

stage INT retains the advantages of the fully adjusted two-stage INT and ameliorates the

problems of the fully adjusted two-stage INT for analysis of rare variants under non-normal-

ity of the trait. We also present theoretical results on these desirable properties. In addition,

the two available methods with non-normal traits, the quantile/median regression method

and the Yeo-Johnson power transformation, are also included in simulations for comparison

with these desirable properties.
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Introduction

In recent years, there has been growing interest in using next-generation sequencing technolo-

gies to discovery causal rare variants associated with complex human disease and traits. Asso-

ciation studies, where the correlational relationship between genetic variants and traits are

evaluated, are helpful for mapping genes influencing complex diseases. In the area of genetic

epidemiology, the genotype-phenotype associations of genetic markers with quantitative traits

of interest are typically tested through liner regression under the assumption of the normality

and finite variance for the trait distribution [1, 2]. However, in practical applications, the true

model is unknown and thus the assumption of normally distribution with finite variance in

samples of sufficient size may be violated [2, 3]. The operating parameters of linear regression

are sensitive to the underlying trait distributions and outliers [2]. Ignoring outliers or non-nor-

mality can seriously affect the type I error rates and statistical power, which especially leads to

worse impact on rarer variants [4, 5].

In genetic association studies, the rank-based inverse normal transformation (INT) to the

phenotype is widely used as a direct manner to fulfill the assumption of normality of the out-

come [3, 6–8]. Regardless of the underlying trait distribution, the distribution of the trait after

the INT is expected to be normal [2]. Many genetic researchers believe that such INT transfor-

mations are necessary for valid inference especially in studying rare-variant associations [8].

For example, Tang and Lin [9] showed that applying the INT to the trait values can ameliorate

the type I error rates and enhances statistical power in detecting associations relative to rare-

variant analyses. However, in many situations, the use of the phenotype transformation has

been demonstrated to be insufficient for normalizing data. For example, Sofer et al. [5] pointed

out that affecting the valid statistical inference of regression-based genotype-phenotype associ-

ation tests is not the distribution of the trait but the distribution of the trait after regressing out

covariates. Pain et al. [10] indicated that the INT always make a perfect normal distribution

when no tied observations exist in the dataset. Previous researches have exhibited that albeit

the INTs give rise to potential loss of information, this approach keeps good control of type I

error rate and statistical power [10–12]. Beasley et al. [3] reported that the applying the INT to

traits may still lead to non-normal residuals and then result in the improper type I error con-

trol under certain circumstances where the residuals follow a heavily skewed distribution.

In recent years, genome-wide association studies (GWAS) have been analyzed by the two-

stage INT approach. In Stage 1, the INT approach is applied to the residuals that are obtained

by regressing the traits on covariates and afterward these INT-transformed phenotypic residu-

als are used to be regressed on genotype without further adjustment for covariates in Stage 2

[13–17]. It is called the partly adjusted two-stage INT. The properties of this frequently used

method has been investigated by Che et al. [18] and Demissie and Cupples [19] that found out

that the partly adjusted two-stage INT has undesirable statistical properties, such as the bias of

the estimates, power and type I error rates, under the situation with the correlational relation-

ship between covariates and genotypes. Pain et al. [10] discussed that these unsuitable statisti-

cal properties are a consequence of the INT of the phenotypical residuals re-introducing a

correlational relationship in the opposite direction between the covariates and the rank-nor-

malized phenotypic residuals. Sofer et al. [5] showed that such a partly adjusted two-stage INT

results in these undesirable statistical properties because of a mis-specified mean-variance rela-

tionship for the genetic effect. To address these issues, Sofer et al. [5] further introduced a

modification version of the partly adjusted two-stage INT, which is called the fully adjusted

two-stage INT. In Stage 1, processing the same procedure as Stage 1 of the partly adjusted two-

stage INT, they used the INT to rank-normalize the phenotypic variable after regressing out

covariates and then obtain the INT-transformed phenotypic residuals. However, in Stage 2,
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they run a regression of these rank-normalized phenotypic residuals on the genotypes with

adjusting for the same covariates used in Stage 1. Sofer et al. [5] showed that the fully adjusted

two-stage INT approach improves these undesirable statistical properties of the partly adjusted

two-stage INT approach for analysis of rare variants.

On the other hand, McCaw et al. [2] proposed the INT-based omnibus test (O-INT) that

systematically combine the direct (D-INT) and indirect (I-INT) INT-based association tests.

In the direct method (D-INT), the phenotypes are first transformed to normality using the

INT procedure and then the INT-transformed phenotypes are simultaneously regressed on

genetic factors and covariates. In the indirect method (I-INT), the INT procedure is applied to

the residuals that are obtained by regressing the phenotypes on covariates and then these INT-

transformed residuals are regressed on genetic factors with or without the adjustment for

covariate effects (e.g., population structure). McCaw et al. [2] showed that the O-INT test is

more robust and powerful than the existing INT tests, for the analysis of GWAS of quantitative

traits with non-normally distributed residuals.

In addition, some available methods with non-normal traits (or non-normal residuals) had

been successfully applied to some specific objectives in genetic analysis. For example, the quan-

tile regression method [20] had been used to analyze GWAS data in human genetics [21] and

in flowering time-related traits in common bean [22]. On the other hand, the Box-Cox power

transformation [23] had been applied to omics data [24]. Moreover, the Yeo-Johnson power

transformation [25] had been utilized to analyze to the gene expression data [26].

However, as discussed by Sofer et al. [5], some researchers (e.g., Auer et al. [4]) reported

that the INT-based technique still has its advantage of the rare variant analysis in practice.

Moreover, detecting rare variants in complex diseases via whole-genome sequencing is a hot

topic in genetic association analysis. Hence it is necessary to investigate how transformations

and covariate-variant relationships interact to impact on genetic effects and to provide a com-

prehensive framework for studying genetic association analysis for rare variants with quantita-

tive traits using the INT-based procedures.

In this investigation, we propose a test by using a fully adjusted full-stage INT approach for

detecting the association of rare (and common) variants with a quantitative trait under the sit-

uations with departure of the trait distribution from normality. More precisely, we propose a

fully adjusted full-stage INT method that keeps the merits of the fully adjusted two-stage INT

approach that provides the preservation of the fundamental core of the INT and alleviates the

potentially incorrect inference arose from the partly adjusted two-stage INT approach in anal-

ysis of both common and rare variants [5]. Maintaining these desirable merits of the fully

adjusted two-stage INT approach, the proposed full-stage INT approach further assuages the

potential for incorrect inference arose from the fully adjusted two-stage INT approach in anal-

ysis of rare variants, especially when the SNP (genetic) effects are unrelated to covariates.

The remainder of this paper is organized in the following way. In the materials and methods

section, we present the existing INT-based methods, the partly and fully adjusted two-stage

INT methods, and further propose the fully adjusted full-stage INT approach that can help

control type I error inflation arose from the existing INT-based methods. In the simulation

studies, we exhibit evidence that the proposed full-stage INT method is more robust than the

exiting INT approaches in controlling the type I error rates under the situation with the geno-

types that are uncorrelated with covariates. Simultaneously the proposed full-stage INT

method has good control of power in rare variant association analysis, as the fully adjusted

two-stage INT method. We present theoretical results on these desirable properties in Appen-

dix. In addition, the two available methods with non-normal traits, the median regression

method and the Yeo-Johnson power transformation, are also included in simulations for com-

parison with these desirable properties.
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Materials and methods

To describe the fully adjusted full-stage INT approach, in this section we first present the exist-

ing methods of the fully adjusted two-stage INT procedure introduced by Sofer et al. [5] and

the partly adjusted two-stage INT procedure that is now widely used in genome-wide associa-

tion studies. Then we explain how to improve the idea of the fully adjusted two-stage INT

approach and then propose a fully adjusted full-stage INT approach. Furthermore, we illustrate

how to identify the association between the rare variants and traits by using the fully adjusted

full-stage INT procedure and explain its advantages.

Setting

We consider a sample with n independent individuals. Suppose that for each of n independent

individuals, we have a continuous (quantitative) trait yi, gi = 0,1 or 2 is the genotype score for a

single nucleotide polymorphism (SNP) of interest, and xi = (xi,0,xi,1,� � �,xi,p−1)T is a p×1 vector

of covariates (confounding factors) with the intercept term xi,0 = 1, which are considered to be

adjusted for. For convenience of notation, let y = (y1,y2,� � �,yn)T denote the n×1 vector of the

observed traits over n observations. Correspondingly, g = (g1,g2,� � �,gn)T stands for the n×1 vec-

tor of the observed genotypes and X = (x1,x2,� � �,xn)T represents the n×p design matrix corre-

sponding to the covariate effects.

Multiple linear regression

In the multiple regression model, the relationship between y, X and g is given by

y ¼ Xα þ gbþ ε ð1Þ

where α = (α0,α1,� � �,αp−1)T is a p×1 vector of regression coefficients of the covariates, β is the

regression coefficient of the SNP genotype, ε = (ε1,ε2,� � �,εn)T is an n×1 vector of random

errors with each component independently from N(0,σ2), the normal distribution with a mean

of zero and a variance of σ2. Here the main focus is to examine the null hypothesis that there is

no association between the SNP genotype and the trait component. According to Eq (1), the

null hypothesis of no association between g and y is H0:β = 0 [18, 19]. The Wald statistic and

the likelihood ratio statistic are frequently employed for testing H0:β = 0 with estimates based

on the least squares method [2, 18, 19]. Another method frequently used for testing H0:β = 0 is

the score statistic that is based on the residual obtained by regressing the trait on the covariates

[2, 5]. As mentioned in Sofer et al. [5], a score statistic widely applied in genetic association

analysis, for example, is the sequence kernel association test (SKAT, [27]).

The fully adjusted two-stage INT approach

In the first stage of the fully adjusted two-stage INT approach proposed by Sofer et al. [5], the

(raw) residuals ε̂ ¼ y � Xα̂ ¼ ðε1; ε2; � � � ; εnÞ
T

under the null hypothesis of H0:β = 0 are

obtained by regressing the traits y on the covariate matrix X with the estimate of the covariate

effects α̂ calculated through the least squares method. Then the INT-transformed residuals,

RNðε̂ iÞ; i ¼ 1; 2; � � � n; are obtained by applying the INT procedure to the residuals, ε̂ i; i ¼
1; 2; � � � ; n; namely,

RNðε̂ iÞ ¼ F� 1 rankðε̂ iÞ � c
n

� �

; c 2 ½0; 1=2�; for i ¼ 1; 2; � � � ; n ð2Þ

where rankðε̂ iÞ is the rank of the ith observation among the n residuals and F−1 stands for the

standard normal quantile function. The INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � ; n; in
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Eq (2) independently follow the standard normal distribution and retain the same rank as the

residuals, ε̂ i; i ¼ 1; 2; � � � ; n ([9],[5]). In the second stage of a fully adjusted two-stage INT

approach, the INT-transformed residuals are regressed on the SNP genotype and the covariate

matrix that is adjusted in the first stage in order to examine the association between the INT-

transformed residuals and the SNP genotype. When the covariate matrix only includes the

intercept that is adjusted in the second stage, such a process is called the partly adjusted two-

stage INT approach. Sofer et al. [5] theoretically showed that without a rank-normalization for

transforming the (raw) residuals, ε̂ i; i ¼ 1; 2; � � � ; n; considered, the partly adjusted two-stage

approach in which the (raw) residuals, ε̂ i; i ¼ 1; 2; � � � ; n; in the second stage are regressed on

the genotypes without further adjustment for the covariates causes type I error deflation and a

disastrous loss in statistical power, whereas the fully adjusted two-stage INT approach in

which the (raw) residuals, ε̂ i; i ¼ 1; 2; � � � ; n; in the second stage are regressed on the geno-

types and the same covariates as used in the first stage can well control type I errors and

improve statistical power.

However, we note that the fully adjusted two-stage INT approach can result in tests with

desirable statistical properties. It requires a strong assumption in the second stage. More pre-

cisely, the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage are required to

follow a normal distribution with a mean of zero and finite variance. Nevertheless, in practice,

the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage may not have a nor-

mal distribution in a two-stage procedure. Therefore, we attempt to propose a full-stage proce-

dure for improving a two-stage procedure, when the assumption of a normal distribution that is

applied to the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage is violated.

The fully adjusted full-stage INT approach

As have been mentioned by Pain et al. [10], previous investigations have shown that the INT

approach has desirable performance on power and type I error rates, even if the INT approach

maybe simplify and lose information from data in the transformation process [11, 12]. There-

fore, we intend to again use the INT processes for normalizing the INT-transformed residuals,

RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage in order to make the INT-transformed residuals fol-

low a standard normal distribution, when the INT-transformed residuals, RNðε̂ iÞ; i ¼
1; 2; � � � n; in the second stage doesn’t meet the assumption of a normal distribution with zero

mean and finite variance. Extending such an idea, we further propose a fully adjusted full-

stage INT approach for genetic association analysis. The fully adjusted full-stage INT approach

not only maintains the merits of the fully adjusted two-stage INT approach but also amelio-

rates the defect of the fully adjusted two-stage INT approach. The algorithm of the fully

adjusted full-stage INT approach is given below.

Stage 1. Calculate the (raw) residuals ε̂ ¼ ðε̂1; ε̂2; � � � ; ε̂nÞ
T
¼ y � Xα̂ under the null

hypothesis of H0:β = 0 through the R package SKAT [28], which has the same idea as that intro-

duced in the first stage of the partly and fully two-stage INT manners.

Stage 2. Obtain the INT-transformed residuals, RNðε̂iÞ; i ¼ 1; 2; � � � n; by employing the

INT procedure for transforming the residuals, ε̂ i; i ¼ 1; 2; � � � ; n; namely,

RNðε̂iÞ ¼ F� 1 rankðε̂ iÞ � c
n

� �

; for i ¼ 1; 2; � � � ; n

where we choose the conventional offset of c = 1/2 [4, 29].

Stage 3. Regress the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; on the covariate

matrix X by using the R package glm and obtain the p-values of the covariate effects. If one of

p-values of the covariate effects is less than 0.05, then go to Stage 4. Otherwise go to Stage 5.
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Stage 4.

Step 1. Regress the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; on the covariate

matrix X by using the R package glm and obtain the estimates of the covariate effects ~α:
Step 2. Calculate the residual ε̂� ¼ ðε̂�

1
; ε̂�

2
; � � � ; ε̂�

3
Þ
T

by regressing the INT-transformed resid-

uals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; on the covariate matrix X and obtain the INT-transformed residuals

RNðε̂� iÞ ¼ F� 1fðrankðε̂�i Þ � 0:5Þ=ng; for i ¼ 1; 2; � � � ; n: Then the INT-transformed residuals,

RNðε̂�i Þ; i ¼ 1; 2; � � � n; are regressed on the covariate matrix X by using the R package glm and

obtain the p-values and estimates of the covariate effects denoted by p� and α�, respectively.

Step 3. Re-define RNðε̂ iÞ by RNðε̂�i Þ substituted for RNðε̂iÞ; for i ¼ 1; 2; � � � ; n: If all ele-

ments of p-values of the covariate effects, p�, are not less than 0.05 or the difference between

the covariate effects ~α and α� is less than 10−6, then go to Stage 5. Otherwise repeat the above

Steps 1–2 in Stage 4 and then repeat Step 3 in Stage 4.

Stage 5. Regress the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; on the SNP geno-

type g and the covariate matrix X by using the R package SKAT [28] and then obtain the p-

value of the SNP (genetic) effect.

Evidently, the fully adjusted two-stage INT approach proposed by Sofer et al. [5] is a special

case of the fully adjusted full-stage INT approach. When the INT-transformed residuals,

RNðε̂ iÞ; i ¼ 1; 2; � � � n; in Stage 2 follow a normal distribution with zero mean and finite vari-

ance, only Stages 1–2 and Stage 5 of the fully adjusted full-stage INT method are used for test-

ing the SNP (genetic) effect, which in turn means that the fully adjusted full-stage INT

approach is simply reduced to the fully adjusted two-stage INT approach. On the other hand,

when the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage may not fol-

low a normal distribution with zero mean and finite variance, we intend to ameliorate the

INT-transformed residuals, RNðε̂iÞ; i ¼ 1; 2; � � � n; in the second stage and make them have

zero mean and one standard deviation through repetitively processing Stage 4 in the fully

adjusted full-stage INT procedure.

A full-stage INT procedure in which the INT-transformed residuals RNðε̂iÞ; i ¼ 1; 2; � � � n;
are repeatedly improved by inverse normal transformations (INTs) until their distributions

follow the normal distributions with zero mean and one standard deviation. Such a full-stage

INT procedure leads to a robust control of the type I error specially under the situation in

which genotypes are uncorrelated with covariates. In S1 Appendix, a mathematical detail for

the Wald test statistic in a fully adjusted full-stage INT procedure is provided for explaining

how to use the fully adjusted full-stage INT procedure for transforming the INT-transformed

residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the second stage of the fully adjusted two-stage INT

method in order to make the INT-transformed residuals have a normal distribution with zero

mean and one standard deviation, when the INT-transformed residuals, RNðε̂ iÞ; i ¼
1; 2; � � � n; in the second stage don’t follow the assumption of a normal distribution with zero

mean and finite variance. A similar result for the SKAT test based on the fully adjusted full-

stage INT procedure can be obtained. In S2 Appendix, a mathematical detail for the partial F
test in a fully adjusted full-stage INT procedure is provided for explaining why the fully

adjusted full-stage INT procedure has a robust performance on control of the type I error spe-

cially under the situation in which genotypes are uncorrelated with covariates, in comparison

with the fully adjusted two-stage INT procedure.

Simulation studies. We carry out numerical simulation studies to assess the finite sample

performance of the proposed method, the fully adjusted full-stage INT method. We imitate the

similar set-up as those described in the paper of Auer et al. [4], Sofer et al. [5] and McCaw

et al. [2], with modification to investigate the effect of the INT technique for mitigating the

potentially mis-calibrated inference. Seven existing methods, the median regression (MR)
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method, the Yeo-Johnson power transformation (YJPT) method, the SKAT test, the D-INT

test, the I-INT test, the O-INT test and the fully adjusted two-stage INT method are included

in our simulations for comparison. Here the MR method is a special case of the quantile

regression when estimating the 0.5 quantile. The YJPT method can be used without restric-

tions on traits and retains the advantages of the Box-Cox power transform [30]. The MR

method is implemented by the R package rq [31]. The YJPT method is implemented by the R

package car [32]. The SKAT test is proposed by Wu et al. [27] and is implemented by the R

package SKAT [28]. The D-INT, I-INT and O-INT methods are executed by the R package

RNOmni [33].

Evaluation of type I error rate and power

We sample quantitative traits according to the linear model

yi ¼ xi1a1 þ xi2a2 þ gibþ εi

where the error terms εi are considered to be generated from three different types of distribu-

tion settings. First, normal error terms are considered. The error terms εi are sampled from

the normal distribution having zero mean with the standard deviation of 1 and 0.01, respec-

tively, considered. Secondly, the outliers involved in the error terms are considered. The error

terms with the probability of 0.99 are sampled form the normal distribution with zero mean

and a standard deviation of 0.01 and with the probability of 0.01 are sampled from the normal

distribution with zero mean and a standard deviation of 3. Thirdly, non-normal error terms

are considered. The error terms εi are sampled from the chi-squared distribution with two

degrees of freedom. Here continuous covariates xi1 are sampled from a standard normal distri-

bution. Binary covariates xi2 are sampled with an equal probability of being 0 or 1. The covari-

ate effects α1 and α2 are set by 0.5.

On the other hand, as in Sofer et al. [5], the SNP genotype for each individual is generated

from a binomial distribution with parameters N = 2 (traits) and probability pi given by pi = exp

(γ0+xi1γ1)/(1+exp(γ0+xi1γ1)). Here γ0 is considered by -7, -4.5 and -2, respectively, whereas γ1

is considered by 0, 1 and 2, respectively. The value of γ1 is zero, which means that there is no

correlation between the SNP genotype gi and covariate xi1, whereas the value of γ1 is one or

two, which means that there is a correlation between the SNP genotype gi and covariate xi1.

When γ0 = −7 and γ1 = 0, the value of pi is 0.0009, which means the SNP genotype has a lower

minor allele frequency (MAF) of 0.0009. When γ0 = −2 and γ1 = 0, the value of pi is 0.1192,

which means the SNP genotype has a larger MAF of 0.1192.

For type I error simulations, each combination of the parameter settings for γ0 and γ1 is car-

ried out by the 106 simulations with the SNP (genetic) effect β = 0 under the null hypothesis of

no association between the SNP genotype gi and the traits yi. For power simulations, each com-

bination of the parameter settings for γ0 and γ1 is executed based on the 2×105 simulations

with the SNP (genetic) effect β set by 0.0012. Based on the sample size n = 2000 and 10000

respectively considered, empirical type I error rates and power rates at the nominal level of

0.0001 are reported for all simulation results.

Results

Empirical type I error rates

Tables 1 and 2 exhibit the comparison results of empirical type I error rates when the error

terms εi are generated from the normal distribution with zero mean and the standard devia-

tion of 1 and 0.01, respectively. Table 1 shows that the seven methods, the YJPT method, the
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SKAT test, the D-INT test, the I-INT test, the O-INT test and the fully adjusted two- and full-

stage INT methods well control type I errors when the error terms follow a standard normal

distribution. On the other hand, the MR method has inflated type I error rates when the sam-

ple size n is insufficiently large or the SNP genotype has a smaller MAF. A similar result

obtained at the nominal level of 0.001 is presented in S1 Table.

Moreover, we observe that when the error terms follow a normal distribution with zero

mean and a smaller standard deviation of 0.01, the MR method, the D-INT and O-INT tests

have inflated type I error rates, whereas the YJPT method, the SKAT test, the I-INT test and

the fully adjusted two- and full-stage INT methods have a good control of type I error rates. A

similar result obtained at the nominal level of 0.001 is presented in S2 Table.

Table 3 displays the simulation results of empirical type I error rates when the error terms

εi with the probability of 0.99 are sampled form the normal distribution with zero mean and a

standard deviation of 0.01 and with the probability of 0.01 are sampled from the normal distri-

bution with zero mean and a standard deviation of 3. Table 3 exhibits that the YJPT method,

the D-INT and O-INT tests have inflated type I error rates, while the I-INT test has deflated

Table 1. Empirical type I errors for the eight competing methods for each study at nominal level of 0.0001 based on error terms from a normal distribution with

zero mean and a standard deviation of 1.

Sample How Con-

Size rare founding Association method

n γ0 γ1 MR1 YJPT2 SKAT3 D-INT4 I-INT4 O-INT4 TS-INT5 FS-INT6

2000 -7 0 0.00006 0.00011 0.00010 0.00009 0.00008 0.00008 0.00008 0.00008

1 0.03120† 0.00011 0.00010 0.00009 0.00009 0.00009 0.00009 0.00009

2 0.00907 0.00011 0.00010 0.00008 0.00010 0.00010 0.00011 0.00011

-4.5 0 0.00261 0.00011 0.00011 0.00010 0.00011 0.00010 0.00011 0.00011

1 0.00326 0.00013 0.00012 0.00011 0.00012 0.00011 0.00012 0.00012

2 0.00108 0.00012 0.00011 0.00009 0.00011 0.00010 0.00011 0.00011

-2 0 0.00027 0.00010 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009

1 0.00017 0.00011 0.00010 0.00010 0.00011 0.00010 0.00011 0.00011

2 0.00016 0.00011 0.00010 0.00009 0.00010 0.00010 0.00010 0.00010

10000 -7 0 0.05527 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009

1 0.01910 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012

2 0.00665 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010

-4.5 0 0.00139 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009

1 0.00090 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010

2 0.00026 0.00010 0.00010 0.00009 0.00010 0.00010 0.00010 0.00010

-2 0 0.00016 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008

1 0.00014 0.00009 0.00009 0.00009 0.00009 0.00008 0.00009 0.00009

2 0.00011 0.00011 0.00011 0.00010 0.00011 0.00011 0.00011 0.00011

1The MR method is implemented by the R package rq [31] with the bootstrapping summary technique, when n = 2000, γ0 = -7 and γ1 = 0 is considered. Otherwise, the

MR method is implemented by the R package rq [31] with the Default summary technique. The main reason is that when n = 2000, γ0 = -7 and γ1 = 0 is considered, the

MR method cannot be implemented by the default summary technique, because the sample size n and the MAF are insufficiently large.
2The YJPT method is implemented by the R package car [32].
3The SKAT method is implemented by the R package SKAT [28].
4The D-INT, I-INT and O-INT methods are executed by the R package RNOmni [33].
5TS-INT is abbreviated from the fully adjusted two-stage INT method proposed by Sofer et al [5].
6FS-INT is abbreviated from the fully adjusted full-stage INT method proposed in this paper.
†Empirical type I error rates that are larger than or equal to 0.00016 are printed in boldface.

https://doi.org/10.1371/journal.pone.0233847.t001
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type I error rates. Similarly, the MR method, the SKAT test and the fully adjusted two-stage

INT method have inflated type I error rates, but these methods have a good control of type I

error rates when the sample size n is large enough or the SNP genotype has a larger MAF. In

contrast with the seven existing methods, the MR method, the YJPT method, the SKAT test,

the D-INT test, the I-INT test, the O-INT test and the fully adjusted full-two stage INT

method, the fully adjusted full-stage INT method shows good type I error control, when the

error terms involve the outliers. A similar result obtained at the nominal level of 0.001 is pre-

sented in S3 Table.

Table 4 reports the results of a simulation comparison on empirical type I error rates when

the error terms εi are sampled from a chi-squared distribution with two degrees of freedom.

Table 4 exhibits that in contrast with the YJPT method, the D-INT and O-INT tests, the MR

method, the SKAT test, the I-INT test and the fully adjusted two- and full-stage INT methods

can control type I errors when the sample size n is large enough or the SNP genotype has a

larger MAF. A similar result obtained at the nominal level of 0.001 is presented in S4 Table.

Table 2. Empirical type I errors for the eight competing methods for each study at nominal level of 0.0001 based on error terms from a normal distribution with

zero mean and a standard deviation of 0.01.

Sample How Con-

Size rare founding Association method

n γ0 γ1 MR1 YJPT2 SKAT3 D-INT4 I-INT4 O-INT4 TS-INT5 FS-INT6

2000 -7 0 0.00007 0.00010 0.00010 0.00000 0.00008 0.00002 0.00008 0.00008

1 0.03120† 0.00011 0.00010 0.00000 0.00009 0.00005 0.00009 0.00009

2 0.00897 0.00011 0.00010 0.46433 0.00010 0.40009 0.00011 0.00011

-4.5 0 0.00262 0.00011 0.00011 0.00000 0.00011 0.00005 0.00011 0.00011

1 0.00326 0.00012 0.00012 0.00146 0.00012 0.00083 0.00012 0.00012

2 0.00107 0.00012 0.00011 0.00001 0.00011 0.00005 0.00011 0.00011

-2 0 0.00027 0.00009 0.00009 0.00012 0.00009 0.00010 0.00009 0.00009

1 0.00016 0.00011 0.00010 0.00001 0.00011 0.00006 0.00011 0.00011

2 0.00016 0.00010 0.00010 0.00012 0.00010 0.00010 0.00010 0.00010

10000 -7 0 0.05526 0.00009 0.00009 0.00000 0.00009 0.00004 0.00009 0.00009

1 0.01910 0.00012 0.00012 0.00001 0.00012 0.00007 0.00012 0.00012

2 0.00656 0.00010 0.00010 1.00000 0.00010 1.00000 0.00010 0.00010

-4.5 0 0.00136 0.00009 0.00009 0.00000 0.00009 0.00004 0.00009 0.00009

1 0.00090 0.00010 0.00010 0.51780 0.00010 0.43211 0.00010 0.00010

2 0.00026 0.00010 0.00010 1.00000 0.00010 1.00000 0.00010 0.00010

-2 0 0.00016 0.00008 0.00008 0.00004 0.00008 0.00006 0.00008 0.00008

1 0.00014 0.00009 0.00009 0.11145 0.00009 0.07456 0.00009 0.00009

2 0.00011 0.00011 0.00011 0.42289 0.00011 0.33332 0.00011 0.00011

1The MR method is implemented by the R package rq [31] with the bootstrapping summary technique, when n = 2000, γ0 = -7 and γ1 = 0 is considered. Otherwise, the

MR method is implemented by the R package rq [31] with the default summary technique. The main reason is that when n = 2000, γ0 = -7 and γ1 = 0 is considered, the

MR method cannot be implemented by the default summary technique, because the sample size n and the MAF are insufficiently large.
2The YJPT method is implemented by the R package car [32].
3The SKAT method is implemented by the R package SKAT [28].
4The D-INT, I-INT and O-INT methods are executed by the R package RNOmni [33].
5TS-INT is abbreviated from the fully adjusted two-stage INT method proposed by Sofer et al [5].
6FS-INT is abbreviated from the fully adjusted full-stage INT method proposed in this paper.
†Empirical type I error rates that are larger than or equal to 0.00016 are printed in boldface.

https://doi.org/10.1371/journal.pone.0233847.t002
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In summary, compared with the existing methods, the MR method, the YJPT method, the

SKAT test, the D-INT test, the I-INT test, the O-INT test and the fully adjusted two-stage INT

method, the fully adjusted full-stage INT approach has good performance on controlling the

empirical type I error rates in our simulations, especially when the SNP genotype is uncorre-

lated with the covariates.

Empirical power

Figs 1 and 2 and S1 Fig in S3 Appendix—S2 Fig in S4 Appendix exhibit the comparison results

of empirical power based on the 2×105 replicates with the sample size n = 10000, when the

SNP (genetic) effect β is set by 0.0012 and the nominal level is considered by 0.0001,

respectively.

Fig 1 shows that the YJPT method, the SKAT test, the I-INT test, the fully adjusted two-

stage INT method (TS-INT) and the fully adjusted full-stage INT method (FS-INT) have simi-

lar power performance, when the error terms are sampled from the normal distribution with

zero mean and a smaller standard deviation of 0.01. However, when the level of the variant fre-

quency is considered to be the rarest or medium frequency (i.e., when γ0 = −7 or γ0 = −4.5)

Table 3. Empirical type I errors for the eight competing methods for each study at nominal level of 0.0001 based on error terms involving the outliers.

Sample How Con-

Size rare founding Association method

n γ0 γ1 MR1 YJPT2 SKAT3 D-INT4 I-INT4 O-INT4 TS-INT5 FS-INT6

2000 -7 0 0.00007 0.01182 0.01167 0.01514 0.00011 0.01486 0.00274 0.00011

1 0.03112† 0.02277 0.02193 0.02373 0.00003 0.02140 0.00051 0.00010

2 0.00905 0.04457 0.01195 0.02481 0.00004 0.02050 0.00130 0.00010

-4.5 0 0.00257 0.00477 0.00582 0.00344 0.00002 0.00263 0.00013 0.00010

1 0.00320 0.00754 0.00400 0.00517 0.00001 0.00399 0.00016 0.00007

2 0.00103 0.07334 0.00210 0.00518 0.00001 0.00380 0.00016 0.00008

-2 0 0.00027 0.00023 0.00035 0.00019 0.00001 0.00011 0.00009 0.00010

1 0.00019 0.00476 0.00017 0.00010 0.00002 0.00006 0.00010 0.00009

2 0.00015 0.07471 0.00007 0.00017 0.00001 0.00008 0.00010 0.00009

10000 -7 0 0.05521 0.01789 0.01778 0.01135 0.00005 0.00827 0.00013 0.00011

1 0.01927 0.00937 0.00884 0.00530 0.00005 0.00440 0.00010 0.00009

2 0.00659 0.00916 0.00396 0.01415 0.00004 0.01137 0.00011 0.00009

-4.5 0 0.00134 0.00154 0.00159 0.00091 0.00006 0.00063 0.00012 0.00012

1 0.00095 0.00240 0.00116 0.00146 0.00006 0.00107 0.00012 0.00012

2 0.00030 0.04084 0.00039 0.00410 0.00004 0.00289 0.00007 0.00008

-2 0 0.00019 0.00015 0.00016 0.00010 0.00006 0.00008 0.00012 0.00012

1 0.00014 0.00277 0.00010 0.00012 0.00006 0.00009 0.00010 0.00011

2 0.00010 0.03073 0.00011 0.00356 0.00004 0.00226 0.00009 0.00009

1The MR method is implemented by the R package rq [31] with the bootstrapping summary technique, when n = 2000, γ0 = -7 and γ1 = 0 is considered. Otherwise, the

MR method is implemented by the R package rq [31] with the default summary technique. The main reason is that when n = 2000, γ0 = -7 and γ1 = 0 is considered, the

MR method cannot be implemented by the default summary technique, because the sample size n and the MAF are insufficiently large.
2The YJPT method is implemented by the R package car [32].
3The SKAT method is implemented by the R package SKAT [28].
4The D-INT, I-INT and O-INT methods are executed by the R package RNOmni [33].
5TS-INT is abbreviated from the fully adjusted two-stage INT method proposed by Sofer et al [5].
6FS-INT is abbreviated from the fully adjusted full-stage INT method proposed in this paper.
†Empirical type I error rates that are larger than or equal to 0.00016 are printed in boldface.

https://doi.org/10.1371/journal.pone.0233847.t003
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and when the level of the relationship between the SNP genotype and covariates is considered

to be medium or common (i.e., when γ1 = 1 or γ1 = 2), the D-INT test and the O-INT test have

better power performance in comparison with other methods, because the D-INT test and the

O-INT test under the null hypothesis of no SNP (genetic) effect have inflated type I errors.

Similarly, based on the same reason, false-positive power rates are obtained from the MR

method when the level of the variant frequency is considered to be the rarest (i.e., when γ0 =

−7).

On the basis of error terms involving the outliers, Fig 2 shows that the power rates of the

fully adjusted two-stage INT method (TS-INT) and the fully adjusted full-stage INT method

(FS-INT) are similar and are larger than that of the other existing methods, the MR method,

the YJPT method, the SKAT test, the D-INT test, the I-INT test and the O-INT test, although

the MR method, the YJPT method, the SKAT test, the D-INT test and the O-INT test under

some circumstances (e.g., γ0 = −4.5 and γ1 = 2) have inflated type I errors.

The power rates based on error terms from a normal distribution with zero mean and a

standard deviation of 1 are presented in S1 Fig in S3 Appendix. On the other hand, the power

Table 4. Empirical type I errors for the eight competing methods for each study at nominal level of 0.0001 based on non-normal error terms from a chi-squared dis-

tribution with two degrees of freedom.

Sample How Con-

Size rare founding Association method

n γ0 γ1 MR1 YJPT2 SKAT3 D-INT4 I-INT4 O-INT4 TS-INT5 FS-INT6

2000 -7 0 0.00007 0.00043 0.00472 0.00051 0.00005 0.00032 0.00005 0.00005

1 0.03722† 0.00001 0.00134 0.00002 0.00013 0.00008 0.00014 0.00014

2 0.00919 0.00000 0.00057 0.00000 0.00030 0.00018 0.00032 0.00035

-4.5 0 0.00378 0.00013 0.00030 0.00014 0.00009 0.00012 0.00010 0.00010

1 0.00414 0.00001 0.00024 0.00001 0.00013 0.00007 0.00013 0.00013

2 0.00133 0.00020 0.00017 0.00006 0.00016 0.00011 0.00016 0.00017

-2 0 0.00033 0.00009 0.00011 0.00009 0.00010 0.00010 0.00010 0.00010

1 0.00019 0.00008 0.00011 0.00004 0.00010 0.00007 0.00010 0.00011

2 0.00015 0.00172 0.00010 0.00040 0.00011 0.00028 0.00011 0.00011

10000 -7 0 0.05939 0.00005 0.00076 0.00006 0.00011 0.00009 0.00011 0.00011

1 0.02124 0.00000 0.00041 0.00001 0.00012 0.00007 0.00012 0.00012

2 0.00854 0.00017 0.00021 0.00004 0.00016 0.00011 0.00016 0.00016

-4.5 0 0.00188 0.00008 0.00016 0.00009 0.00012 0.00011 0.00012 0.00012

1 0.00130 0.00011 0.00014 0.00006 0.00013 0.00010 0.00013 0.00013

2 0.00035 0.05029 0.00011 0.00731 0.00014 0.00417 0.00014 0.00014

-2 0 0.00017 0.00007 0.00009 0.00008 0.00010 0.00008 0.00010 0.00010

1 0.00012 0.00241 0.00009 0.00061 0.00009 0.00035 0.00009 0.00009

2 0.00012 0.09101 0.00009 0.01092 0.00010 0.00679 0.00010 0.00010

1The MR method is implemented by the R package rq [31] with the bootstrapping summary technique, when n = 2000, γ0 = -7 and γ1 = 0 is considered. Otherwise, the

MR method is implemented by the R package rq [31] with the default summary technique. The main reason is that when n = 2000, γ0 = -7 and γ1 = 0 is considered, the

MR method cannot be implemented by the default summary technique, because the sample size n and the MAF are insufficiently large.
2The YJPT method is implemented by the R package car [32].
3The SKAT method is implemented by the R package SKAT [28].
4The D-INT, I-INT and O-INT methods are executed by the R package RNOmni [33].
5TS-INT is abbreviated from the fully adjusted two-stage INT method proposed by Sofer et al [5].
6FS-INT is abbreviated from the fully adjusted full-stage INT method proposed in this paper.
†Empirical type I error rates that are larger than or equal to 0.00016 are printed in boldface.

https://doi.org/10.1371/journal.pone.0233847.t004
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rates based on non-normal error terms from a chi-squared distribution with two degrees of

freedom are presented in S2 Fig in S4 Appendix. They have similar results as that discussed

from Figs 1 and 2.

In summary, under the alternative hypothesis, the fully adjusted full-stage INT method is as

powerful as the existing methods, the MR method, the YJPT method, the SKAT test, the

O-INT test and the fully adjusted two-stage INT method, when all of these eight competing

methods under the null hypothesis of no SNP (genetic) effect can well control their type I

errors.

Discussion

We propose a fully adjusted full-stage INT approach for examining the association between

the rare variant and the quantitative trait. The fully adjusted full-stage INT approach maintains

the advantages of the fully adjusted two-stage INT approach and ameliorates the defect of the

fully adjusted two-stage INT approach for rare variant association analyses. The fully adjusted

two-stage INT approach proposed by Sofer et al. [5] is a special case of the fully adjusted full-

stage INT approach. In comparison with the existing methods, the MR method, the YJPT

method, the SKAT test, the D-INT test, the I-INT test, the O-INT test and the fully adjusted

two-stage INT approach, the fully adjusted full-stage INT approach can control the type I

error rates more robustly in analyzing rare variants for genetic association studies, when quan-

titative traits have extreme outliers or non-normality, particularly under the situation where

the SNP genotype is uncorrelated with covariates.

On the other hand, we theoretically demonstrate gainful usefulness of the fully adjusted

full-stage INT approach when the INT-transformed residuals, RNðε̂ iÞ; i ¼ 1; 2; � � � n; in the

Fig 1. Empirical power for the eight competing methods for each study at nominal level of 0.0001 based on error terms from a normal distribution with zero

mean and a standard deviation of 0.01. In the presented results, the sample size is n = 10000 and β = 0.0012. The three levels of variant frequency are considered by

setting γ0 = −7 (rarest), γ0 = −4.5 (medium) and γ0 = −2 (common), respectively. The three levels of the relationship between the SNP genotype and the covariates are

considered by setting γ1 = 0 (none), γ1 = 1 (medium) and γ1 = 2 (strong), respectively. The power of all of the eight competing methods is evaluated using the 2×105

simulations.

https://doi.org/10.1371/journal.pone.0233847.g001
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second stage of the fully adjusted two-stage INT approach, which violate the assumption requir-

ing a normal distribution with zero mean and finite variance, are repetitively and properly

transformed by the INT procedure (S1 Appendix and S2 Appendix). In addition, our simula-

tions show that the fully adjusted full-stage INT method under the alternative hypothesis can

effectively provide empirical power as that provided by the existing methods, the MR method,

the YJPT method, the SKAT test, the O-INT test and the fully adjusted two-stage INT approach,

when these competing methods under the null hypothesis well control the type I errors.

One of the advantages of the fully adjusted full-stage INT method is that the fully adjusted

full-stage INT method can be effortlessly enforced by the R packages glm and SKAT [28]. On

the basis of the gene- or region-based multiple variant test, SKAT [27, 28], the algorithm of the

fully adjusted full-stage INT approach can be easily applied to examine the association between

traits and variants in a specific gene or region of interest. Moreover, based on the highly-effi-

cient rare variant association software tool, SKAT [28], the fully adjusted full-stage INT

method, with low computational costs per step, is appropriate for a large-scale genetic associa-

tion study.

However, the fully adjusted full-stage INT approach is subject to some limitations. First, the

fully adjusted full-stage INT procedure is unsuitable for qualitative data. Secondly, when the

error terms that are not from a normal distribution follow a heavily skewed distribution and

the SNP genotype is correlated with covariates, the fully adjusted full-stage INT procedure is

insufficient for normalizing quantitative data. Most of the existing INT methods suffer from

the same problems. A numerical example illustrated with the corresponding explanation is

given in S5 Appendix. Thus, a more effective procedure for the fully adjusted full-stage INT

method is needed to be farther proposed for improving the control of empirical type I error

rates, when the distribution of the error terms is highly skewed and when the SNP genotype is

Fig 2. Empirical power for the eight competing methods for each study at nominal level of 0.0001 based on error terms involving the outliers. In the presented

results, the sample size is n = 10000 and β = 0.0012. The three levels of variant frequency are considered by setting γ0 = −7 (rarest), γ0 = −4.5 (medium) and γ0 = −2

(common), respectively. The three levels of the relationship between the SNP genotype and the covariates are considered by setting γ1 = 0 (none), γ1 = 1 (medium) and

γ1 = 2 (strong), respectively. The power of all of the eight competing methods is evaluated using the 2×105 simulations.

https://doi.org/10.1371/journal.pone.0233847.g002
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correlated with covariates. Thirdly, the fully adjusted full-stage INT approach cannot be

directly applied to the analysis of correlated traits, because the fully adjusted full-stage INT

procedure doesn’t consider the correlational relationship between the traits. Therefore, future

studies are needed to extend the idea of the fully adjusted full-stage INT method for consider-

ing the correlation between traits in the analyses of correlated traits.
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