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Abstract

The honey bee has been extensively studied as a model for neuronal circuit and memory

function and more recently has emerged as an unconventional model in biogerontology.

Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with

the very sparse information available on glial cells. In other systems glial cells are involved

in nutritional homeostasis, detoxification, and aging. These glial functions have been linked

to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a

step in identifying functional roles and potential differences among honey bee glial types, we

examined the spatial distribution of these enzymes and asked if enzyme abundance is asso-

ciated with aging and other processes essential for survival. Using immunohistochemistry

and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen

phosphorylase are abundant in glia but appear to co-localize with different glial sub-types.

The overall spatial distribution of both enzymes was not homogenous and differed markedly

between different neuropiles and also within each neuropil. Using semi-quantitative Western

blotting we found that rapid aging, typically observed in shortest-lived worker bees (forag-

ers), was associated with declining enzyme levels. Further, we found enzyme abundance

changes after severe starvation stress, and that glutamine synthetase is associated with

food response. Together, our data indicate that aging and nutritional physiology in bees are

linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a

functional differentiation among identified glial types.

Introduction

Glial cells are key to healthy behavioral function and maintain the homeostasis of neurotrans-

mitters and metabolites in the brain. Yet, very little is known about the distribution and func-

tional diversity of glia in the honey bee brain, a system with a decades-long tradition as a

model in neurobiology [1,2], and a more recent research focus on highly flexible aging patterns

[3,4].
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Glial cells play essential roles in neuronal development. They regulate synaptic plasticity,

provide neurons with trophic support, and constitute the brain’s primary immune system

[5,6]. Glial cells may not outnumber the neuronal population by far, as often asserted, but still

represent a major cell population in the brain [7–9]. The various roles of glial cells are reflected

in a diversity of glial classes and subtypes. In insects, the identification of glial types is often

based on location cues and cellular morphology; more recent approaches also include glial

type specific protein expression to identify possible functional differences ([10–15], for the

honey bee, e.g., [16,17]). We here adopt a classification system that distinguishes between

three classes and five subtypes of glial cells [10,12]. These are, firstly, ‘surface glia’ with two

subtypes that reside at the brain’s periphery and form the blood-brain-barrier. A second class

of glia is spatially associated with synaptic neuropiles (‘neuropil glia’) and is further subdivided

into astrocyte-like and ensheathing glia [11,12,18]. ‘Cortex glia’, the third class, has cell bodies

within the soma cortex and forms dense meshworks that envelop neuronal cell bodies [10].

In vertebrate brains some metabolic enzymes appear to be exclusive to glial cells. For exam-

ple, the presence of glutamine synthetase or of elements of the glycogen breakdown pathway is

specific for certain glial subclasses. The first, glutamine synthetase (GS), catalyzes the conver-

sion of glutamate and ammonia to glutamine [19]. Accordingly, the GS mediated glutamate

breakdown can remove excess neurotransmitter and can counteract the buildup of toxic

ammonia levels [18,20]. High levels of GS have been shown for astrocytes in mammals [18,21],

for astrocyte-like glia in Drosophila [22], and locusts [11]. Another glial-specific enzyme, gly-

gogen phosphorylase (GP), catalyzes the rate-limiting step in the breakdown of glycogen.

While glycogen has been often portrayed as an emergency fuel during hypoglycemia in mam-

mals [23], glycogen degradation by GP may also support neurotransmission under normal

conditions [24]. Similar to glutamine synthetase, glycogen phosphorylase in the mammalian

brain seems to be almost exclusive to astrocyte glia [25]. However, new reports indicate that

neurons, to some extent, can show glycogen metabolism as well [26]. Specific metabolic inter-

actions between glial cells and neurons in the honey bee’s central brain are poorly understood

but have been studied in greater detail for peripheral neurons (photoreceptors) and retinal

glial cells [27].

As one of the principal models in invertebrate brain research, the honey bee features a com-

plex social behavior, a well-studied neuroanatomy, and relatively simple test paradigms to

study learning and memory are established [2]. Adapting such learning protocols [28],

research in the last decade has revealed that extreme lifespan and aging differences depend on

worker type (‘sub-castes’, [29]), rather than on chronological age [30,31]. For example, short-

lived foragers can develop typical aging symptoms within a few days only, while winter bees

can exhibit negligible aging for many months [28,32–37]. Symptoms that support worker-type

dependent aging include a decline in learning function and stress resilience [32,35,38], as well

as rapid mortality dynamics in foragers [36]. Cellular senescence in the brain and other tissues

is supported by changed abundance of synaptic and other proteins [33], oxidation of brain

proteins [39], by the accumulation of lipofuscin [35,40], by changes in immune function

[41,42], and in transcriptional profiles [43]. Brood signals on the colony level [35,44] and the

alternative utilization of a yolk protein (vitellogenin) on the molecular level have been identi-

fied as key regulators of longevity in worker bees [45–47]. Beyond a particular focus on aging,

honey bees are used successfully to study other health related topics, for example the regulation

of food intake, effects of nutrients on health, as well as the cross-talk between the brain and the

major sites of nutrient utilization and storage [48–50].

A better understanding of glia function and their potential roles in brain function, aging,

and nutritional physiology is therefore highly rewarding in the honey bee model. As a first

step, we here study cellular localization patterns of the two metabolic enzymes GS and GP
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within prominent regions of the honey bee’s central brain. Addressing possible roles of GS and

GP in aging, starvation, and food response we test for associations of metabolic enzyme levels

with these functions.

Material and methods

Animals and phenotype identification

Bees (Apis mellifera carnica Pollmann) were obtained from apiaries at the Norwegian Univer-

sity of Life Sciences (Aas, Norway). Worker type, chronological age and colony origin were

identified for all specimens used in this study. Mature nurse bees, that were between 12–20

days old, were collected from brood combs of colonies housed in our indoor flight-room facili-

ties [35]. To identify their chronological age, these bees had received a paint mark (UniPosca)

after hatching in an incubator and then were transferred to experimental colonies from which

they were later collected [35]. Foragers were collected from outdoor colonies when returning

from foraging flights. To obtain old foragers vs. typically non-senesced, mature controls we

used chronological and morphological criteria [51]. In brief, all foragers had a paint mark

specifying the days they had spent foraging (“foraging age”), i.e.,�15 days for the old foragers

and�5 days for the mature control. In addition, the old group was identified by morphologi-

cal features that are associated with extended foraging durations [33]. To control for effects of

colony origin, specimens for all experiments were collected from at least two colony replicates.

In anatomical studies we tested mature nurse bees with an age of 12–20 days. For functional

assays and subsequent analyses with Western blotting we either tested the different age groups

of foragers or mature nurse bees in the experiments on starvation and food response.

Dissection and tissue preparation

Specimens were collected into wooden boxes and chilled at 4˚C until motionless. After open-

ing the head capsule and careful removal of adjacent, non-neural tissue, e.g., hypopharyngeal

glands, brains were transferred into ice-cold fixative (4% paraformaldehyde in phosphate buff-

ered saline, PBS, pH 7.4) for histology or into ice-cold protein extraction buffer for subsequent

Western blot analysis (see below).

Histology and microscopic analyses

After overnight fixation brains were rinsed in PBS. For lipid removal brains were subjected to

an ascending and then again descending ethanol series (30, 50, 70, 90, 95, 100% and reverse).

After rinsing in PBS, samples were microwaved five times (2 min each) to facilitate antibody

penetration. Excessive heating was prevented by submerging the tubes containing the brain

samples in a beaker filled with ice water. Tissue samples were then embedded in 5% low melt-

ing agarose (Sigma-Aldrich) in PBS, and finally cut to 100μm thick sections using a vibrating

blade microtome (Leica VT 1000S, Leica Biosystems).

Sections were rinsed in 0.05% Tween 20 in PBS (PBS-T) and pre-incubated for 1 hr with

2% bovine serum albumin (BSA) in PBS-T. Primary antibody incubation at 1:250 in BSA/

PBS-T lasted for 6 days. To prevent tissue degradation 0.01% sodium azide was added to the

samples, which were kept at 4˚C on a rocking shaker. Subsequent washing with PBS-T was fol-

lowed by incubation (1 day) with the fluorescence-labeled secondary antibody at 1:500 in

PBS-T. Finally tissue sections were washed in PBS-T, dehydrated in an ascending ethanol

series and cleared in methyl salicylate.

Images were acquired on a Leica TCS SP5 laser scanning microscope (Leica Microsystems).

For multi-channel images the sequential acquisition mode was used to ensure optimal
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alignment between the different color channels when scanning at high resolution. Lower and

higher resolution images were taken with a 10x air, a 20x oil immersion and a 40x oil immer-

sion objective, respectively (numerical apertures = 0.30, 0.75 and 1.25). The according z-step

sizes of image stacks were set to 5, 1 and 0.5μm. Image stacks were processed in FIJI/ImageJ,

v1.47k (http://fiji.sc, RRID:SCR_002285). Image processing included the application of a

Gauss filter with a small kernel size of 1 to attenuate high spatial frequency noise, as well as

making 2D projections of image volumes using the maximum projection view mode.

Antibody characterization and fluorescence markers

Glial cells were identified by using an α-repo serum against a glial-specific transcription factor,

which marks the nuclear membrane of almost all glial types in the honey bee (Drosophila mela-
nogaster repo produced in E. coli, rabbit purified serum, RRID:AB_2567900, working dilutions

0.4 μl/ml and 0.2 μl/ml for anatomy and Western blots, gift from J. Urban, Mainz) [52,53].

While the serum has been used previously to identify honey bee glia, its specificity has not

been confirmed with Western blotting. Our Western blot tests reveal one band with the pre-

dicted size of the putative honey bee repo protein and additional lower weight bands (for more

details compare S1 Fig). Glutamine synthetase (GS) was identified with a commercial α-GS

antibody (Human glutamine synthetase, amino acid 1–373, mouse monoclonal, BD Biosci-

ences, Cat# 610517 RRID:AB_397879, working dilutions: 0.4 μl/ml and 0.2 μl/ml for anatomy

and Western blot). Glycogen phosphorylase (GP) was identified with a commercial α-GP anti-

body (Human liver glycogen phosphorylase, PrEST, amino acid 299–431, rabbit polyclonal,

Sigma-Aldrich, Cat# HPA004119, RRID:AB_1079723, working dilutions: 0.4 μl/ml and 0.2 μl/

ml for anatomy and Western blot). The specificity of the α-GS and α-GP antibodies for honey

bee brain tissue was confirmed by Western blots, which revealed specific bands within the

expected molecular weight range (see Results section). In all anatomical studies we included

negative controls, where the primary antibody (α-GS, α-GP) was omitted to assess levels of

unspecific staining by the secondary antibody as well as background noise due to autofluores-

cence. For directly comparing negative controls and the regularly treated samples, all micro-

scopic and image analyses settings were kept constant during scanning of negative controls

and the regularly treated test samples (see Results section). All polyclonal, secondary antibod-

ies were purchased from Jackson ImmunoResearch Inc. and were CY3- or CY5-conjugated.

To identify the somata of neurons and glial cells we used the nuclear marker DAPI (Sigma-

Aldrich).

Functional assays: Aging, starvation and food response

To test if enzyme levels are associated with aging, we obtained identified phenotypes as

described above.

The different starvation protocols available for bees are usually aimed at inducing a uni-

formly high motivation towards the sugar reward in learning assays. To this end, low stress-

related mortality is typically achieved by either restraining movement in holders or by keeping

starved bees in small social groups [34,54]. In contrast, we here test effects of severe starvation

stress and stress related energy depletion (‘exhaustion’). Therefore, our approach allowed free

body and leg movements, while social contact was prevented. The sequence of the protocol

was as follows: collected bees were kept overnight in an incubator (32˚C) with free access to

food (30% sucrose in water) and water. To normalize the satiation state among individuals

before treatment, bees were mounted singly in holders, and were force fed with 10μl of 30%

sucrose. After releasing, each bee was placed in a separate Eppendorf tube (1.5ml). Food and

water were made accessible to bees by inserting a filled pipette tip in a hole pinched in the
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tube’s lid. In the starved group bees had ad libitum access to water only; the non-starved con-

trol in contrast had ad libitum access to a 30% sucrose solution. Mortality was monitored

every three hours. After 12hrs, when significant mortality was observed in the starved group

(see Results section), all specimens were snap frozen in liquid nitrogen and stored at -80˚C for

further analyses.

To assess individual differences in food responsiveness we used an established protocol for

measuring gustatory responsiveness in bees towards sugary food [28,55]. In brief, collected

bees were harnessed in holders, and their antennae were presented with different sucrose solu-

tions in an ascending order from 0, 0.1, 0.3, 1, 3, 10 to 30% sucrose in water. The inter-test

interval was longer than 5min to prevent habituation or sensitization effects. Upon stimulation

bees were monitored for a positive food response by extending the proboscis (‘tongue’). As a

measure of responsiveness, the gustatory response score (GRS) specifies the number of trials a

bee would show a positive response. Consequently, a low GRS (1–3) was stipulated for the

group of less responsive individuals that only responded to the highest sucrose concentrations.

A GRS of 5–7 was stipulated for bees in the highly responsive group.

Western blot based analysis of protein abundance

Protein extraction and quantitative analyses were performed essentially as we have described

previously [39]. In brief, after homogenization in PBS containing 1mM H4EDTA and com-

plete protease inhibitor (Roche Diagnostics GmbH), individual brain samples were centri-

fuged at 10.000g (10 min, 4˚C), and the supernatant was collected. For SDS-polyacrylamide

electrophoresis (SDS-PAGE) we used the Mini-Protean Tetra Cell system (Bio-Rad Laborato-

ries) and pre-casted gels (Bio-Rad Laboratories). All gels were loaded with equal sample num-

bers representing each treatment group and each replicate hive. To minimize confounding

technical errors, e.g., edge effects, samples from different treatments were loaded in an alter-

nating lane order, and lane positions were rotated between replicate gels. Following electro-

phoresis the separated proteins were blotted onto PVDF membranes. Pre-incubation of the

membranes with a blocking solution (1% BSA in PBS) was followed by incubation with the

respective primary antibody (1:500 for α-GS and α-GP, 1hr). Membranes were then rinsed

with PBS-T, incubated with CY5-fluorophore-coupled secondary antibodies (1:500, 1hr, see

Histology and microscopic analyses), and finally washed with PBS-T. Membranes with labeled

protein bands for GS and GP were imaged using a Typhoon Variable Mode Imager 8600

(Amersham Pharmacia Biotech AB). All blots of a single experiment were scanned simulta-

neously while taking care to use the full intensity bit-range and avoiding pixel saturation. To

assess the total fraction of soluble proteins, we then labeled the membranes with Sypro Ruby

Protein Blot Stain (Life Technologies Corp.) and re-scanned them. The Sypro Ruby signal was

used as a reference to normalize the GS and GP signals for the total protein amount loaded in

each lane. Alleviating some of the challenges posed by selecting a single housekeeper reference

[56], the Sypro Ruby signal represents a large fraction of the most abundant proteins. In addi-

tion, to rule out that extracts of one individual brain would compromise subsequent protein

quantification using the antibodies (α-GS, α-GP) and Sypro Ruby by saturation effects, we

have conducted initial Western blot analyses with protein extracts representing different sam-

ple concentrations (1/2, 1, 2 brains, see S2 Fig). All grey-scale images were analyzed using the

Gel Tool included with ImageJ (see above). To avoid crosstalk between the GS and GP with

the Sypro Ruby fluorescence signal, bands corresponding to the molecular weight of the two

enzymes were excluded from measurements of the Sypro Ruby reference stain. To test for pos-

sible differences in relative protein abundance levels, the GS and GP specific signals were first

corrected for the Sypro Ruby protein signal, yielding a relative abundance value. Then each
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specimen (lane) was assigned a rank ranging between 1 and 9 for each gel with 9 lanes loaded.

This allowed including multiple blots in the analyses despite variation in absolute intensity

(densitometric) measurements between blots.

Statistical analysis

Analyses were performed using STATISTICA 11.0 (StatSoft). We used the non-parametric

Mann–Whitney U test (MWU) since all intensity data of Western blots had to be transformed

into rank data (see previous section). We report Z and P statistics, sample number (N) and

degree of freedom (df). Apart from treatment effects, statistics for possible effects of hive origin

(biological replicate = colony origin) were calculated for each experiment. Survival statistics

for the starvation assay were calculated using Cox’s F survival tests for two-sample groups.

Results

Associations of glial cells with glutamine synthetase

General distribution. Immunostaining with the anti-glutamine synthetase (α-GS) anti-

body suggests the presence of GS in different regions of the central brain, yet at very different

abundance levels (Fig 1A–1G). Brain regions with intense α-GS immunostaining include the

lateral and medial protocerebrum (Fig 1B, 1D and 1G), the central complex (Fig 1C), as well as

parts of the mushroom bodies (Fig 1D and 1E). In contrast, staining in the mushroom bodies’

calyx was less intense and sparser (Fig 1F). Likewise, the antennal lobe (arrows in Fig 1G)

showed less intense staining, as compared to the medial and lateral protocerebrum (arrow in

Fig 1B, arrowheads in Fig 1G). Generally, α-GS positive cell bodies were observed at the outer

rim of neuropiles, i.e., the interface, where soma and synaptic neuropil regions meet (arrow in

Fig 1B, arrowheads in Figs 1G, 2B and 2C). In addition, α-GS staining was detected within

neuropiles, labeling arborizations (Fig 1B and 1D) and few cell bodies (asterisks in Fig 2B).

However, α-GS positive arborizations within neuropiles were not identified for the antennal

lobes (Fig 1G). Our observations on GS localization are based on the inspection of N = 10 indi-

vidual brains. Western blots with the α-GS antibody revealed a single band close to the pre-

dicted size of a subunit belonging to one of two GS isoforms (41 kDa, Fig 1H), which is in line

with data from other insect and mammalian systems [11,19]. For brain sections controls for

autofluorescence and unspecific secondary antibody staining were negative (Fig 1J, 1L and

1N), as opposed to test sections that were incubated also with primary α-GS antibody but were

otherwise scanned and handled similarly (Fig 1I, 1K and 1M, see Methods section).

Associations with glia. We next asked if GS is associated with glial cells, as shown for

other systems [11]. To this end we tested for co-localization of the α-GS signal with a glial-spe-

cific marker (α-repo [16], Fig 2). A nuclear marker served as a reference for both glial cells and

neurons (DAPI). First, we examined possible associations in brain regions that showed a par-

ticularly high density of α-GS staining, i.e. the protocerebral lobes (compare Fig 1B and 1G).

Comparing the DAPI (Fig 2A) and α-repo signals supports that almost all glial somata (Fig 2B,

magenta) outlined the soma cortex (SC in Fig 1A and 1B). We found that α-GS staining

appeared to be limited to these peripheral α-repo positive glial somata (Fig 2B and 2C), in con-

trast to neuronal cell bodies (compare Fig 2A). However, not all α-repo positive glial cells were

also α-GS positive (arrowheads in Fig 2C). This suggests that GS is only present in a subset of

glial cells (Fig 2B and 2C). Similar to before (Fig 1G), neuropilar arborizations were not detect-

able for α-GS positive glial cells in the antennal lobes.

We then examined, if GS abundance might differ between different glial subtypes. Among

different classification systems for insect brain glia, we base our identification on more recent

studies in Drosophila, which distinguished between three classes: surface, neuropil and cortex
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Fig 1. The distribution of glutamine synthetase (GS) in the honey bee brain. (A) Confocal microscopic image stack

showing abundant α-GS immunolabeling for different brain areas, including central regions with the mushroom bodies (Mb),

central complex (CC), as well as antennal (AL), and optic lobes (OL). The faint green line indicates brain and tissue borders of

the brain section. (B-G) Higher resolution images reveal marked α-GS staining (arrows) for the lateral and medial

protocerebrum (B; lateral protocerebrum, lPC, inferior medial PC, imPC, lateral horn, LH), for the central complex (C;

central complex, CC with central body, CB and ellipsoid body, EB), and for output regions of the mushroom bodies (D, E;

vertical lobe, vL and γ lobe, γL, medial lobe, mL). Note that staining was most intense at the periphery of protocerebral

neuropiles (B; imPC, lPC, LH; D; superior medial protocerebrum, smPC). In contrast, weaker α-GS immunolabeling was

detected in the antennal lobes (G), and only sparse staining in the modules of the mushroom bodies’ calyx regions (F; calyx,

Cal, collar, Co, lip, Li, basal ring, BR, neck, Ne). H: Western blots of brain tissue with the α-GS antibody reveal a single band

(arrow) close to the expected size of 41kDa (for the complete blot compare S3A Fig). (I-N) With immunohistochemistry we

detected a signal only if the α-GS primary antibody was present (I, K, M), whereas controls for unspecific secondary antibody

staining and autofluorescence did not reveal marked signals (J, L, N). Scale bar 200μm in A, 50μm in B-G, 200μm in N for

I-N.

https://doi.org/10.1371/journal.pone.0198322.g001
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glia [10,12]. We did not observe α-GS staining for the two surface glial subtypes, i.e. peri- and

subperineural glia (e.g., compare Fig 1F and 1G). The two neuropil glial subtypes are astrocytes

and ensheathing glia. Typically, astrocyte-like glial cells lie just outside of the neuropil and

inside the clusters of neuronal somata from where they send extensive arborizations into the

neuropil. In accord with these criteria, we found α-GS positive glial cells with somata close to

neuropil regions (arrows in Fig 1B, arrowheads in Fig 1G), and long arborizations into the syn-

aptic neuropiles (arrows in Fig 2B and 2C), which suggests the presence of GS in astrocyte-like

glia. Yet, such astrocyte like morphology was not found for α-GS positive glia in the antennal

lobes. Such ensheathing glia has cell bodies that line the glomerular subcompartments. We

reasoned that ensheathing glia would be most reliably identified within the well-structured

glomerular organization of the antennal lobes (Fig 2D–2F), in contrast to non-glomerular pro-

tocerebral lobes (Fig 2A–2C). However, compared to astrocyte-like glia in the protocerebral

lobes, GS-like staining generally appeared weaker in the antennal lobes (compare arrowheads

and arrows in Fig 1G). Nevertheless, α-GS staining was clearly detectable around glial nuclei

between neighboring glomeruli (arrows in Figs 1G, 2E and 2F). This suggests GS to be present

in ensheathing glia. Cortex glia, the third glial class, have cell bodies and arborizations that

often are more centrally located within each soma cortex. However, within central brain

Fig 2. Colocalization of glutamine synthetase (GS) with two types of neuropil glia. (A) Non-glomerular neuropiles

(NP), such as proto- and tritocerebral lobes, are surrounded by somacortices (SC). DAPI staining shows the localization of

almost all neuronal and glial somata within the soma cortex and the interface to the neuropiles (SC, arrows). Only few cell

bodies lie deep in the neuropil (asterisks). (B and C) The glial-specific marker α-repo (magenta) reveals that glial cells are

mostly found at the boundary between soma cortex and synaptic neuropil (arrowheads in B). Many of these peripheral

glial cells show intense α-GS staining (green). Location and co-localization with α-repo and arborizations that extend into

the neuropil (arrows) support that these α-GS positive cells are astrocyte-like glia, a type of neuropil glia. Note that not all

α-repo positive glial cells show α-GS staining (arrowheads in C). Yet, α-repo positive glia within the neuropil did show

adjacent α-GS, arborization-like staining (asterisks in B). (D) In glomerular neuropiles, such as the antennal lobes

(shown), DAPI reveals somata that surround the entire neuropil and also single glomeruli (Glo, arrows). (E and F) α-repo

staining (magenta) marks glial cells that outline single glomeruli (arrows), lack arborizations and hence resemble

ensheathing, rather than astrocyte glia. Scale bar 20μm in A, B, D, E, 5μm in C, F.

https://doi.org/10.1371/journal.pone.0198322.g002
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neuropiles we did not observe spatial distribution patterns for α-GS staining that would sup-

port the presence of GS in the cortex glial type.

In all, GS-like immunoreactivity appeared specific only for neuropil glia, i.e., astrocyte-like

and ensheathing glia, and the abundance of GS-like immunoreactivity differed considerably

between brain regions.

Associations of glial cells with glutamine phosphorylase

General distribution. Unlike GS, glutamine phosphorylase (α-GP) immunoreactivity was

abundant in all brain regions we inspected (Fig 3). These include lateral and medial protocer-

ebrum (Fig 3B), the central complex (Fig 3C), the mushroom bodies’ output lobes and calyx

regions (Fig 3A), as well as the antennal lobes (Fig 3E). The intensity of α-GP immunosignals

generally appeared weaker, and less defined as with α-GS. Also, we did not observe marked

immunopositive arborizations into neuropiles that we had found with α-GS. Rather, labeling

seemed more confined to the interface between somatic and neuropilar areas and therefore

may suggest a different cytosolic localization or different glial type specificity than we found

for GS (arrows in Fig 3A and 3E, see below). Our observations on GP localization are based on

the inspection of N = 9 brains. Western blots reveal a dominant band close to the predicted

size of 97 kDa (arrow in Fig 3I). Controls for autofluorescence and unspecific secondary anti-

body staining were negative (Fig 3K, 3M and 3O), as compared to regularly treated sections

that were incubated also with the primary α-GP antibody (Fig 3J, 3L and 3N).

Associations with glia and GS. Marked α-GP staining was detected at the periphery but

not in more central areas of soma cortices (compare e.g., Fig 3B, 3D and 3F). Again, this distri-

bution pattern is similar to what we showed with α-repo positive glial cells and suggests a glial-

specific localization also for GP (compare e.g., Fig 2A and 2B). Co-localization tests with α-GS

and α-GP reveal immunostaining for both enzymes within the same areas at the interface

between neuropiles and soma cortices (Fig 3G and 3H). Our high-resolution images do not

support, however, that α-GP stains the same α-GS positive astrocyte-like glia with projections

into the neuropiles (e.g., Fig 3G and 3H). Rather GP appears restricted to the outer edges of

neuropiles and, hence, seems most abundant in a type of ensheathing glia (Fig 3F, 3G and 3H,

see Discussion). For glomerular neuropiles of the antennal lobe, marked α-GP staining was

found to be associated with glial nuclei that surround single glomeruli (Fig 3E), again suggest-

ing the presence of α-GP in ensheathing glia. Finally, marked α-GP immunostaining was

detected also at the periphery of the brain where the neurolemma forms the blood brain bar-

rier. Here, surface glia with nuclei, that show a typical elongated shape, were found to be asso-

ciated with α-GP immunostaining (asterisks in Fig 3F).

Together, our anatomical data suggest that both enzymes, GS and GP are associated with

glial cells. The different spatial distribution patterns and distinct morphological features sug-

gest that GP and GS are expressed by different classes and subtypes of glial cells.

Age-related changes of GS and GP levels within the honey bee brain

To test if GS and GP levels may change during aging, we compared relative protein abundance

in brains of old bees with mature, typically non-senesced, controls [51]. As previously, individ-

uals of the old group were forager type bees with a foraging duration of�15 days that were

additionally identified by age-specific body wear, including worn wings and hairless patches

on head and thorax [33]. We assessed brain GS and GP levels with semi-quantitative Western

blot analysis using the enzyme specific antibodies (see Figs 1H and 3L).

For both enzymes we found that relative GS and GP abundance levels were reduced in the

old as compared to the mature control (MWU for GS: df = 1, Nmat/old = 12/13, Z = -2.02,

Metabolic enzymes in glial cells of the honey bee brain
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Fig 3. The distribution of glycogen phosphorylase (GP) in the brain. (A) Abundant α-GP immunostaining was detected in

different brain areas. The image stack shows α-GP staining in similar brain regions as Fig 1A for α-GS (antennal, AL, central

complex, CC, mushroom bodies, Mb, optic lobes, OL). (B and C) Higher resolution images confirming α-GP signals (arrows)

for the protocerebral lobes (B, inferior medial protocerebrum, imPC, lateral horn, LH) and the central complex (C; central

complex, CC, central body, CB, ellipsoid body, EB). (D-F) Co-localization with the nuclear marker (DAPI, cyan)

demonstrates that most intense α-GP signals (magenta, arrows) outline the neuropil of non-glomerular protocerebral lobes

(D, lateral horn, LH, inferior medial protocerebrum, imPC) and mark borders of the antennal lobe’s (AL) glomerular

neuropiles (E, arrowheads). These localization features suggest that GP is present in ensheathing glia (arrows in D, E,

compare A). In addition, α-GP staining at the brain’s periphery suggests GP is present in surface glial subtypes that form the

blood brain barrier (asterisks in F). The lower resolution inset in F depicts the location of neuropiles shown in F (lateral

protocerebrum, lPC, medulla, Me). (G and H) Co-staining for α-GP and α-GS in cell bodies located between the AL and

protocerebral neuropil regions. In contrast to α-GS immunostaining (green), arborizations (arrows) into the neuropil were

not evident with α-GP, suggesting different cellular localization for both enzymes. Inset in H with a high-resolution image

showing that α-GP and α-GS do not co-localize, suggesting that the enzymes are specific for different glial types. I: Western

blots of brain tissue with the α-GP antibody reveal a single band with the expected size of about 97kDa (arrow, for the

complete blot compare S3B Fig). (J-O) Using the same microscopy settings, we only detected immunosignals for samples

incubated with the α-GP primary antibody (J, L, N) but not in controls for unspecific secondary antibody staining and

autofluorescence (K, M, O). Scale bar = 200μm in A, 50μm in B-F, 20μm in G, H, 200μm in O for J-O.

https://doi.org/10.1371/journal.pone.0198322.g003
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P<0.05, Fig 4A; MWU for GP: df = 1, Nmat/old = 11/14, Z = -2.03, P<0.05, Fig 4B). This effect

was only present, when both foraging duration and morphological criteria of senescence were

stipulated to minimize heterogeneity that is typical for the old group (data not shown, [31,33]).

We did not observe replicate effects between the different colonies for GS (MWU for GS:

df = 1, NC1/C2 = 13/12, Z = 0.68, P = 0.4956). For GP, however, a difference between sampled

colonies was detected (MWU for GP: df = 1, NC1/C2 = 13/12, Z = 2.26, P<0.05).

Associations between GS and GP levels with severe starvation stress

To test how metabolic enzyme levels in the bee brain are affected by severe nutritional stress,

we subjected nurse bees to a starvation protocol that lasted for 12 hours. As compared to sati-

ated bees, this treatment caused a significantly higher mortality (>40%) in the starved group

(Cox’ F, df = 1, Nsat/starv = 50/64, F = 6.29, P<0.001, Fig 5A) with a sharp increase in mortality

between 9 to 12 hours (data not shown). Our semi-quantitative Western blot analyses show

that severe starvation stress was associated with reduced relative abundance of both enzymes,

GS (MWU for GS: df = 1, Nsat/starv = 17/14, Z = -2.01, P<0.05, Fig 5B) and GP (MWU for GP:

df = 1, Nsat/starv = 18/16, Z = -2.23, P<0.05, Fig 5C). We did not observe replicate effects, i.e.

differences between sample colonies were not significant (MWU for GS: df = 1, NC1/C2 = 15/

16, Z = -0.12, P = 0.9053; MWU for GP: df = 1, NC1/C2 = 17/17, Z = 1.16, P = 0.2476).

Associations between GS and GP levels with food response

When touching their antennae with different sugar concentrations, bees can extend their pro-

boscis (‘tongue’) allowing measuring their food sensitivity. To test for possible associations

with glial-specific metabolic enzymes, we again analyzed relative protein abundance and now

contrasted individuals with high and low gustatory response scores (GRS, see Methods sec-

tion). Low GRS and, thus, a less sensitive food response was associated with a lower relative

abundance of GS (MWU: df = 1, Nlow/highGRS = 13/14, Z = -2.32, P<0.05, Fig 6A). In contrast,

we did not find a relative abundance difference for GP between the low and high GRS group

(MWU, df = 1, Nlow/highGRS = 14/13, Z = -1.1466, P = 0.2515, Fig 6B). Again, protein

Fig 4. The relative abundance of glutamine synthetase (GS) and glycogen phosphorylase (GP) was reduced in the old group of

foragers. (A and B) Relative protein abundance of GS (A) and GP (B) in brains of the old group (foraging duration� 15 days) as

compared to the young group of foragers (foraging duration� 5 days). Box plots indicate medians and 25/75 percentiles for rank

values assessed by semi-quantitative Western blotting. Ranks were calculated from GS and GP densitometric values, normalized to

the total protein staining (Sypro Ruby). Asterisks depict significance (� P<0.05; for detailed statistics see the Results section).

https://doi.org/10.1371/journal.pone.0198322.g004
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Fig 5. Severe starvation stress reduced the relative abundance of glutamine synthetase (GS) and glycogen

phosphorylase (GP). (A) Mortality after 12hrs was significantly higher in the starved group as compared to controls

that were allowed to feed ad libitum (detailed statistics in the Results section). (B and C) Relative protein abundance of
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abundance levels were not different between colony replicates (MWU for GS: df = 1, NC1/C2 =

13/14, Z = -0.12, P = 0.9029; MWU for GP: df = 1, NC1/C2 = 14/13, Z = -1.59, P = 0.1127).

Discussion

We identified different spatial distribution patterns for glutamine synthetase (GS) and glycogen

phosphorylase (GP) in the honey bee brain, suggesting the presence of both enzymes in glial

cells. These results support functional differences between glial subtypes and between different

brain compartments. Additionally, our quantitative data indicate that survival-critical traits

such as aging, starvation stress and food response can be linked to changed levels of GS and GP.

Spatial and cellular distribution of GS and GP: Subcellular distribution

The highest abundance of GS was present in midbrain neuropiles, in particular around proto-

cerebral lobes and in the central complex (Fig 1B, 1D and 1G). Within the mushroom body,

different GS abundance levels appear to reflect the division into midbrain output regions

(medial, vertical and γ lobe; Fig 1D and 1E) and the more peripheral input regions (calyx neu-

ropiles; Fig 1F). Similarly, the peripheral antennal lobes showed generally less GS staining (Fig

1G) than midbrain neuropiles. High GS abundance in the central complex and around mush-

room body output lobes is in accord with studies in two other insects (Schistocerca gregaria
[11]; Drosophila melanogaster [22]). A lower GS abundance in the calyx, however, may corre-

spond with a markedly fewer glutamate transporters, as shown in Drosophila [57]. Because of

its role in glutamate metabolism, it can be expected that the distribution of GS resembles that

of glutamate. Immunolocalization of glutamate in the honey bee brain generally corroborates

this [58]: highly abundant glutamate in lateral and medial protocerebral lobes is contrasted by

much lower levels in the calyx region, for example.

GS (B) and GP (C) in brains of the starved (ST) and the satiated control group (SA). Box plots indicate medians and

25/75 percentiles for ranked protein abundance values. Asterisks depict significance (� P<0.05; for detailed statistics

see the Results section).

https://doi.org/10.1371/journal.pone.0198322.g005

Fig 6. Gustatory responsiveness (GRS) to sucrose was associated with relative abundance of glutamine synthetase (GS) but not

with glycogen phosphorylase (GP). (A) Relative GS abundance was higher in brains of bees with high sucrose responsiveness

(High GRS), as compared to the group with low responsiveness (low GRS). (B) No such association was evident for GP. Box plots

indicate medians and 25/75 percentiles for ranked protein abundance values. Asterisks depict significance (� P<0.05; for detailed

statistics see the Results section).

https://doi.org/10.1371/journal.pone.0198322.g006
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Apart from being a central metabolite, the relevance of glutamate for neuronal network

plasticity was addressed by a number of studies in bees [59]. Regarding a role in neurotrans-

mission, GS mediated turnover of excess glutamate from the synaptic cleft would suggest spa-

tial associations of GS with neuronal glutamate receptors and with other elements of glutamate

neurotransmission. Such associations are supported by similar distribution patterns of GS and

the glutamate specific NMDA receptor (AmNR1). Specifically, high NMDA receptor levels in

midbrain protocerebral lobes and the central complex again contrast with lower levels in calyx

neuropiles [60]. However, the mRNA levels for the NMDA receptor subunit NR1 (nmdar1) in

the calyx are much higher than what would be expected from (i) the low levels of its protein

product (NMDA receptor, [60]), from (ii) the lower levels of glutamate [58], or from (iii) the

low GS levels we found for the calyx (Fig 1F). Similarly, mRNA levels of a putative glutamate

transporter (AmEAAT) were found to be conspicuously high within the calyx for the mush-

room bodies’ Kenyon cells [61]. Possible explanations for the spatial discrepancies of mRNA

and protein data include post-translational modifications. Nevertheless, while mRNA and pro-

tein distribution data underline the fact that elements of glutamate neurotransmission are

present in all brain region, our data on GS supports earlier assumptions on substantial spatial

differences for glutamate metabolism within the bee brain [59].

For GP such differences between brain regions were not evident (Fig 3A–3F) and profound

spatial differences in glycogen metabolism are, hence, not supported. This seems in line with

the more or less homogenous distribution of the substrate of GP, glycogen, as reported for the

Drosophila brain [62]. Also in contrast to GS, we report that GP staining often appeared more

diffuse, with stained puncta within the neuropiles (e.g., in more central regions of the lateral

horn, Fig 3D, and the medulla, Fig 3F). While, such small, scattered signals typically indicate

staining artifacts, we cannot completely rule out the presence of GP within neuropiles.

Gross spatial distribution patterns of α-GS and α-GP staining (Figs 1A and 3A) are in

accord with glial-specific α-repo staining (Fig 2), and with earlier descriptions of glia in the

brains of honey bees [16,17], in locusts [9,11] and in Drosophila [10,12,13]. Specifically, for

both enzymes we found immunopositive labeling at the interface between soma cortices and

synaptic neuropiles, hence, in areas that are typically devoid of neuronal somata. Similar to a

previous study in the locust’s central complex [11], we found that not all α-repo positive glial

cells appear to express α-GS (e.g., compare Fig 2A with 2C). Adding to this, our data indicates

that GS is present in both types of neuropil glia, i.e., in astrocyte-like and ensheathing glia but

not in surface or cortex glia. In agreement with studies in locusts and Drosophila [11,22], GS

positive astrocyte-like glia gave rise to extensive arborizations into the neuropiles, with the

exception of the antennal lobes’ glomerular neuropiles. Morphologically similar glial structures

with extensive branches within the neuropiles may represent a second type of astrocyte-like

glia (Fig 2B), which differs from those with peripheral somata typically described for Drosoph-
ila [12].

Lastly, Drosophila has two GS isozymes–a cytosolic and a mitochondrial–with slightly dif-

ferent molecular weights [63]. Yet their abundance in brain tissue is not clear. A nucleotide

BLAST search for A. mellifera also suggests the existence of two GS isoforms in the honey bee.

Since our Western blot data on bees revealed a single band only, it is conceivable that only one

isozyme is dominant in honey bee brain tissue. Alternatively, the antibody may bind to only

one of two isoforms in the honey bee brain. Therefore, we cannot rule out that both, anatomic

distribution and enzyme abundance changes are specific for only a subset of glial cells, which

contains one of two GS isozymes.

Like GS, GP was found in glia around neuropile and also around glomeruli of the antennal

lobes, suggesting the presence in ensheathing glia. In contrast to GS, extensive α-GP-positive

arborizations were not evident from our image data (Fig 3G and 3H). Also unlike GS, we did
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not find conclusive evidence for GP within the large non-glomerular protocerebral lobes (Fig

3B). Hence, GP does not seem associated with astrocyte-like glia, which is further supported

by the lack of co-localization between GS and GP in the protocerebral lobes (Fig 3H). This

may represent a fundamental difference to vertebrate systems, where glycogen metabolism

and highest levels of the brain isoform of GP are commonly associated with astrocytes but not

other glial types [24,64]. Based on different localization and morphology, we classify GP posi-

tive glia at the boundary between soma cortex and neuropile as a type of non-astrocytic,

ensheathing glia. Finally, GP at the surface of the brain (Fig 3F) supports that also surface glia

expresses this enzyme. It is conceivable that only one of the two types of surface glia contains

GP. Yet, our data show GP around two layers of nuclei, part of them clearly elongated [10]

and, thus, resembling perineural and subperineural glia. Nevertheless, because of the more

faint staining at the periphery and the close apposition of the two glial layers, we suggest that

subtype specific localization is best addressed by future studies using higher resolution imag-

ing, perhaps in cell cultures. Similarly, such studies may address if GS and GP positive

ensheathing glia in the antennal lobe of the honey bee can also belong to two subtypes, as it is

the case in Manduca sexta. That way, GS and GP again may be a key feature that distinguishes

astrocyte-like, so-called complex glia and simple glia, which envelops neuropilar compart-

ments [65]. If separate localization of GS and GP also in the antennal lobes holds true, then GS

and GP would stain entirely different, non-overlapping glia populations throughout the differ-

ent brain areas.

Lastly, while co-localization with glial-specific markers (GS) and glial-typical anatomic dis-

tribution (GS and GP) suggest an exclusive localization of GS and GP in glia, we cannot

entirely rule out that there might be limited co-localization also with other non-glial cells.

Associations of GS and GP levels with aging and other functions critical for

survival

Age and stress-related disruption of metabolic homeostasis mechanisms is regarded as a main

route of brain aging, which is why we here focused on potential changes in glial-specific

enzyme abundance. We found that relative abundance of GS and GP was reduced in the group

of old foragers, as opposed to the mature control. Such age related protein reduction may be

attributed to lowered protein expression, changed protein degradation and other factors that

affect proteostasis. However, the relative contributions of these factors are difficult to disentan-

gle and can differ among the main aging and disease models [66]. Another factor, cell loss, has

been repeatedly shown to accompany aging, however its extent and contribution to normal

aging is not yet sufficiently understood ([67], and references therein). Similarly, based on our

data we cannot exclude that lower protein levels in aged bees are perhaps partly explained by

gial cell loss. Adding to the age affect in foragers, we also report a colony effect for GP. Such

colony effects on metabolic enzyme levels may be indicative of differences in colony nutri-

tional status. However, such effect was only revealed by testing GP, not GS, and is also not

revealed by testing nurse bees in starvation and food response assays.

Among the behavioral decline patterns in old forager bees, are reduced olfactory and tactile

learning as well as changed spatial extinction in home finding tests [31]. In particular, the

reduction of GS levels may cause senescence by affecting glutamatergic transmission. How-

ever, in contrast to vertebrates, where impaired glutamate recycling causes over-excitation

(excitotoxicity)[18], changed glutamate abundance in insects would likely impair the function

of inhibitory circuits [68]. In addition, cellular senescence due to reduced glutamate-glutamine

conversion can lead to the accumulation of toxic ammonia levels [18], which causes the swell-

ing of astrocytes triggering other mechanisms that further compromise astrocytic homeostasis
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[69]. Moreover, the role of GS mediated glutamate homeostasis for cognitive dysfunction is sup-

ported by reduced GS levels found in Alzheimer’s disease models [70] and by associations with

other neurodegenerative pathologies [71]. In contrast, less is known about the role of glycogen

phosphorylase in aging. For vertebrates, it seems likely that reduced glycogen phosphorylase

reduces an individual’s resilience to metabolic stress. Specifically, in the case of acute hypoglyce-

mia (glucose deficiency) the aged brain would not be able to activate glycogen as an alternative

energy resource, which would contribute to increased age related frailty or mortality. For insects

the availability of GP is even more critical for survival because of its central role in trehalose syn-

thesis (see below). Perhaps supporting a link between the age-related reduction of GP and low-

ered metabolic stress resistance are findings demonstrating that over-aged nurse bees [38] and

old foragers [72] are less resilient to starvation stress than non-senesced control groups.

To induce severe metabolic stress we starved mature nurse bees for 12hrs, and found that

starvation was associated with increased mortality and reduced levels of GS and GP. Hence,

our data imply that a reduced availability of these metabolic enzymes is associated with physio-

logical changes that precede stress related death and may reflect ceasing glutamate and glyco-

gen metabolism. One likely explanation for the lowered enzyme abundance is the activation of

degradation pathways, such as autophagy, by severe and prolonged starvation stress [73,74].

Interestingly, lowered GS and GP levels appear to contrast with events during early starvation.

Such starvation effects on carbohydrate metabolism enzymes are well studied for the insect fat

body, which responds to energy shortage by GP activation in order to break down glycogen

and produce trehalose. For example, in starving silkworm larvae, the increased GP activity and

trehalose production during the first 3–6 hours is followed by a gradual decrease of trehalose

in the fat body [75,76]. It remains to be shown how the different mechanisms of metabolic

enzyme activity regulation [24,77] during early starvation in the fat body map on those in the

bees’ glial cells.

Gustatory responsiveness provides information about the readiness of a bee to feed on sug-

ary food that contains lower versus higher amounts of sucrose. This response was linked to a

number of different factors, including pheromones that signal colony-specific environments

[78], genetic background [79], foraging preference for sugar or protein rich food [80], and

resilience against metabolic stress [72]. Gustatory responsiveness is not fixed however but is

strongly up-regulated by acute starvation [81]. Here we show that gustatory responsiveness

was associated with relative abundance of one of the two metabolic enzymes: GS. An interac-

tion with starvation is rather unlikely as the satiation state of all bees was normalized by feed-

ing them similar amounts of sugar water before testing. In conclusion, our data for GS adds to

recent studies in the bee’s fat body [49] and brain [82], which could link pathways with con-

served roles in metabolism and foraging behaviors to gustatory responsiveness.

Conclusion

Our anatomic data suggest that different types of glia can be distinguished based on GS and

GP expression. In addition, the lack of GP in astrocyte-like glia suggests that the cellular locali-

zation of the glycogen breakdown might differ from vertebrate astrocytes. We anticipate that

GS and GP both provide useful markers for future studies that attempt a more refined func-

tional classification of glial populations in honey bees and other insects. Such reappraisal of

previous glial cell classification systems already suggested different subtypes of astrocyte-like

glia, for example, and the annotation of additional glial cell classes [15]. Concerning aging,

using glial-specific markers in the honey bee now allows to study in more detail the associa-

tions of a protein with age protective characteristics (vitellogenin) and glial cells, which we

have previously reported [83].
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We hope our findings can inspire future studies in the honey bee model to better under-

stand the role of neuron-glia interaction in memory formation, aging, and nutritional

physiology.

Supporting information

S1 Fig. Western blots to test the specificity of the Drosophila α-repo serum for honeybee

brain tissue. The α-repo serum was previously used for anatomic localization of glial cells in

different insect species, including the honey bee, and the resulting anatomic data has been

shown to conform with alternative glial localization approaches ([11,52,53,84,85]; for an over-

view on repo as a glial marker target see [86]). To our knowledge, however, no data is pub-

lished that demonstrates the specificity of the antibody serum with Western blotting.

We found that Western blotting of nuclear extracts from nurse brains revealed multiple bands,

all below 50kDa with the largest size band at ca. 45 kDa (arrows, 2 representative blots for

N = 10 brain samples). To predict the size of the putative honey bee protein, we performed a

BLAST against the Drosophila sequence (NCBI BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi,

RRID:SCR_004870) and found the result to be consistent with the recently annotated gene ret-
inal homeobox protein Rx2/repo; (LOC410151, A. mellifera). With 48.7kDa, the calculated

molecular weight of the predicted protein product (A. mellifera retinal homeobox protein Rx2,

XP_016772105) is considerably lower than in Drosophila (70kDa, [53]) but approximates the

size of the largest size band that we have detected in Western blots (arrows).

However, our Western blots also reveal a number of additional bands below 30kDa, with a

prominent band at ca. 18kDa. While we cannot rule out that these may indicate a relatively

low specificity of the antibody, we report that all additional bands have a lower molecular

weight than the largest size band at ca. 45kDa. This suggests that these bands represent degra-

dation products of the full-size protein. Such degradation may be due to the more extensive

lysate treatment that was needed to collect nuclear fractions of brain extracts (below) and,

hence, to account for the nucleus-specific localization of the repo protein (compare [53]).

Nuclear fractionation. To collect nuclear extracts, we essentially used a hypotonic buffer

based protocol. Briefly, two brains were collected into 15μl hypotonic buffer I (20 mM Tris-

HCl pH 7, 10 mM NaCl, 3 mM MgCl2) to which 0.75 μl 10% NP-40 were added. Brief vortex-

ing was followed by initial centrifugation for 10min at 3000g and 4˚C. The resulting pellet con-

taining the nuclear fraction was washed with the hypotonic buffer I, re-suspended in 15μl

hypotonic buffer II (5mM EDTA, 1% Tween-20, 0.5% SDS) and briefly vortexed. After a sec-

ond centrifugation for 10 min 15000 g at 4˚C, the supernatant containing the nuclear fraction

was collected and further processed as described in the Material and Methods section for GS

and GP.

(TIFF)

S2 Fig. Titration tests and loading controls. (A, B) Titration tests with antibodies confirm

that protein extracts that are equivalent to 0.5 and 1 brain do not saturate the densitometric

measurement system (shown here for the α-glutamine synthetase, α-GS, antibody). Prior to

semi-quantitative Western blot quantification (compare Figs 4–6) with the two antibodies

used, we tested their densitometric response in relation to the amount of brain tissue (‘brain

equivalents’) used for gel loading. To this end, 3 independent samples, each with two brains,

were pooled (‘stock’) and were then diluted with Laemmli buffer. The resulting protein sam-

ples were equivalent to the protein amount of 2 brains (‘stock’), of 1 brain and of ½ brain. (A)

Relative protein abundance of GS (in %) shown for three dilutions series, each normalized to

the densitometric values measured for the protein ‘stock’ sample, i.e., for the 2-brain equiva-

lent. We found that densitometric values for 1 and 1/2 brain equivalents are smaller than for
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the 2 brain equivalents. Hence, tissue amounts used to compare different experimental groups

(Figs 4–6) will not cause unwanted saturation effects. (B) Representative Western blot showing

titration series labeled with the α-GS antibody, and reveal that the GS-band at ca. 41kDa corre-

lates with protein sample concentration. (C) As a reference for normalizing α-GS and α-GP

signals to the total fraction of soluble proteins loaded, we re-labeled all blots with Sypro Ruby

Protein Blot Stain (Life Technologies Corp.). To avoid potential crosstalk with the Sypro Ruby

fluorescence signal, we excluded bands that corresponded to the molecular weight of GS and

GP from densitometric measurements (compare white frame–here for the GS signal).

(TIFF)

S3 Fig. A and B show the original images for Western blots presented in Figs 1H and 3I,

respectively.

(TIFF)
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