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Resting state (RS) connectivity has been increasingly studied in healthy and diseased

brains in humans and animals. This paper presents a new method to analyze RS data

from fMRI that combines multiple seed correlation analysis with graph-theory (MSRA).

We characterize and evaluate this new method in relation to two other graph-theoretical

methods and ICA. The graph-theoretical methods calculate cross-correlations of regional

average time-courses, one using seed regions of the same size (SRCC) and the other

using whole brain structure regions (RCCA). We evaluated the reproducibility, power,

and capacity of these methods to characterize short-term RS modulation to unilateral

physiological whisker stimulation in rats. Graph-theoretical networks found with the

MSRA approach were highly reproducible, and their communities showed large overlaps

with ICA components. Additionally, MSRA was the only one of all tested methods that

had the power to detect significant RS modulations induced by whisker stimulation that

are controlled by family-wise error rate (FWE). Compared to the reduced resting state

network connectivity during task performance, these modulations implied decreased

connectivity strength in the bilateral sensorimotor and entorhinal cortex. Additionally, the

contralateral ventromedial thalamus (part of the barrel field related lemniscal pathway) and

the hypothalamus showed reduced connectivity. Enhanced connectivity was observed

in the amygdala, especially the contralateral basolateral amygdala (involved in emotional

learning processes). In conclusion, MSRA is a powerful analytical approach that can

reliably detect tiny modulations of RS connectivity. It shows a great promise as a method

for studying RS dynamics in healthy and pathological conditions.

Keywords: resting state connectivity, whisker stimulation, multi seed correlation, ICA, fMRI, short-term
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INTRODUCTION

Since Biswal et al. (1995) first described intrinsic functional
connectivity in the human brain during rest by functional
MRI (fMRI), the so called resting state (RS) connectivity has
been studied intensively and several large scale neural networks
have been detected (see Raichle, 2011 for review). Despite the
influence of individual and instantaneous factors such as mood,
physiological and cognitive states, RS networks are remarkably
robust and stable over time (Braun et al., 2012; Zuo and Xing,
2014; Du et al., 2015) and species (Lu et al., 2012; Sierakowiak
et al., 2015; Gozzi and Schwarz, 2016). Thus, they seem to exhibit
an evolutionary conserved and fundamental phenomenon of
mammalian brain function. However, its biological relevance
is still not fully understood. One hypothesis interprets human
RS connectivity as a correlate of introspective mental processes
(including such processes as mind wandering) that influences
behavioral responses to future events (Rosazza andMinati, 2011).
Other researchers emphasize the relation of RS topography and
strength to the history of network activation and thus support the
Hebbian-like Fire-Wire-hypothesis: regions that are co-activated
during task performance develop stronger coherence at rest
(Corbetta, 2012; Harmelech et al., 2013). Regardless of other
interpretations, it has been widely accepted that resting state
networks are dynamic in nature (Deco and Corbetta, 2011).
They are modulated by prior task activation, which supports the
hypothesis that RS functional connectivity plays a role in learning
processes andmemory consolidation (Albert et al., 2009; Tambini
et al., 2010).

Short-term modulations of RS connectivity have also been

detected in several human studies after performance of a motor

task (Tung et al., 2013; Mary et al., 2016; Muraskin et al., 2016),

but to the best of our knowledge, studies using sensory stimuli
as RS modulators or animal models have not been published.
One reason might be that we lack adequate analytical tools to
detect these tiny modulations. Therefore, our goal is to develop
a method that is capable of examining RS connectivity during
sensorimotor stimulation of the barrel field in the rat. For
that purpose we evaluated three graph-theoretical resting state
analysis methods in comparison to ICA to determine which
analytical methods can best detect significant and reliable short-
term resting state modulations. The barrel field model and
its underlying functional and anatomical pathways have been
intensively investigated with various neurobiological techniques
including fMRI (Grinvald et al., 1986; Yang et al., 1997; Hess
et al., 2000; Sachdev et al., 2003; Diamond et al., 2008). We used
unilateral stimulation of a small set of whiskers after trimming the
remaining ones. Unilateral whisker activation usually indicates
food or foe; thus the animal reacts with an immediate behavioral
and emotional response (Marshall et al., 1971; Prescott, 2011).
When compared to the more natural stimulation of all whiskers,
trimming and stimulation of the remaining whiskers induces
altered functional activation patterns that are shown to be related
to plasticity and learning processes (Mirabella et al., 2001; Sellien
and Ebner, 2007; Alonso Bde et al., 2008; de Celis Alonso et al.,
2012; Albieri et al., 2015). Consequently this sensory stimulation
paradigm is expected to modulate resting state connectivity, yet it

should still be subtle enough to pose a challenge for the analytical
methods under evaluation.

One major weakness in investigating resting state fMRI is the
heterogeneity of analytical approaches, especially given that the
method used to analyze RS data strongly influences the results
(Ma et al., 2007; Long et al., 2008; Rosazza et al., 2012; Cao et al.,
2014). Therefore, reproducing and comparing findings across
different laboratories and studies is difficult. Classical methods
to analyze RS data include: regional homogeneity analysis (Zang
et al., 2004), cluster analysis (Van Den Heuvel et al., 2008a; Lee
et al., 2012), seed based correlation analysis (SCA) (Greicius et al.,
2003) and independent component analysis (ICA) (Calhoun
et al., 2001). More recently, graph-theoretical approaches are
used, which translate RS data into networks consisting of nodes
and edges by cross correlating regional time-courses (Smith et al.,
2013). Definition of regions used in the time-course analysis
ranges from voxels (Van Den Heuvel et al., 2008b; Fransson
et al., 2011) to only a few anatomical regions (13 nodes) (Fair
et al., 2008). The large variance of parcellation resolutions further
complicates the ability to compare graph-theoretical findings
(Fornito et al., 2010; Wig et al., 2011). Differences in parcellation
size influence not only the signal to noise ratio of the mean time-
course, but larger parcellation regions are also more likely to
integrate more functionally distinct parts.

To access the advantages of sophisticated graph-theoretical
analysis recently proposed approaches estimate within-
component network graphs for human RS networks (Park
et al., 2014; Ribeiro de Paula et al., 2017). Ribeiro de Paula
et al. (2017) directly translate spatial ICA components
into within-component graphs. Here, edge weights do not
represent correlation of time courses (as measure for functional
connectivity) but statistical t-values resulting from a linear
regression with the ICA component time course as predictor.

As illustrated in Figure 1, RS analysis methods can be
classified by their empirical regime (data or hypothesis driven
procedures) and their integrated coherence (Long et al., 2008),
which is the spatial similarity of all correlating time-courses.
Hypothesis driven methods usually involve the definitions of
regions of interest (ROIs). These ROIs can be defined either
anatomically (e.g., atlas regions) or functionally (e.g., the
activated regions of event or stimulus related fMRI). Several
reviews provide a comprehensive overview of all methods
including the discussion of their advantages and disadvantages
(Margulies et al., 2010; Lee et al., 2013).

In this study we introduce a new method that combines
classical seed correlation analysis (SCA) with graph-theory. We
chose SCA as fundamental part of the new approach because
seed regions can be small and equal in size providing comparable
signal to noise ratios and minimizing the effects of averaging
functionally different voxels. Additionally, the correlating voxels
in target brain regions are not predefined but determined data
driven. That means the method finds for each subject the
optimal correlation within the target region. This effect should
diminish the variability and enhance the reliability of functional
connectivity weights between two regions in brain networks
across subjects. We compared this new method to two other
graph-theoretical methods that rely on the same parcellation

Frontiers in Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 334

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kreitz et al. New Analysis of Resting-State Modulation

FIGURE 1 | Prominent categories of resting-state fMRI data analysis classified

according to their empirical regime and integrated coherence. Data driven

methods ranging from intra-regional to long range inter-regional correlations

are ReHo, regional homogeneity; Clus, Cluster analysis; ICA, Independent

component analysis; GTA vx, voxelwise graph-theoretical analysis; GTA fuP,

Graph theoretical analysis based on functional parcellation (Eickhoff et al.,

2015; Fan et al., 2016). Hypothesis driven methods are SCA, seed correlation

analysis; GTA usrP, graph-theoretical analysis with user defined parcellation.

For the last two methods, regions can be defined relying either on anatomical

(anROIs) or functional (fuROIs) properties.

scheme (i.e. the same digital brain region atlas) as well as
to ICA. Since ICA was the first method used to characterize
distinct resting state networks in a data driven fashion, we
used it to evaluate the communities obtained with the graph-
theoretical methods. We evaluated the efficacy of these methods
to characterize short-term modulation by comparing RS before
and after unilateral whisker stimulation in rats. For this purpose a
version of the network based statistics (NBS) (Zalesky et al., 2010)
was adapted to cope with pairwise statistics.

MATERIALS AND METHODS

Animal Preparation
Permission for animal experiments was obtained from the ethics
committee of the government of Mittelfranken (Ansbach,
Germany, 621-2531.31-30/00). fMRI experiments were
performed on rats (male Sprague Dawley, 350–450 g, Janvier,
France, n = 25). The animals were initially anesthetized with 5%
isoflurane for 7min in a 1:1 mixture of oxygen and pressured
air. Immediately after, rat whiskers were trimmed on both sides
of the snout with exception of the ones in the C row. Rats were
then mounted on a Plexiglas cradle with incorporated mouth
mask and with a tooth biting bar where the rat’s head was fixed
without the need of ear screws (see de Celis Alonso et al., 2012
for details on experimental setup). Lateral openings in the mask
allowed the whiskers to move freely.

Afterwards the animals were placed in the scanner and the
isoflurane concentration was reduced to ≈1.2%. In order to
control the depth of anesthesia the isoflurane concentration was
adjusted during the experiment to maintain a respiration rate
of approximately 65/min (∼38 mmHg ± 10% pCO2). A stable

spontaneous respiration rate leads to stable transcutaneous pCO2
during the fMRI measurement (Ramos-Cabrer et al., 2005). Body
temperature was maintained at 37◦C by a circulating water bath,
and physiological parameters (respiration, temperature) were
monitored (for more details see Hess et al., 2007, 2011).

Experimental Protocol
Each animal underwent one fMRI-session starting with a
resting state (RS) measurement followed by a stimulation
experiment (either sham or whisker stimulation) and a second
RS measurement and a final anatomical scan. Animals were
separated into two groups, one with stimulation of the remaining
whiskers after trimming between the two RS measurement
(experimental group, n = 13) and one control group prepared
and mounted in the same way as the experimental group but
without whisker trimming or stimulation (control group, n= 12)
(Figure 2).

Whisker Stimulation
Whiskers were stimulated with an air driven device integrated
into the holding cradle. An inverted comb situated 2 cm apart
from the left side of the snout was used for monolateral
stimulations at a frequency of 6Hz with an amplitude of 10mm.
All the remaining whiskers from the left side of the snout were
stimulated. Space between comb teeth was enough to leave some
flexibility for the whiskers to slide in and out, but not to get
free, thereby avoiding painful pulling stimuli. Combs were driven
from an external console connected to the scanner running
a custom programmed user interface developed in LabView
(Labview, National Instruments, Austin, TX, USA).

MRI Acquisition
MRI experiments were performed on a 4.7 T/40 cm horizontal
bore magnet BioSpec (BRUKER, Ettlingen, Germany). A
whole-body birdcage resonator enabled homogenous excitation
operating with an actively shielded high-power gradient system
(200 mT/m) and a low-noise, actively RF-decoupled 2 × 2
phased array head coil (Bruker Biospin, Ettlingen, Germany) was
used to acquire brain images. This configuration enables image
acquisition with a high temporal signal-to-noise ratio (tSNR) of
approximately 60 (Kalthoff et al., 2011).

RS data (collected during both pre and post stimulation
period) consisted of 300 brain volumes in each 10min (cf.
Figure 2) acquired with a T2∗-weighted single-shot gradient
echo-based Echo Planar Imaging sequence (GE-EPI) covering 22
axial slices of the brain in 2 s (TEef = 25.03ms, TR = 2,000ms,
in-plane resolution 0.391× 0.391mm,matrix 64× 64, FOV 25×
25mm, slice thickness 1mm). Slice 14 was positioned at bregma
−3.48mm according to Paxinos rat brain atlas (Paxinos and
Watson, 2007). As a positioning reference we used the smallest
distance between the posterior tip of the corpus striatum and
the anterior tip of the hippocampus on the horizontal anatomical
reference image.

Both sham and whisker stimulation driven fMRI data
(between the two RS measurements) was acquired using the
same imaging sequence (GE-EPI). A total of 1602 brain volumes
were scanned during this experimental period (cf. Figure 2)
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FIGURE 2 | Experimental design including resting state (RS) analysis methods. fMRI images were taken of the animals during three experimental periods per session:

RS pre, the stimulation period and RS post. Thirteen animals were whisker stimulated and 12 were in the control group. The pooled animals of both RS pre periods

(n = 25) were used to evaluate the RS analysis methods: MSRA (Multiple Seed Region Analysis): time-courses extracted from small seed regions in the center of mass

of anatomical brain structures, voxelwise correlated. SRCC (Seed Region Cross Correlation): time-courses extracted from seed regions (see above), cross-correlated.

RCCA (Regional Cross Correlation Analysis): time-courses extracted from anatomical brain structures, cross-correlated. ICA: Independent Component Analysis.

with the following scanning parameters: TEef = 25.03ms,
TR= 2,000ms, in-plane resolution 0.391× 0.391mm, matrix 64
× 64, FOV of 25× 25mm, 1mm slice thickness. The stimulation
protocol included 100 stimulations (6Hz) of the vibrissae with
duration of 8 sec (4 volumes) and intermediate rests of 24 s (12
volumes). First stimulation sequence started after 8 s. Finally, 22
corresponding anatomical T2 reference images (RARE, RF = 8,
TEef = 11.7ms, TR = 3,000ms, NEX = 5, in-plane resolution
0.097 × 0.097mm, matrix 256 × 256, field of view 25 × 25mm,
slice thickness 1mm) were acquired at identical positions.

Analysis of BOLD Activation Due to
Whisker Stimulation
In this study we focused on alterations of RS networks as a
result of whisker stimulation. Additionally, the brain structures
activated by the whisker stimulation were compared to those
involved in resting state connectivity (cf. Figure 2).

BOLD activation induced by whisker stimulation was
analyzed using standard procedures described by de Celis
Alonso et al. (2012). After appropriate preprocessing including
inter-slice-time correction, motion correction, and spatial and
temporal smoothing, a general linear model (GLM) analysis
was performed (for detailed information see Supplementary
Methods). The significantly (FDR, q = 0.05) activated voxels in
each defined brain structure were determined for each animal.
Finally, the number of activated voxels per brain structure was
averaged across animals and expressed as percent of total area
size of that brain structure.

Preprocessing of RS Data
We used Brainvoyager QX 2.8 (Brain Innovation B.V.
Maastricht, The Netherlands) for initial inter-slice time and

motion correction of RS data. Inter-slice time correction was
calculated in ascending interleaved scan order with cubic spline
interpolation, and motion correction was computed using rigid
registration and resampling with trilinear/sinc interpolation. In
general motion was low for all animals [mean RMS movement
0.054 (±0.029) mm, which equates 4.7 (±2.6) % of voxel space
diagonal]. Maximum RMS movement was 0.145mm (12.7 %
of voxel space diagonal). If not stated otherwise, all subsequent
analyses were performed with MagnAn (BioCom, Uttenreuth),
an IDL application (Exelis Visual Information Solutions Inc., a
subsidiary of Harris Corporation, Melbourne, FL, USA) designed
for complex image processing and analysis with emphasis on MR
imaging.

After 3D Gaussian smoothing (FWHM 1.17mm), time series
were low pass filtered with a frequency of 0.1Hz and the
global signal mean removed by linear regression. The high
resolution anatomical reference images of all 25 animals were
co-registered to one selected reference subject using an affine
linear transformation algorithm with 6 degrees of freedom and
averaged. This mean reference was interpolated to the isotropic
voxel size of 0.1 × 0.1 × 0.1 mm3 (to fit requirements of ICA
software) and served as the anatomical template. Afterwards,
the motion corrected functional RS data of each animal
were manually skull-stripped, registered to the 3D anatomical
template and linearly interpolated to the same isotropic voxel
size.

Functional Connectivity
Group ICA was performed by using GIFT software (GIFT v1.3g;
icatb.sourceforge.net). Briefly, the whole dataset consisting of
the concatenated preprocessed time series of all animals was
reduced by means of PCA and subsequently decomposed in
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FIGURE 3 | Schematic demonstration of the MSRA-correlation matrix computation using the example of the seed region in the center of mask of the hind limb field of

the primary somatosensory cortex (S1HL). Significant correlations of the seed‘s correlation map were determined using false discovery rate (FDR, q = 0.05, red

outline). For each brain area covered by the red outline the significant correlation were averaged and stored in a matrix line. The matrix line values for all other brain

areas are set to 0. This procedure was repeated for every seed region resulting in an asymmetric correlation matrix where every line represents a seed region and its

average significant correlation with every other brain area.

a predefined set of group-independent components using the
Infomax algorithm. Finally, the corresponding components for
each animal were calculated by back reconstruction (Calhoun
et al., 2001). We calculated group ICAs with 15, 20, and 30
components and evaluated the resulting components by visual
inspection. Decomposition into 20 independent components
revealed the best correspondence to previous published rodent
ICA components (Becerra et al., 2011; Jonckers et al., 2011).
Thus, we focused on ICA with 20 components.

Functional connectivity correlation matrices were analyzed
separately on each animal in its native space. Regions of interests
corresponding to distinct brain structures must be defined prior
to running graph-theoretical analyses. For this purpose the
first volume of each RS time series was used as individual
anatomical reference to semi-automatically register (affine, 6
degrees of freedom) an in-house digital 3D rat brain atlas with
179 brain structures according to Paxinos and Watson (2007).
The definition of the voxels used to extract the time-courses
strongly influences the resulting correlation matrices. Therefore,
we pooled the animals of the first RS measurement (RS pre)
of both groups (n = 25) to compare three different methods
to extract the time-courses for the creation of the correlation
matrices (cf. Figure 2).

Graph-Theoretical Methods
The method introduced in this study, is a multi-seed region
approach (MSRA). It relies on multiple seed correlation maps:
the mean time-course of a seed region per brain region was

correlated with the time-course of every voxel in the brain
resulting in one correlation volume per brain region. Seed
regions were defined automatically as the 4 voxels nearest to
the center of mass of each atlas brain region (5 voxel in total).
The following restrictions were taken into account: (i) the voxels
must be located within the border of the brain structure; (ii)
seed voxels must be located within the central plane of the
brain structure as the native datasets are highly anisotropic
in the z-direction (slice thickness). Subsequently, significant
correlations within that correlation volume were determined
using false discovery rate (FDR, q = 0.05). For each seed region
the significant correlation values were averaged per atlas brain
structure, resulting in a 179× 179 asymmetric correlation matrix
(Figure 3). This asymmetry simulates directionality because for
each pair of brain structures, the significant correlation between
the seed region and data driven target voxels in the other
brain structure is used to generate the correlation matrix. In
contrast to the user defined seed regions, target voxels vary
within regions and across animals. Note that the correlation itself
between seed region and each target voxel is not directed. The
resulting asymmetric correlationmatrix does not reflect direction
in causality, therefore it is called “pseudo directed.”

The second method, the seed region cross-correlation (SRCC)
analysis, simply cross correlates the mean time-courses of all seed
regions (identical to those used inMSRA) to each other, resulting
in one symmetric correlation matrix per subject.

The third method, a regional cross-correlation approach
(RCCA), correlates the mean time-courses of the whole brain
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structure to each of the other brain structures. However, it is
biased by the highly varying numbers of voxels used to create
the average time-course per brain structure. This can lead to false
correlations, especially in inhomogeneous regions. To weaken
this effect, we used the first principal component of each region
instead of the simple mean to calculate a cross correlation
matrix for each subject (Pawela et al., 2008; Zhong et al., 2009).
Briefly, principle component analysis (PCA) is a multivariate
technique that replaces the measured variables (here the time-
courses of the voxels in the region) by a new set of uncorrelated
variables (principle components), arranged in order of decreasing
variance. The mean variance that could be explained by the first
principal component for all animals and structures was 60± 16%.

In accordance with the MSRA approach only significant
correlations in the SRCC and RCCA correlation matrices (FDR,
q = 0.05) were counted as connections. In case of the MSRA
method the FDR correction was applied to the whole brain,
in case of SRCC and RCCA to the correlation matrix. The
resulting FDR thresholds are comparable (mean r of all animals
± standard deviation: MSRA 0.1754 ± 0.004, SRCC 0.1742
± 0.003, RPCC 0.1723 ± 0.002). Non-significant connections
were set to 0. Finally, the resulting Pearson’s r correlation
values were transformed into Fisher’s z-values to provide normal
distributions for subsequent statistical analysis.

Method Evaluation
For each graph-theoretical approach the individual correlation
matrices of all subjects were averaged in order to obtain
representative group correlation matrices. These average
correlation matrices were transformed into network graphs
consisting of vertices (i.e., brain regions) and edges (i.e.,
functional connectivity between pairs of brain regions) (for
detailed information see Supplementary Methods). The
networks were visualized in Amira 5.4 (Visage Imaging) using a
force-based algorithm (Kamada and Kawai, 1989).

For comparison with the ICA approach networks were
subdivided into the same number of communities as ICA
components (20) using a heuristic method that is based on
modularity optimization proposed by Blondel et al. (2008)
and implemented in NWB [NWB Team (2006). Network
Workbench Tool. Indiana University, Northeastern University,
and University of Michigan, http://nwb.slis.indiana.edu]. The
definition of a fixed number of communities resulted in different
numbers of connections per approach (MSRA: 600 directed
connections, RCCA: 300 undirected connections and SRCC: 385
undirected connections).

Additionally, ICA components were transformed into an
“ICA co-activation index” (Rosazza et al., 2012) which is the
179 × 179 product matrix of the summarized ICA component
z-scores per brain region. Adding a power factor k to the
procedure described above emphasizes either the relative weight
of intense (k > 1) or less intense (k < 1) co-activation (for
detailed information see Supplementary Methods and Rosazza
et al., 2012).

Similarity of the three graph-theoretical methods and their
correspondence to ICA was measured using two different
approaches: (i) the overall linear Pearson’s correlation coefficient

r for the comparison of the matrices and (ii) the Jaccard index for
the comparison of brain structure lists of the graph-theoretical
communities and the list of brain structures comprised in the
ICA components. The Jaccard index is defined as the size of the
intersection divided by the size of the union of finite sample sets.
Each similarity measure was calculated for the graph-theoretical
methods to each other (the overall r coefficient on single animals,
the Jaccard index on group level) and for each graph-theoretical
method with ICA (both similarity measures on group level).
For the latter comparison, the average ICA co-activation index
matrices for power levels 0.5, 1, and 2 were used to calculate the
overall r coefficient and the lists of brain structures comprising
the 5 most stable group-ICA components (binarized to z > 0.3)
were used to calculate the Jaccard index. For statistical analysis
of overall r coefficients paired t-test (among graph-theoretical
methods) and ANOVA (group level graph-theoretical methods
with ICA) were performed with α < 0.05.

Reproducibility of graph-theoretical approaches and ICA co-
activation matrix was evaluated using the normalized variance
matrices of all analysis methods. The median of all normalized
correlation variances demonstrates the reproducibility of each
analysis approach. The confidence-interval of each median
was calculated by bootstrapping. Significant effect of methods
was tested using the Kruskal-Wallis test. Additionally, mean-
subtracted variance matrices were calculated, which show the
variability of variance within all pairs of brain areas.

Short-Term Modulation and Paired
Network Based Statistics (pNBS)
The sensitivity of the approaches to robustly detect changes
in RS networks was evaluated by investigating the short-term
modulation of RS networks during whisker stimulation. For this
purpose the correlation matrices, calculated from the RS pre
and RS post measurements for the two groups (experimental
group with and control group without whisker stimulation,
n = 13 and n = 12, respectively), were averaged separately
resulting in 4 averaged correlation matrices per graph-theoretical
approach. From these matrices network graphs were created
with an average of 20 directed or 10 undirected connections per
node, i.e., the 1,790 strongest directed connections forMSRA and
consequently 895 undirected connections for RCCA and SRCC.
These conditions resulted in graphs that are fully connected, yet
sparse enough to show a topological network organization clearly
distinct from that of a random network.

To statistically evaluate the short-term modulation of RS
network graphs during whisker stimulation, we implemented
a modified version of the network-based statistics (NBS)
introduced by Zalesky et al. (2010). The NBS relies on the
assumption that group differences in single connections are more
likely to be false positive than differences in larger connected
components. To each connected component of group differences,
a p-value controlled for the family-wise error can be ascribed
using permutation testing. For details see Zalesky et al. (2010).

In experimental designs with paired groups, permutations
cannot be used. To overcome this limitation we included
an additional control experiment with identical experimental
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parameters with the exception of stimulation between the two
RS measurements (cf. Figure 2). Our pNBS approach uses the
fisher’s z-transformed correlation matrices of all four RS scans
per animal (2 for experimental and 2 for control group). For
each animal, the differences of correlation values per connection
between the two RS correlation matrices of each session (control
and experimental) were calculated. These difference matrices
were used to calculate the pairwise t-test statistics and for the
permutation testing.

The following steps were used to determine modulated
connected components (1) Paired t-statistics was computed for
both control and experimental group. (2) The 99% quantile
of the p-values of the paired t-statistics of the control group
was determined to identify a set of supra-threshold links
corresponding to 1% hypothetical false positive connections
(we hypothesize there are no stimulus dependent connectivity
modulations in the control experiment). (3) The same threshold
was applied to the paired t-statistics p-values of the experimental
group, all connected components above this threshold equal or
smaller to the largest component of the control group were
eliminated. The size k of the remaining set of connections was
stored. In contrast to the traditional NBS these connections
might comprise more than one connected component. Finally,
a p-value controlling for the family-wise-error was ascribed to
the remaining component based on its size using permutation
testing.

In each of M permutations, the difference matrices were
randomly assigned to either control or experimental group, and
the statistics of interest described in steps (1–3) was recalculated.
The size k’ of the set of supra-threshold links derived from
each permutation was determined and stored. The p-value of
an observed set of connections is estimated by finding the total
number of permutations with k’ > k normalized by M.

RESULTS

Method Evaluation
Positioning of Seed Regions
One critical step during seed region based analysis of RS data is
the reproducibility of positioning the seed regions across subjects.
The MSRA approach includes an automatic positioning step for
all seed regions. Figure 4 demonstrates the reproducibility of
this procedure. Although all animals were individually analyzed
(including atlas registration and automatic determination of seed
regions), the positions of the seed regions after affine registration
of all animals remained consistent. The Euclidian distance to the
mean centroid per structure was on average 1.4 pixel (0.55mm)
in x-y plane and 0.2 slices (0.2mm) in z direction.

Comparison of Methods: Correlation Matrices
The correlation matrix of the MSRA approach differs from both
SRCC and RCCA, which are comparable to each other (upper
triangles in Figure 5A). This effect is associated with the different
distribution of z-values within the correlation matrix. SRCC
and RCCA matrices show left shifted distributions with their
maxima below z = 0.01, which is below the significance level
of the FDR (average over all animals: z = 0.176 and z = 0.174,

respectively). However, the histogram of the MSRA approach has
amaximum around z= 0.25 (average FDR z= 0.177; Figure 5B).
The number of connections is determined by thresholding
the correlation matrix with a given z-value. For lower z
thresholds, the numbers of connections are similar between
SRCC and RCCA, but the MSRA approach has considerably
more connections. For threshold values higher than 0.4 this effect
is reversed resulting in slightly lower number of connections in
MSRA compared to SRCC and RCCA (insert in Figure 5C).

The similarity of the correlation matrices of the different
approaches was pairwise determined by the overall r-coefficient
of all weighted connections (Figure 5D) and by the Jaccard
index of binarized matrices (Figure 5E). The overall r reveals
highest similarity between RCCA and SRCC. As expected, the
overall similarity between MSRA and SRCC is higher than
between MSRA and RCCA networks because the MSRA and
the SRCC approach rely on the same seed regions (Figure 5D).
The Jaccard index of RCCA and SRCC and RCCA and MSRA
networks increases with the number of connections. In contrast,
the similarity betweenMSRA and SRCC networks decreases with
the number of connections (Figure 5E).

Network Communities
Of the 20 communities, the number containing at least four
nodes is equal for MSRA and SRCC networks (12) but differs
for RCCA (15). Five of these RCCA-communities are very
small (consisting of only four nodes) indicating slightly higher
network segregation. In general, the communities contain nodes
that represent anatomically and/or functionally associated brain
structures (Figure 6, Supplementary Figure 1).

The MSRA network consists of the following communities
(Figure 6): Brainstem including medulla with solitary tract
and parvicellular and gigantocellular nuclei (CoBS); sensory
input including pons and tegmentum (CoSIn); structures of the
sensory input (ventral tegmental area, red nucleus, substantia
nigra) connected to the corpora mamillaria (CoSIn-com);
thalamic structures associated with anterior hippocampus and
septum (Cothal) or with mesencephalon and pretectal area
(Cothal_l); structures of the sensory cortex (S1, S2, visual and
auditory cortex) and the parietal association cortex (CocxS);
frontal association areas, cingulum, motor cortex and claustrum
(CoFrA); ecto- and entorhinal cortex (link to the limbic system)
in community with the temporal association area (Corhin);
posterior hippocampus and dentate gyrus (Cohip); limbic
structures (mainly amygdala), pallidum (basal ganglia) and
piriform cortex as link to limbic system (Coam); hypothalamus
and zona incerta associated with the ventromedial thalamus
and stria terminalis (Cohyp); nucleus accumbens and olfactory
nucleus (Cobas).

The most striking deviation of the SRCC-network
communities with respect to the MSRA is that the hippocampal
areas are segregated into left and right hemisphere and are
more strongly connected to thalamic structures of the same
hemisphere (Supplementary Figure 1A). The communities of
the RCCA network show even more deviations from the MSRA
network communities described above (Supplementary Figure
1B). The most prominent difference is the higher degree of
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FIGURE 4 | Consistency of automatically placed seed regions of the MSRA approach. (A) Seed regions in the center of mass of individually matched digital atlas

regions of one animal. (B) Overlap of exemplary binarized seed region voxels (n = 25). (C–E) Up-sampled high resolution correlation maps of exemplary seed regions.

S1BF, barrel field of primary somatosensory cortex; S2, secondary somatosensory cortex; thMD, mediodorsal thalamus.

segregation. This mainly includes the cortical sensory structures,
(corresponding to the MSRA-CocxS-community), but limbic
structures (diagonal band and pallidum, septum and stria
terminalis) and the medulla are also affected. On the other hand,
the frontal association areas and basal ganglia (corresponding
to the communities CoFrA and Cobas in the MSRA-network)
are integrated into one large community. Here, the motor cortex
is associated with the sensory instead of the frontal association
cortex.

In summary, the communities tend to be consistent for all
three network analysis methods. However, they each produce
some different connections resulting in community variations.
The MSRA is more similar to the SRCC at the community level
as already shown in Figures 5D,E for the correlation matrices.

Similarity of ICA Components and Network

Communities
We used Independent Component Analysis (ICA) to compare
these three methods to an established, independent method. The
following six most stable non-noise ICA components widely
reflect the communities of the graph networks (Figure 7):

ICFrA: This component includes the prelimbic association
cortex, cingulum and motor cortex. It corresponds to the
community CoFrA of the MSRA network.
ICbas: This component corresponds to the Cobas-
Community of the graph network. It includes the olfactory
nucleus and the nucleus accumbens as well as the piriform
cortex.
IChyp: Comparable to the graph-theoretical
Cohyp-Community this IC involves predominantly

autonomic regions including hypothalamus and corpora
mammillaria.
ICcxS: The ICcxS involves sensory cortical structures (S1, S2,
auditory and frontal part of visual cortex) and the parietal and
retrosplenial cortices. It reflects the CocxS-community.
ICthal: Mainly thalamic structures associated with
hippocampal areas and septum are involved in this
component.
ICceb: This component is the most caudal one and covers
large parts of the cerebellum, which is connected to structures
of the brainstem (solitary tract, reticular nucleus). Apart from
the cerebellum, which is omitted in graph-theoretical network
analysis, this IC is most likely represented by the brainstem
community (CoBS). Of note, the ICA components in the
rodent brain found in this study align with the ones already
published (Becerra et al., 2011; Liang et al., 2011).

The similarity of ICA and network-connectivity was determined
by the average r of all weighted connections per graph-
theoretical approach and the ICA co-activation index matrix at
three different power factors (Figure 8A). Two factor ANOVA
reveals a significant effect for the factor “method” (p =

0.017) and for the factor “power factor” (p = 0.048). The
MSRA approach shows the highest overall-r values compared
to the other two methods indicating more similarity to
ICA components. The maximum similarity occurs at power
factor 1. Focusing on either weak (power factor < 1) or
strong (power factor > 1) connections causes a decrease in
similarity (insert, Figure 8A) for the MSRA approach but a
further increase for power factor >1.0 for the other two
methods.
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FIGURE 5 | Comparison of graph-theoretical network approaches. (A) Correlation matrices including top 1790 binarized directed connections (lower right triangle).

(B) Histograms of Fisher‘s z-correlation values. (C) Number of directed connections as a function of the threshold used for binarization (mean ± SEM, n = 25).

Pairwise similarity of graph-theoretical approaches: (D) overall correlation r of correlation matrices (mean ± SEM, n = 25, *p < 0.05, paired t-test) (E) and Jaccard

index as a function of the number of directed connections of binarized average matrices. bas, basal ganglia; cxA, association cortex; cxS, sensory cortex; hyp,

hypothalamus; lim, limbic system including hippocampus and amygdala; SIn, sensory input; thal, thalamus.

Additionally, we compared the binarized ICA components
with the network communities obtained by the three different
graph-theoretical approaches. Because of the missing cerebellum
node in the graph-theoretical analysis ICceb and CoBS were not
included in the comparison. The overlap was quantified using
the Jaccard index (Figure 8B). For all community/component

pairs, the MSRA approach reveals the highest overlap. This
effect is manifested in the mean Jaccard index over all five
compared community/component pairs. The mean Jaccard
index of the MSRA approach is significantly higher than
that of the other two methods (p < 0.05, paired t-test,
cf. Figure 8B). As illustrated in Figure 8C, ICA components

Frontiers in Neuroscience | www.frontiersin.org 9 May 2018 | Volume 12 | Article 334

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kreitz et al. New Analysis of Resting-State Modulation

FIGURE 6 | Communities of the average RS network (n = 25) from the MSRA approach. Node positions are determined using a forced based algorithm. For better

visualization the underlying network comprises 1790 strongest connections and only communities that contain at least 4 nodes are shown.

and the MSRA network communities share a great deal of
overlap.

Reproducibility
In order to quantify reproducibility of the three graph-theoretical
approaches and ICA, we used the variance matrix of all animal’s
correlation (graph-theory) and coactivation (ICA) matrices
representing the variance for each connection. The median
of connection variances differed significantly for all evaluated
methods. It was lowest for theMSRA approach, indicating higher
reproducibility compared to the SRCC and RCCA methods
(Figure 9A).

Interestingly, brain structures at different organizational
levels show unequal variances, which are especially obvious for
both SRCC and RCCA (Figure 9B). In contrast, the variance
distribution of the MSRA approach and the co-activation indices
is much more homogenous. For all three graph-theoretical
approaches, the highest variances occur in connections between
cortex and subcortex, especially in thalamo-cortical connections.
The MSRA approach also showed that seed regions placed

in cortical regions had more reproducible connections to
subcortical structures than vice versa (Figure 9B).

Short-Term Modulations of RS Networks
Due to Whisker Stimulation
To determine if the graph approaches are sensitive enough
to detect RS modulations, we used them to analyze the RS
measurements separated by sensory whisker stimulation in the
experimental group compared to the controls. The statistical
significance of the induced modulations was determined using
pNBS.

Compared to the control condition (no stimulation
between the two RS measurements), whisker stimulation
in the experimental group led to significant (p = 0.032,
corrected using pNBS) alterations in network connectivity
(Figure 10A). Basically, these alterations occurred between
brain structures that had been active during whisker stimulation
(Supplementary Figure 2). One exception was the ipsilateral
somatosensory barrel field, which did not significantly change
connectivity (Supplementary Figure 2, Figure 10A). However,
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FIGURE 7 | Average (n = 25) RS ICA components used for comparison with the graph-theoretical methods. The color-coded ICA z-score maps of these components

are overlaid on the anatomical image. Z-scores represent the correlation between each voxel time-course and the mean time-course of the associated component.

For each component, three subsequent coronal slices are shown with the corresponding atlas regions in the row above. Acb, nucleus accumbens; Am, amygdala;

Au, auditory cortex; Cb, cerebellum; Cg, cingulum; CoM, corpora mammilaria; CPu, caudate putamen; DG, dentate gyrus; Ent, entorhinale cortex; Fr3, frontal cortex

area 3; Gi, gigantocellular reticular nucleus; hcD, dorsal hippocampus; hcV, ventral hippocampus; hyp, hypothalamus; Ins, insula; M1, primary motor cortex; M2,

secondary motor cortex; Orb, orbitofrontal cortex; OT, olfactory tubercle; PAG, periaqueductal gray; PCRt, parvicellular reticular nucleus; Pir, piriform cortex; PrL,

prelimbic cortex; PtA, parietal association cortex; RS, retrosplenial cortex; S1, primary somatosensory cortex; Sep, septum; SN, substantia nigra; Sol, solitary tract;

thG, geniculate thalamus; thL, lateral thalamus; thM, medial thalamus; thRe, reunions thalamic nucleus; Vis, visual cortex; ZI, zona incerta.
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FIGURE 8 | Similarity of RS ICA components (IC) and graph-theoretical network communities (Co). (A) ICA co-activation index matrix (power factor 1) and its overall

correlation with the average correlation matrices of the three graph-theoretical approaches as a function of power factor. (B) Jaccard-Index of brain areas belonging to

associated ICA components AND/OR network communities (*p < 0.05, paired t-test, n = 5 communities). (C) Visual overlap of thresholded ICA components (>z =

0.03) and centroids of the brain areas composing the associated MSRA network communities.

the connections of neighboring somatosensory structures in
the CocxS-community and the ipsilateral (left) motor cortex
were altered, some with increasing (including ipsilateral upper
lip field) but most with decreasing connectivity strength.
Additionally, subcortical regions were affected, predominantly
hypothalamus and ventromedial thalamus (Cohyp) with
decreasing and amygdala (Coam) with increasing connectivity
strength (esp. basolateral amygdala). Both hypothalamus and
amygdala had weaker connections to the ento- and ecto-
rhinale cortex (Corhin), which represents a link to the limbic
system (Figure 10A). All four structures with the most altered
connections (i.e., the biggest nodes in Figure 10A: the right
ventromedial thalamus, right lateral and medial hypothalamus
and right basolateral amygdala) were located contralateral to the
stimulation side.

Applying pNBS to graphs obtained with the SRCC and
the RCCA method reveals smaller components of altered

connectivity compared to the MSRA approach (Supplementary
Figure 3). These components overlap those of theMSRA and thus
qualitatively confirm the whisker induced RS modulation effect.
However, in contrast to the MSRA approach these two methods
did not survive permutation testing. This was demonstrated by
the calculated empirical null distribution of each method shown
in Figure 10B.

Additionally, the initial 1% quantile threshold of the paired t-
test between the first and second RS of the control experiment
was higher for the MSRA approach (p = 0.0084) than for the
other graph-theoretical methods (0.0032 for both SRCC and
RCCA). This effect was in concordance with the lower variance
across animals shown in Figure 9B and confirms the results of the
MSRA approach are more reproducible than SRCC and RCCA.

In summary, theMSRA approach, which uses both hypothesis
and data driven properties, is superior for graph-theoretical
analysis of RS data. Particularly in combination with the
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FIGURE 9 | Reproducibility of ICA co-activation index (CoAI) and the three

graph-theoretical approaches. (A) Medians ± 95% confidence intervals of the

variances of all connections demonstrate significantly different reproducibility

of analysis methods (p < 0.001, Kruskal-Wallis test). (B) Mean-subtracted

variance matrices demonstrate the variance within all pairs of brain areas.

proposed pairwise network based statistical evaluation of changes
in connectivity strength this approach facilitates the ability to
detect and define the slight differences in RS networks induced
by a physiological sensory stimulus.

DISCUSSION

The aim of this study was to introduce a new method for RS
analysis that integrates the advantages of traditional ICA and
graph-theoretical analysis. The advantages of this new method
were illustrated in an investigation of short-term modulation of
rodent RS connectivity using physiological whisker stimulation.

Methodological Considerations
ICA and Seed Region Analysis
Since it is known that modulations of ICA components are hard
to quantify and to interpret, recently affords have been made
to develop methods that use ICA component time courses to
create networks for graph-theoretical analysis. Here the resulting
graphs either detail specific human ICA resting state networks
such as the Default mode (Park et al., 2014; Ribeiro de Paula
et al., 2017) or ICA was used to parcellate the brain high-
dimensionally into more or less brain region specific components
(Beckmann, 2012). As discussed in Ribeiro de Paula et al. (2017),
general drawbacks are the usage of group ICA time courses
and an (automatic) template matching which both might be
inappropriate for patients with brain abnormalities. The MSRA
does not rely on generalized ICA time courses but nevertheless
highly overlaps with spatial ICA components confirming some
fundamental commonalities. Ribeiro de Paula et al. (2017) also
emphasized the importance of being able to perform analyses
at single subject level. The novel MSRA approach starts at the
single subject level with a pseudo directed multiple seed region
correlation analysis steps.

Both ICA and classical seed region analysis (SCA) reflect
inter-regional features of functional connectivity, whereupon
ICA reflects integrated synchronization among networks, SCA
measures the inter-regional (long-range) correlation of a specific
area with others. Seed based and ICA based RS networks are
highly concordant (Van Dijk et al., 2010; Barkhof et al., 2014).
For example, the posterior cingulate cortex seed recapitulates the
ICA default mode network in human RS analysis (Fox et al., 2005;
Long et al., 2008), and seeds within the anterior insula can be used
to render the ICA salience network (Seeley et al., 2009).

Differences between ICA and seed based analysis are also
reported. (Ma et al., 2007) compared both analysis methods
on human fMRI data and on simulated data with artificially
added gaussian distributed random noise and a (human) cardiac
signal to simulate structured noise. They found that ICA differs
from seed based analysis in terms of extent and location of the
detected networks. Additionally, ICA was superior in dealing
with structured noise such as aliased cardiac cycles and in
reproducibility (due to variations in seed positioning across
experiments and different laboratories). Structured noise such
as aliased cardiac cycles may be relevant in human studies, but
because the heart rate of rats (4.5–7.5Hz) is so much higher
than the sample frequency (0.1Hz) this was not an issue in our
experiment. Reproducibility of the seed basedMRSAmethod was
enhanced by automatically positioning the seed in the center of
mass of thematched atlas brain regions. Other positions may lead
to different results.

Motion, Global Signal Regression and

Anti-correlation
As demonstrated on human fMRI data by several researchers (see
(Power et al., 2012) or Goto et al., 2016 for review), motion might
produce spurious changes in time-courses of RS in humans.
Due to anesthesia and fixation of animals within the scanner
motion usually is a minor issue for rodent fMRI. However,
we cannot exclude such an effect. Therefore, we calculated the
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FIGURE 10 | Alterations in RS connectivity due to whisker stimulation. (A) Components of connectivity alterations identified by pNBS using the MSRA approach

(p = 0.032, FWE corrected) overlaid on the RS network before whisker stimulation (gray edges and nodes). The visualization scheme is the same as in Figure 6. (B)

Empirically computed null distribution of component size for all three graph-theoretical approaches. Only the observed component of the MSRA was significant (p <

0.05) after permutation correction. amBL: basolateral amygdala, hyDM: dorsomedial hypothalamus, hyM: medial hypothalamus, S1BF, primary somatosensory cortex

barrel field; S1Ulp, primary somatosensory cortex upper lip field; thVM, ventromedial thalamus; l, left hemisphere; r, right hemisphere.

motion quality measures FD (frame wise displacement) and
DVARS (global RMS of the differential of all time-courses within
the brain) for each animal (Power et al., 2012). Correlating
these quality measures showed only a negligible relation between

motion and BOLD signal change (Supplementary Figure 4).
Nevertheless, sophisticated correction for motion artifacts such
as scrubbing (Power et al., 2012) or wavelet despike (Patel et al.,
2014) might further improve analysis on animal RS.
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Although distinguished anti-correlated (i.e. negative
correlations) RS networks are reported for humans (Fox
et al., 2005), for rats (Liang et al., 2012a; Schwarz et al., 2013),
and mice (Sforazzini et al., 2014), we focused on positive
correlations only. Negative correlations are difficult to interpret,
especially if global regression is used as a preprocessing step.
It is known that global regression introduces artificial negative
correlations (Murphy et al., 2009), but on the other hand global
signal regression leads to more robust RS networks in rodents
with higher spatial specificity (Liang et al., 2012a; Liska et al.,
2015).

As seen in the histograms of correlation values for the three
graph-theoretical methods, both undirected methods are far
more influenced by negative correlations. Omitting negative
correlations does not shift the histogram, it produces only a
cutoff. The histogram of our MSRA approach instead is shifted
completely in the range of positive correlation values. Therefore,
we conclude that our method is less dependent on false negative
correlations introduced by the global regression.

Nevertheless, the MSRA approach is capable of investigating
these anti-correlated networks by simply inverting the sign of
the initial correlation matrices. The evaluation of these anti-
correlated networks is beyond the scope of this study.

Paired Network Based Statistics (pNBS)
Comparing graphs of functional brain connectivity at different
experimental states usually involvesmass-univariate test statistics
after which the family-wise error rate (FWE) has to be controlled.
Choosing a threshold for the p-values of the test statistics is a
balance between sensitivity (i.e., true positive rate) and specificity
(true negative rate). Since the generic procedures, such as the
false discovery rate (FDR) (Genovese et al., 2002), are highly
conservative, they result in low sensitivities (i.e., high false
negative rate) and thus may not offer sufficient power.

Zalesky et al. (2010) presented a powerful method to control
the FWE called network based statistics (NBS). An essential
part of this method is permutation testing: the group affiliation
of each subject is randomly permutated and the statistic of
interest is recalculated. This procedure presupposes that the
subjects of both groups are independent and exchangeable. This
assumption cannot be made in our experimental paradigm, so
we adapted the NBS to match the conditions of paired mass-
univariate statistics. For this purpose we introduced a control
session without stimulation between the two RS measurements.

Repeated measurements of RS connectivity reveal fair to
excellent reliability (Zuo and Xing, 2014; Du et al., 2015). Though
we cannot postulate the null hypothesis of no difference between
the two RS measurements is true for all connections, intra-
individual variations should be low. Thus, we use the control
session to define a first level threshold p-value that rejects the
null hypothesis only for few connections—in this study 1% of all
connections of both RS networks. Though usually higher than
the conservative FDR (q = 0.05) this first level p-value can be
used as a measure of variation that should be exceeded by our
experimental intervention (i.e., whisker stimulation). From this
point of view, the reliability of the repeated intra subject RS
measurements is crucial. Lower variability in the control study

leads to higher first level thresholds with more potential to detect
significant differences due to experimental intervention.

Comparing the three graph-theoretical methods, the MSRA
approach gave the highest first level threshold and the most
significantly modulated connections. Thus, we conclude that
the observed low inter-individual variability also reflects a high
intra-individual reliability over repeated measurements.

Anesthesia
In any animal fMRI studies, anesthesia is an important issue
because of its potential side effects on the cardiovascular system
and the characteristics of spontaneous neural activity (Nallasamy
and Tsao, 2011; Grandjean et al., 2014). The effect of anesthesia
on functional connectivity has been investigated by several
studies which provide evidence that the connectional architecture
of brain networks is preserved at low anesthetic doses (e.g.,
1% isoflurane) (Vincent et al., 2007; Greicius et al., 2008; Liang
et al., 2012b; Gozzi and Schwarz, 2016) and anesthesia depth
should be as low as possible to obtain the major topological
features of networks mapped in conscious states. In this study, we
controlled anesthesia depth by adjusting to the lowest isoflurane
dose while maintaining a constant breathing rate during the
fMRI session (see section Materials and Methods). As a result,
we detected stable ICA components with remarkable similarity
to those described by Becerra et al. (2011) in awake rats.

The Influence of Pseudo Directionality
Comparing the three graph-theoretical methods, we found
the most similarity between the undirected methods (SRCC
and RCCA). This suggests that the pseudo direction of the
MSRA approach was an important factor. The effect of
directionality was highlighted by the comparison of MSRA
and SRCC. Both methods relied on the very same seed
regions and consequently on the same time-courses. The main
difference was the correlation procedure: cross-correlation of
two predefined regional time-courses for SRCC (leading to
undirected networks) and cross-correlating multiple predefined
regional time-courses with each voxel time-course for MSRA
(leading to pseudo directed networks). Consequently, the MSRA
results were more similar to SRCC than to the RCCA method.
The higher resemblance of ICA components to MSRA than
to SRCC networks was predominantly induced by the pseudo
directionality. Additionally, pseudo directionality enhanced
reproducibility, which is evident in the lower variability of the
MSRA approach compared to both directed graph-theoretical
methods.

The pseudo directionality of the MSRA approach is
characterized by fixed seed regions but variable target regions.
The location of the fixed seed regions are chosen (hypothesis
driven) based on anatomical properties provided by the digital
atlas of brain structures; whereas locations of the voxels in the
target region are determined by the strength of the connection
(data driven) reflecting given functional relationships.

This asymmetry may reveal broken reciprocity in brain
connectivity. Connectional reciprocity between areas (i.e., source
and target regions) is common but clearly not ubiquitous;
especially cortico-subcortical connections are non-reciprocal
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(Rockland, 2015). Additionally, the brain as a processing
system for highly complex data does rely on the principle
of convergence of the information particular in bottom-up
processing. This convergence implicitly introduces asymmetry
within the connectivity matrix. Moreover, the processed
top-down information frequently modulates the bottom-up
information by negative feed-back loops e.g. within the cortex
by inhibitory connections and thalamo-cortical loops (Robinson,
2017) or even to sub-cerebral structures like the spinal cord in
pain conditions (Fields, 2004).

Methodically, RS analysis is constrained by the different brain
area volumes and the MR spatial resolution. In this context e.g.
the connections of a small thalamic region into much larger
cortical areas will not be identical to those found by placing the
seed in the corresponding cortical area (see chapter anesthesia for
more details in that particular regard).

The MSRA approach reflects such asymmetries by combining
hypothesis and data driven as well as anatomical and functional
features. This is an important factor that distinguishes ourMSRA
method from all other (symmetry forcing) techniques used to
analyze RS connectivity.

Pseudo directionality and high reproducibility are MSRA
properties that also allow for deeper insides into anesthesia
effects. Low anesthesia leads to reduced reproducibility and
impaired thalamo-cortical connectivity (Liang et al., 2013; Kirsch
et al., 2017). While the MSRA approach is characterized by an
improved reproducibility across animals (cf. Figure 9), impaired
thalamo-cortical connectivity (represented by enhanced
variability of connectivity strength) is evident in all three graph-
theoretical methods. Interestingly, the pseudo directionality of
the MSRA method revealed increased variability of thalamo-
cortical connections for seed regions in the thalamic regions,
but, not in the cortical regions.

The thalamus is a highly heterogeneous brain region
consisting of small nuclei with functional and anatomical diverse
connectivity. It is likely that, placement of seed regions within
the thalamus reduces the sensitivity of functional connectivity
mapping due to this heterogeneity. The data driven correlations
of thalamic voxels to seed regions within the much bigger
cortical areas were highly reliable. Consequently, the MSRA
approach might be a more valid approach for the investigation
of thalamo-cortical connectivity, e.g. at different states of
consciousness.

Resting State Connectivity Modulation Due
to Whisker Stimulation
Using the new MSRA approach, we were able to detect
distinct short-term RS connectivity modulations due to unilateral
whisker stimulation. The modulated network consisted of two
subnetworks. One network was comprised of the somatosensory
and motor cortex, and the other larger one, was comprised of the
thalamus, hypothalamus and amygdala. Most of these structures
were activated during whisker stimulation, predominantly those
belonging to the sensorimotor network. Most connections,
especially those between the thalamic and hypothalamic nuclei
and the cortical areas, were diminished during RS. This effect

is also present in resting state connectivity after the stimulation
period. Such a deactivation of resting state connectivity during
task performance has been observed in the default mode network
(DMN) (Shulman et al., 1997; Greicius et al., 2003). Li et al. (2012)
investigated this specific property of the DMN and observed
an enhanced extrinsic connectivity between constituent regions
together with decreased intrinsic self-inhibition within these very
regions. Paradoxically, the combination of both phenomena leads
to the observed deactivation patterns. The authors suggest that
this dynamic results in an increase of the DMN’s sensitivity to
sensory inputs and may optimize distributed processing during
task performance (Li et al., 2012). This principle might be part of
RS modulation in general and is still present in RS connectivity
shortly after the stimulation period.

Whisking is an important tool rodents use to seek for
food or react to a possible thread. To initiate an appropriate
behavior, neural processing of information received from
whisking involves not only sensorimotor areas of the cortex
but also subcortical structures such as hypothalamus (Mogenson
et al., 1980). The strongest modulated structures of the
subcortical network were the right ventromedial thalamus, the
left dorsomedial and the right medial hypothalamus and the right
basolateral amygdala.

The contralateral ventromedial thalamus is part of the
lemniscal pathway that mediates afferent excitatory projections
from whisker to somatosensory cortex (Yu et al., 2006;
Diamond et al., 2008). The hypothalamus is generally involved
in the regulation of metabolic processes and the autonomic
nervous system, the dorsomedial hypothalamus takes part in the
regulation of blood pressure and heart rate (Stotz-Potter et al.,
1996). Thus, its decreased connectivity might be a response to
stress induced by the stimulation. The medial hypothalamus is
part of circuitry involved in motivated, i.e., defensive, behaviors,
Swanson (2000) and Canteras (2002). Lesions in the lateral
hypothalamus profoundly impair the ability to orient to stimuli
on the contralateral side (Marshall et al., 1971). This deficit is
not from motor impairments, but rather a lack of responsiveness
to the stimulus, which indicates a direct connection between
sensory input and the lateral hypothalamus (Marshall et al., 1971;
Northrop et al., 2010). In contrast to the decreased connectivity
between hypothalamus and cortex, the RS connection between
hypothalamus and amygdala (mainly basolateral amygdala) was
strongly enhanced by whisker stimulation. The lateral amygdala
nucleus plays a dominant role in emotional learning and fear
conditioning (Pape and Pare, 2010). It receives sensory inputs
from the cortex and the thalamus (Ledoux et al., 1990), controls
their strength and interferes with the acquisition of fear memory
(Ehrlich et al., 2009).

Our results indicate that resting state modulation due to
sensory stimulation reflects the impression of a prior sensation
and related motor output, but it also involves neuronal circuits
known to serve basic processes like fear conditioning and
emotional learning initiated by the stimulus.

The biological function of resting state networks is not
completely understood, but one hypothesis interprets resting
state connectivity as a functional gate that allows the retention of
prior information and may influence prospective task-dependent
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network recruitment and related behavioral output (Deco and
Corbetta, 2011). The role of resting state networks relating to
human sensorimotor learning and memory consolidation has
been described in this context (Albert et al., 2009; Mazoyer et al.,
2009; Tambini et al., 2010; Gregory et al., 2014). However, its
relevance for emotional learning and conditioning related to
sensory stimuli such as touch or pain should be subject for further
investigation.

CONCLUSION

In this study we introduced a powerful new method to
analyze resting state functional connectivity. The MSRA
approach integrates classical seed based correlation and modern
graph-theory, as well as hypothesis and data driven analysis
(anatomically chosen seed and functionally correlating target
regions). In comparison to two undirected graph-theoretical
approaches, it resembles ICA components best and is
characterized by its high specificity and reproducibility and
less influence from negative correlations. In combination with
an adaptation of the network based statistics to paired samples,
it promises to be a powerful tool to investigate short-term
modulations of sensory stimuli related resting state connectivity
and ultimately impact our understanding of basic brain functions

like fear to higher functions such as learning and memory and
consciousness.
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