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Abstract: Evidence shows that stress can promote the occurrence and development of tumors. In
recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters
can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s
immune response, causing tumor cells to escape the “surveillance” of the immune system. However,
the perception of stress occurs in the central nervous system (CNS) and the role of the central
nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review
summarizes what is known of stress-related CNS-network activation during the stress response and
the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer
patients with negative emotional states, such as anxiety and depression.
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1. Background

Stress is an exogenous or endogenous stimulation to individual emotion that can
be found almost anywhere, and it is thus important that animals regulate their bodily
functions in response to stressors [1]. However, once exposed to excessive stress, or long-
term chronic stress, anxiety develops and damage to health is incurred [2]. Many brain
regions are involved in the regulation of stress and anxiety, including the bed nucleus of
the stria terminalis (BNST), central amygdala (CeA), basolateral amygdala (BLA), media
prefrontal cortex (mPFC), nucleus of paraventricular hypothalamus (PVN), locus coeruleus
(LC), and the periaqueductal grey (PAG) [3]. These regions are interconnected and form a
complex network in which almost every region has the potential to influence others via
mono- or polysynaptic connections. Therefore, when excessive chronic stress stimulates
certain brain regions within this network, it may result in activation across the entire neural
network, and long-term stress from either single or multiple factors may lead to mental
disorders by altering neural network activity and signal transduction.

Anxiety disorder is a common mental illness with a high incidence and has a negative
impact on human health and social stability. In China, both lifetime prevalence (7.6%) and
12-month prevalence (5.0%) of anxiety rank first amongst all mental illnesses [4]. Anxiety
does not only affect mental health, but also physical health; the range of effects due to stress

Int. J. Mol. Sci. 2022, 23, 12653. https://doi.org/10.3390/ijms232012653 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232012653
https://doi.org/10.3390/ijms232012653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5497-2548
https://orcid.org/0000-0002-1432-5784
https://doi.org/10.3390/ijms232012653
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232012653?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 12653 2 of 17

is very broad [5]. Numerous studies have shown that anxiety influences many functions,
such as sensation, digestion, sexual function, immunity, and cancer progression [6–10].
There are a number of ways by which anxiety promotes cancer progression. A recent
meta-analysis of cancer patients found that anxiety promotes tumor growth and metastasis,
induces treatment resistance and relapse, and reduces survival [11].

How, then, do anxious states affect tumor growth? During states of anxiety, cen-
tral brain regions involved in the stress response are activated, followed by activation
of associated descending pathways, which results in abnormal secretion of various neu-
rotransmitters, hormones, and other factors, thereby affecting tumor cells and their mi-
croenvironment [12]. Studies have shown that the sympathetic nervous system (SNS)
and the hypothalamic–pituitary–adrenal (HPA) axis are the two main systems through
which stress-related brain regions regulate peripheral circumstances. The sympathetic
nervous system is part of the autonomic nervous system, which controls the body’s “fight
or flight” response to external stimuli and can be activated quickly in response to stress.
Activation of the sympathetic nervous system rapidly increases heart rate, respiratory rate,
and blood pressure, thereby causing a state of arousal [13]. In contrast, the HPA axis is
a part of the neuroendocrine system. It is activated minutes or hours after a stressor to
regulate metabolism and provide energy [14]. In cancer patients with anxiety disorder,
both the sympathetic nervous system and the HPA axis are abnormally activated, and neu-
rotransmitters and hormones are secreted into the vicinity of the tumor or in the systemic
circulation. These molecules promote tumor progression by regulating cell proliferation,
survival, angiogenesis, and immune responses [15–17].

Most current research focuses on the effects of the secretion and action of specific
molecules and hormones on cancer progression after activation of the sympathetic nervous
system and/or the HPA axis [15,18–20]. However, there is a lack of research on the central
neural mechanisms underlying tumorigenesis and tumor development caused by long-
term stress. Stress perception occurs in the central nervous system and investigation of
the central neural mechanisms underlying stress-induced tumor progression can provide
new insights into putative cancer therapeutics. In this paper, we review and summarize the
interaction of stress-activated central neural circuits and associated descending pathways
with peripheral tumor and tumor microenvironments. We also discuss the effects of various
neurotransmitters, hormones, and other factors abnormally secreted under anxious states,
on cancer progression. Finally, limitations of the current research and the prospects of
future clinical applications of this fundamental research are discussed.

2. Stress Accelerates Tumor Progression via the Sympathetic Nervous System

The sympathetic nervous system originates in the ventral brainstem, where sympa-
thetic premotor neurons are found. They are found predominantly in the rostral ventro-
lateral medulla (RVLM) and in the rostral ventromedial medulla (RVMM). These neurons
project to the intermediolateral nucleus (IML, also known as the sympathetic preganglionic
nucleus), which then projects to the dorsal root ganglia (DRG) for terminal output to pe-
ripheral organs which control heart rate, blood pressure, respiration, glycemia, vigilance
and other physiological responses [21]. When negative emotions are induced under chronic
stress, the sympathetic nervous system is continuously activated and increases the release
of catecholamines (such as epinephrine and norepinephrine) [22,23]. In a spontaneous
colon tumor model, ablation of sympathetic premotor neurons in APCmin/+ mice reduces
the number of polyps in the mouse intestine [24]. Sympathetic denervation also leads to
decreased tumorigenesis in a spontaneous prostate tumor mouse model [25]. These results
suggest that loss of SNS function may slow tumorigenesis (Figure 1).
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Figure 1. Stress promotes cancer progression via the sympathetic nervous system. During the stress 
response, anxiety-related circuits (black) are activated, which then activate the peripheral 
sympathetic nervous system through the sympathetic premotor regions RVLM and RVMM, leading 
to the release of NE and NPY into the tumor and its microenvironment. This promotes proliferation 
and angiogenesis, while causing immunosuppression. In addition, sympathetic excitation leads to 
the secretion of epinephrine from the adrenal medulla, which reaches the tumor through the 
circulatory system and promotes cancer progression. Activation of the reward system (red) can 
inhibit the effects of stress. 

2.1. Stress Activates SNS-Related Neural Circuits 
The RVLM is associated with tumor growth. Recently, Zhang and colleagues found 

that pharmacogenetic tools, DREADDs (Designer Receptors Exclusively Activated by De-
signer Drugs), used to manipulate catecholamine neurons in the RVLM, regulate CD8+ 
immune cells and promote immune evasion [24]. Under anxious states, neurons in the 
RVLM undergo a similar activation by receiving signals from upstream anxiety-regula-
tion brain regions, indicating that anxiety-promoted tumor progression may be achieved 
via activation or inhibition of neural circuits projecting to the RVLM from anxiety-associ-
ated brain regions [26]. In addition, the RVMM also controls temperature and pain. It re-
ceives complex inputs from the whole brain, including antinociception information from 
the PAG and thermogenic information from the dorsal media hypothalamus (DMH). 
However, it is not clear whether the RVMM or RVMM-associated circuits are involved in 
the regulation of cancer progression during the stress response. 

Anxiety is a state of arousal that occurs in response to stress. The amygdala, including 
the BLA, the CeA, the medial amygdala (MeA) and the BNST (extend amygdala), is con-
sidered to be an important brain area for processing stress [3]. Experimental activation of 
the amygdala and its downstream projection targets, including the lateral hypothalamus 
(LHA), the LC, the PAG and other regions, results in an anxious state [27]. Tumor studies 

Figure 1. Stress promotes cancer progression via the sympathetic nervous system. During the
stress response, anxiety-related circuits (black) are activated, which then activate the peripheral
sympathetic nervous system through the sympathetic premotor regions RVLM and RVMM, leading
to the release of NE and NPY into the tumor and its microenvironment. This promotes proliferation
and angiogenesis, while causing immunosuppression. In addition, sympathetic excitation leads to the
secretion of epinephrine from the adrenal medulla, which reaches the tumor through the circulatory
system and promotes cancer progression. Activation of the reward system (red) can inhibit the effects
of stress.

2.1. Stress Activates SNS-Related Neural Circuits

The RVLM is associated with tumor growth. Recently, Zhang and colleagues found
that pharmacogenetic tools, DREADDs (Designer Receptors Exclusively Activated by
Designer Drugs), used to manipulate catecholamine neurons in the RVLM, regulate CD8+

immune cells and promote immune evasion [24]. Under anxious states, neurons in the
RVLM undergo a similar activation by receiving signals from upstream anxiety-regulation
brain regions, indicating that anxiety-promoted tumor progression may be achieved via
activation or inhibition of neural circuits projecting to the RVLM from anxiety-associated
brain regions [26]. In addition, the RVMM also controls temperature and pain. It receives
complex inputs from the whole brain, including antinociception information from the PAG
and thermogenic information from the dorsal media hypothalamus (DMH). However, it is
not clear whether the RVMM or RVMM-associated circuits are involved in the regulation
of cancer progression during the stress response.

Anxiety is a state of arousal that occurs in response to stress. The amygdala, including
the BLA, the CeA, the medial amygdala (MeA) and the BNST (extend amygdala), is
considered to be an important brain area for processing stress [3]. Experimental activation
of the amygdala and its downstream projection targets, including the lateral hypothalamus
(LHA), the LC, the PAG and other regions, results in an anxious state [27]. Tumor studies
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have suggested the association between the activity of the amygdala and cancer: a study of
cancer patients found that the left amygdala volume is larger in patients with a psychiatric
history compared to those with no such history [28]. Investigations using fMRI have shown
that amygdala activity in breast cancer patients is associated with peripheral inflammatory
factors and that social support reduces amygdala activity and lowers levels of inflammatory
markers [29,30]. Therefore, these studies may indicate the association between cancer and
amygdala activity. To explain these findings, it is thought that amygdala activation is highly
involved in sympathetic activity, and that neurons in the amygdala that project to areas
containing sympathetic premotor neurons have anatomical and functional overlap with
those regions which elicit anxiety responses. It is known that activation of somatostatin+

GABAergic neurons in the CeA regulates blood pressure and other sympathetic functions
by projecting to the RVLM (sympathetic premotor area) or the nucleus of the solitary track
(NTS, peripheral sensory center) [31]. This means that activation of the CeA directly leads to
sympathetic activation. The BNST is also involved in stress-induced anxiety [32], and there
are direct or indirect projections from the BNST to the medulla, which regulate sympathetic
function [33–36].

The hypothalamus, including the DMH and the LHA, is a downstream output target
of the amygdala and cortex, which is also involved in encoding anxiety information. It is
thought to play an important role in regulating sympathetic activity during stress. This area
is a crucial hub for projections to regions containing sympathetic premotor neurons. During
stress, the amygdala inhibits the ventral DMH, disinhibits the GABAergic projection from
the ventral DMH to the medulla, where the sympathetic premotor neurons are activated,
resulting in sympathetic functions [37]. Orexin/hypocretin neurons within the LHA are
thought to be involved in stress. Activation of the orexin system induces anxiety-like
behavior [38]. In addition, the orexin system is found to be associated with breast cancer in
animal models: activation of LHA orexin neurons in a mouse model of breast cancer leads
to sleeping disruption and metabolic abnormality complicated by tumors, and this effect
occurs via the sympathetic system as it can be blocked by 6-hydroxydopamine, a selective
catecholaminergic neurotoxin [39].

An earlier comparative study of animal models showed that periaqueductal gray
(PAG) activity is associated with breast tumor growth [40]. Indeed, the PAG is closely
related to the regulation of cancer pain [41,42]. The important descending pain pathway, the
PAG-RVMM projection, which extends to the dorsal horn, is the primary pathway for pain
suppression [43]. Regulation of nociception is influenced by anxiety circuits which are mod-
ulated by the amygdala. GABAergic neurons in the amygdala project to PAG GABAergic
neurons and locally innervate adjacent glutamatergic neurons. Following chronic inhibitory
stress, inhibitory signaling by these amygdala projections relieves GABAergic inhibition
of glutamatergic neurons in the PAG, thereby regulating nociception [44]. In addition,
the PAG is also involved in sympathetic functions: activation of the lateral/dorsolateral
PAG is known to increase heart rate and arterial pressure [45]. Therefore, the PAG may be
involved in the regulation of tumor progression through pain regulation pathways and
sympathetic pathways.

The mPFC is at the top of the response initiation hierarchy during the stress response.
It has functional links that govern the amygdala and hippocampus [37]. The mPFC is
considered the region that suppresses anxiety. For instance, activation of glutamatergic
projections from the mPFC to the amygdala causes anxiolytic effects, whereas inhibition
results in anxiogenic effects [46]. At the same time, activation of these regions inhibits stress-
induced sympathetic activity [47]. However, no direct connection between sympathetic
premotor neurons and the mPFC has been found. Reward signals may lead to mPFC
activation [48], and activation of reward circuits involving the ventral tegmental area
(VTA) is thought to reduce negative emotion [49]. Studies investigating tumors have
found that activation of the VTA also promotes immune function, resulting in inhibition of
tumor growth in mice [50]. Our previous study found that activation of the dopaminergic
projections from the VTA to the mPFC reduces anxiety levels in stressed animals, and
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tumor growth slows down as anxiety levels decrease [51]. At the same time, anxiety-related
sympathetic hormone levels also decrease, indicating the importance of the mPFC in tumor
regulation and treatment.

2.2. Sympathetic Nerve Fibers Release Neurotransmitters to Promote Tumor Progression

Sympathetic nerve fibers originate from the DRG and project to nearly all organs and
tissues, including solid tumors. In addition to the original neuronal fibers in pathological
tissues, newly formed neuronal fibers also develop during the early cancer states [25,52].
Long-term, continuous, specific activation of sympathetic nerve fibers of the mice around
tumors using NaChBac-channel viruses significantly increases catecholaminergic neu-
rotransmitter levels and promotes cancer growth and metastasis, with adrenalectomy,
indicating an important role of sympathetic nerve fibers in cancer progression [53]. The
major secretions of sympathetic nerves are norepinephrine (NE) and neuropeptide Y (NPY).

The focus of recent research into the regulation of stress-related cancer progression has
been NE and NE signaling since Thaker and colleagues found that NE and β-adrenergic
receptor (β-AR) signaling induced by elevated chronic stress promotes tumor growth and
angiogenesis in mice [54]. NE release during the stress response is thought to contribute to
increased DNA damage and cause tumorigenesis [55,56]. NE activates arrestin-β and the
PKA system, further resulting in p53 inactivation and inhibits p53-mediated DNA damage
repair [57]. Spontaneous tumor model studies have also demonstrated the negative effects
of stress-induced DNA damage on tumor therapy [58]. The adrenergic receptor antagonist
ICI 118,551 and β-AR knockout blocks cancer development caused by chronic restraint,
thereby reducing the proportion of pancreatic ductal adenocarcinoma (PDAC) in LSL-
Kras+/G12D; Pdx1-Cre (KC) mice, a spontaneous pancreatic tumor model, while the agonist
isoproterenol promotes PDAC [59]. NE-β-AR signaling activates many biological reactions
and cell-signaling-related proteins, such as Src and CREB, and also activates L-type voltage-
dependent calcium channels (VDCC) [59–61]. These reactions promote cancer proliferation.
NE-β-AR signaling is also necessary for angiogenesis as it results in an energy acquisi-
tion switch from oxidative phosphorylation to glycolysis in endothelial cells, and thus
angiogenesis [62]. The immune response is closely related to the development and treat-
ment of cancer. NE-β-AR signaling stimulates macrophage development, differentiation,
polarization to M2, infiltration, and therefore promotes cancer metastasis [17,63–65].

NPY is another neurotransmitter released by sympathetic nerve fibers in response
to stress. Levels of NPY remain elevated longer than NE does during stress responses
and sympathetic activation [66]. However, in contrast to NE-receptors signaling, NPY
has not been adequately investigated in tumor studies. In vitro studies have shown that
NPY can activate Y5R or the Y2R–Y5R complex to promote cell proliferation via the
Erk pathway [67,68]. In addition, Y2R activated by NPY in endothelial cells promotes
angiogenesis [69,70]. Macrophages, which express large amounts of Y1R, are also affected
by NPY. Activation of Y1R in macrophages leads to the release of NO and cytokines,
including IL-4, IL-6, IL-12, and TNF-α, which promote inflammation and angiogenesis [71]
(Figure 2).

2.3. The Adrenal Medulla Secretes Epinephrine to Promote Tumor Progression

The adrenal glands are activated in response to stress. They are controlled by sympa-
thetic projections to the adrenal medulla. In response to stress, two hormones, epinephrine
and NE, are released and enter the circulation [72].

The adrenal medulla predominantly releases epinephrine (~75%) [73]. During acute
stress, epinephrine is released in large quantities, improving the ability to deal with danger.
Epinephrine and NE share receptors, so epinephrine also has a negative impact on cancer
development. Epinephrine leads to cell proliferation by adrenergic receptors [74] and bind-
ing to β-ARs activates the PKA system and further regulates BAD and MCL-1 proteins to
inhibit apoptosis [75,76]. Epinephrine-β-AR signaling also promotes cancer stem-like traits
through a cascade of responses produced by lactate, which is metabolized by LHDA [77].
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Epinephrine also promotes angiogenesis: activation of epinephrine-β-ARs-HIF-1α results
in increased VEGF secretion [78]. An immunological study found that the elevation of
epinephrine caused by social disruption suppresses CD8+ T-cell proliferation as well as
macrophage-derived IFN-γ [79] (Figure 2).
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Figure 2. Stress-related neurotransmitters and hormones promote cancer progression in multiple
ways. During the stress response, NE and NPY are released from nerve fibers, epinephrine is released
from the adrenal gland medulla, GCs are released from the adrenal gland cortex and arrive at the
tumor through the circulation. Their function occurs via receptors on cancer cells, blood vessels, and
immune cells to promote cancer progression in multiple ways.

3. Stress Accelerates Tumor Progression via the HPA Axis

The hypothalamus–pituitary–adrenal (HPA) axis is a classical hormone regulation
pathway. It is an important part of the neuroendocrine system, involved in controlling
responses to stress and regulating many different physical activities. When individuals
suffer from stress, projections from the hypothalamus to the median eminence (ME) activate
the release of the adrenocorticotropic hormone (ACTH) from the pituitary gland and
ultimately results in the release of glucocorticoids (GCs) from the adrenal cortex into the
circulation [80]. Stress promotes activation of the HPA axis, and hyperactivity within the
HPA axis is related to the poor prognosis of cancer patients [81]. The role of the HPA axis
in the regulation of cancer is predominantly through the release of GCs (Figure 3).
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Figure 3. Stress promotes cancer progression via the HPA axis. During the stress response, anxiety-
related circuits (black) are activated, which then activate the PVN, the origin of the HPA axis, resulting
in the release of CRH and ACTH, and ultimately the release of GCs. GCs enter the circulation and
act on the tumor and microenvironment, leading to immunosuppression, and ultimately promoting
cancer progression. Activation of the reward system (red) can inhibit the effects of stress.

3.1. Stress Activates HPA Axis-Related Neural Circuits

The PVN is a subregion of the hypothalamus and is considered to be the origin
of the HPA axis. Corticotropin-releasing hormone (CRH) neurons located in the PVN
become activated under stress and secrete CRH through the ME to the third ventricle,
which stimulates the pituitary, resulting in the secretion of ACTH [80]. The PVN itself is
thought to be associated with the stress-related response. Specific knockout of PVNCRH

neurons in mice results in anxiolytic behaviors [82]. Interestingly, sucrose used as a reward
inhibits the activity of CRH neurons and reduces anxiety [83]. Projections to the PVN from
various brain regions, including the amygdala and the mPFC, the brainstem, and other
hypothalamic brain regions, also affect PVN activation. These projections are activated
under stress, thereby promoting the release of CRH, and further, ACTH and GCs, from
the HPA axis, which ultimately act on peripheral organs [84]. The PVN, in addition to the
neuroendocrine system, is also involved in the sympathetic network. These PVN neurons
that project to the RVLM and the IML directly control glucose metabolism, blood pressure,
and other physiological processes [26,85].

The PVN plays an important role in the regulation of internal stress. This stress is
largely derived from changes in the peripheral environment. Afferent autonomic nerves
sense the peripheral environment through the sympathetic and parasympathetic systems,
similar to the efferent autonomic nerves, and this input is then sent to the brain. The
NTS, which is in the brain stem, integrates this information from the sympathetic and
parasympathetic systems and projects to the PVN. These signals include abnormalities
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from various visceral lesions and fluid imbalances. These abnormalities can cause a stress
response similar to external psychological input [86]. Excitatory glutamatergic neurons
in the NTS project to the PVN and their excitation activates the HPA axis, resulting in the
secretion of ACTH and GCs [87]. The PVN also receives projections from the subfornical
organ (SFO), a region involved in the regulation of fluid balance and blood pleasure. The
SFO contains angiotensin II projections to CRH neurons of the PVN and activates the HPA
axis via angiotensin II receptors [88,89]. This suggests that peripheral stress signals activate
PVNCRH neurons and the HPA axis via sensory input regions.

The hypothalamus also regulates the PVN during the stress response. There are
glutamatergic neurons in the posterior hypothalamus (PH) that project to the PVN [90].
Functional studies have shown that inhibition of the PH via injection of a GABAa agonist
significantly reduces ACTH release [91] and corticosterone responses to acute depression
and auditory stress [92]. These studies demonstrate the role of hypothalamic activation
in the stress-induced excitability of the HPA axis. Other investigations of the DMH have
shown that it innervates PVNCRH neurons within the HPA axis. Interneurons in the DMH
receive projections from the CeA and MeA regions of the amygdala. These inhibitory
projections predominantly originate in the ventral DMH [93], which in turn sends GABAer-
gic projections which inhibit the PVN [94]. Activation of the amygdala during the stress
response relieves the inhibitory effect of the ventral region on the PVN and HPA axis,
thereby promoting ACTH release [37].

Most amygdala innervations to the hypothalamic axis are from the MeA and the CeA.
These subregions lack substantial direct connection with the PVN, so amygdala regulation
of the PVN and the HPA axis is predominantly through interneuron disinhibition. In
addition to the DMH projections mentioned above, the MeA sends a GABAergic projection
to the peri-PVN, an area surrounding the PVN which has GABAergic neurons [95]. The
MeA activates the PVN and HPA axis by de-inhibiting these neurons.

The mPFC acts as a suppressor in its regulation of the HPA axis. Lesions of the infral-
imbic (IL) and prelimbic (PL) cortical subregions of the mPFC promote the secretion of
ACTH and GCs [96]. In addition, inhibition of neuronal activation in the IL using siRNA
increases ACTH release during the stress response [97]. Another study showed that excita-
tory neurons in the PL attenuate the HPA axis via anteroventral BNST GABAergic neurons,
which inhibit the PVN and the HPA axis [98]. The mPFC is also an important region for
negative feedback regulation of the HPA axis. The mPFC is abundant in glucocorticoid
receptors [99]. These receptors excite glutamatergic mPFC neurons which attenuate the
PVN and HPA-axis activation. Knockdown of this receptor increases HPA responsiveness
to stress [100]. Activation of the VTA-mPFC pathway in mice leads to a reduction in the
level of circulatory GCs, indicating an inhibitory effect of this circuit on the HPA axis
resulting in slower cancer growth [51].

3.2. The Adrenal Medulla Secretes Glucocorticoids to Promote Tumor Progression

Glucocorticoids release from the adrenal cortex and perform their roles via the nuclear
glucocorticoid receptor (GR). After binding to GCs, the GR homodimerizes, and the dimer
translocates to the nucleus. In spontaneous tumorigenesis models, social isolation elevates
GC levels and increases the size, number, distribution, and malignancy of spontaneous
mammary tumors [101].

Stress-induced GCs promote ionizing radiation-induced tumorigenesis by reducing
tumor suppressor p53 protein levels and down-regulating the tumor suppressor gene
BRCA1 [102,103]. GC–GR signals also promote cancer progression via the Hippo pathway
by regulating YAP and TEAD4 [104,105]. GCs also promote metastasis by acting on distant
metastatic sites [16]. In immune reactions, GCs have a significant inflammation suppression
effect when used as immunosuppressant. GCs were found to inhibit NK cells and stimulate
CD8+ T-cell differentiation, causing immune dysfunction which defeats the immunity-
checkpoint response and promotes tumor growth [106,107]. Therefore, GCs impair the
efficacy of chemotherapy and immunotherapy [108].
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The neurotransmitters, hormones and related signaling pathways involved in stress-
induced tumor progression are summarized in Figure 2.

4. Other Stressors

Aging has been acknowledged as a major risk factor for developing cancer. Telomere
was shortened with aging and each cell division, which is a hallmark of cellular senes-
cence [109]. Short telomeres are associated with genomic instability, which is the main cause
of tumorigenesis [110]. Alongside cellular senescence, aging also impairs immune func-
tions, called immunosenescence, and leads to invalidation of the immune system against
cancer [111]. The expression of CD27 and CD28, the markers of T-cell activation, is lower in
CD57+ (senescence marker) CD4+, and CD8+ T cells [112,113]. However, M2 macrophages,
which are thought to promote cancer progression via infiltration and angiogenesis, are
increased in the old individuals [114,115]. PD-L1 can drive immune cell inactivation as the
ligand of PD-1. A study has found that PD-L1 is upregulated in the senescent cells. This
may help to explain the increased cancer incidences in the elderly population [116].

Oxidative stress is thought as a cause of aging [117]. It is caused by an imbalance
between the production of reactive oxygen species (ROS) and the antioxidant capabil-
ity [118]. Cancer cells have an inherently elevated ROS level compared to their normal
counterparts [119]. It is noted that oxidative stress can promote cancer progression in
tumorigenesis, proliferation, angiogenesis, and metastasis [120]. ROS has been found
to activate Ras oncogene and inhibit p53, the tumor suppressor, to induce tumorigene-
sis [121,122]. Other tumor suppressor genes, such as cyclin-dependent kinase inhibitor 2A
(CDKN2A), retinoblastoma (Rb), Von Hippel–Lindau (VHL), and breast cancer 1 (BRCA1)
have also been identified in the cancer cells as being inactivated via an ROS-dependent
epigenetic modulation [123,124]. In proliferation studies, the p66Shc protein level, ErbB-2
level, and Erk/MAPK activation has been elevated by increased ROS in cancer for cell prolif-
eration [125]. PI3K/Akt pathway plays various roles in ROS-promoting cancer progression.
At first, it is another cell pathway activated by ROS. It has been reported to inactivate
PI3K/Akt phosphatases, such as phosphatase and tensin homolog (PTEN) and protein
tyrosine phosphatase 1B (PTP1B) which may promote proliferation [126]. Oxidative stress is
also necessary for angiogenesis. Activation of PI3K/Akt and MAPK pathway by ROS does
not only promote proliferation but also induces the release of VEGF [127]. Transcription
factor HIF-1α is another reason that promotes VEGF expression: ROS increases the HIF-1α
expression and also inhibits prolyl hydroxylase and leads to the stabilization of HIF-1α [128].
The other function of ROS-activating PI3K/Akt and MAPK/Erk is inducing metastasis,
i.e., ROS mediates HGF-driven invasion of cancer cells via Erk 1/2 activation. A previous
study has shown that HGF regulates ROS-induced expression of urokinase plasminogen
activator (uPA), a serine protease involved in cellular invasion, via the Erk 1/2 pathway,
and it stimulates the invasiveness of human gastric cancer cells [129]. Oxidative stress and
ROS also impair the immune system. Inhibition of oxidative metabolism, and production
of ROS, can block the process of tumor cell induced-myeloid-derived suppressor cells
(MDSCs) on the growth of colon cancer cells [130]. This may be due to the inhibition of ROS
suppressing the negative effect of MDSCs in T cells and rescuing the activity of T cells [131].
On the contrary, high levels of ROS inhibit T cell activity by suppressing the formation of T
cell receptor and major histocompatibility complex antigen complex [132]. ROS may also
be involved in PD-L1 therapy. Chemotherapy drugs, paclitaxel or antioxidant depletion,
upregulates ROS production and further induces PD-L1 expression in the macrophages.
PD-L1 positive macrophages have immune-suppressive interference with the efficacy of
paclitaxel in vivo. Thereby ROS inhibitors may be adjunct to PD-L1 therapy [133], but
further clinical data are needed to demonstrate it.

5. Perspective

In a recent meta-analysis of cancer patients, anxiety was found to have a negative effect
on prognosis and treatment [11]. Cancer patients were more likely to have comorbid anxiety
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than healthy people [134]. However, research into the treatment of clinical anxiety in cancer
patients has not received much attention. Currently, clinical treatment is predominantly
aimed at β-ARs using β-blockers, addressing anxiety-related mechanisms [135]. β-blockers
have been used in the treatment of many types of cancer. However, the results of various
meta-analyses on β-blocker efficacy do not confirm that β-blockers have a significant
effect on reducing cancer progression [136–139]. Stress-induced hormones are complex,
and a single blocker may not completely eliminate the adverse effects of stress on cancer
progression and treatment.

The central nervous system controls various secretory systems. Manipulation of the
central nervous system can modulate the secretion of cancer-promoting molecules and
progression can be greatly reduced. In addition, hormone secretion is limited to normal
levels following the elimination of stress, thereby reducing side effects. As our group
found previously [51], modulation of the reward-related VTA-mPFC circuit effectively
reduces anxiety levels in mice and simultaneously suppresses circulating NE and GCs,
thereby slowing down cancer growth. However, this is technically difficult at present
since the regulation of neural circuits is still at the stage of laboratory experiments. In
this regard, more efforts are required to promote the translation of effective treatments in
animal models, such as optogenetic manipulation of neural circuits, to the clinic.

The central nervous system is not only the center of regulation but also the center
of sensation. It is sensitive to external stimuli and feeds stimuli back through neural
networks. Stimulating animals with environmental factors can reduce anxiety. For example,
environment enrichment (EE) in mice which includes a large space for activity and provides
a ‘sports and entertainment facility’ leads to happier, less anxious mice [140]. A recent study
showed that EE modulates β-ARs-induced immune responses, slows down tumor growth
and improves immunotherapy efficacy [141]. Another study found that exposing mice to an
ambient temperature of 30 ◦C lowers rates of tumor growth compared to mice at 22 ◦C. This
can also be achieved by reducing the NE-β-AR signaling [142]. In addition, light treatment
can be useful in psychiatric treatments of mood disorders and in pain management due
to antinociceptive effects. Specific intensities of bright light passed normally through the
retina can activate several central brain regions, such as the habenula, which is associated
with depression, and the PAG, which is associated with pain, and projections from the
ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL) can inhibit the
PAG, thereby regulating mood and analgesia [143,144]. In the future, it may also be used in
adjuvant cancer therapy.

Based on the literature covered in this review, we argue that the neural circuits related
to stress should be further dissected experimentally to uncover relevant mechanistic details
which can ultimately be utilized to generate adjuvant therapies to improve the survival of
cancer patients.
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Src Proto-oncogene tyrosine-protein kinase Src
CREB cAMP response element-binding protein
NO Nitric oxide
IL-4 Interleukin-4
IL-6 Interleukin-6
IL-12 Interleukin-12
TNF-α Tumor necrosis factor α
BAD Bcl-2-associated death promoter
MCL-1 Myeloid leukemia 1
LHDA Lactate dehydrogenase A–dependent
VEGF Vascular Endothelial Growth Factor
HIF-1α Hypoxia-inducible factor 1a
IFN-γ Interferon-γ
BRCA1 Breast cancer type 1 gene
YAP Yes-associated protein
TEAD4 TEA Domain Transcription Factor 4
PD-1/PD-L1 Programmed Cell Death 1/Programmed Cell Death Ligand 1
GABA Gamma-aminobutyric acid
fMRI Functional magnetic resonance imaging
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