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Abstract

Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common
ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts.
Identification and use of this information to improve reaction classification and computational annotation of enzymes newly
discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified
similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes
(non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of
overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products.
For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities
were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of
functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to
the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our
metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the
four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant
mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical
bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show
significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more
stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification
of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that
quantitative measurement of mechanistic similarity can inform approaches for functional annotation.
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Introduction

Using the Enzyme Commission (EC) classification to describe

function [1] and the structure and sequence similarity between

proteins as a measure of homology, numerous works have reported

cases of divergence and convergence of function in enzymes

[2–17]. During divergence of function, gene duplication and

sequence divergence generate functionally different but structurally

related proteins [3–7,18–21]. During convergence of function,

proteins that are product of non-homologous genes, and therefore

not related in sequence or structure, independently evolve to

converge in performing the same (or similar) overall reactions on the

same (or similar) substrates. Convergent evolution was first

described 40 years ago by Wright and colleagues in their article

reporting the crystal structure of subtilisin [22]. As a note in proof, it

was observed that the three hydrogen-bonded catalytic residues in

the active site of subtilisin were also present in the functionally

similar serine protease chymotrypsin [23], leading them to

hypothesize the involvement of the triad in the enzymatic

mechanism of both proteases. This first example of convergence

of active site and catalytic mechanism presaged subsequent findings

that convergence of function in enzymes is widespread. Based in

part on the observation that more enzyme superfamilies have been

identified than enzymatic functions known, some studies have

concluded that in enzymes, convergence of function is more

common than divergence [2,9,10,14]. However, functionally

analogous enzymes have been neglected in most studies, and as

noted by Morris, it is still common to find adjectives such as

‘‘uncanny’’ and ‘‘surprising’’ to refer to the phenomenon of

convergence [24]. As a consequence, several questions about the

catalysis of similar overall reactions by different structural scaffolds

have been poorly studied or not studied at all. Could it be that

unrelated enzymes bind similar substrates carrying the same

functional groups, but the reaction mechanisms vary significantly
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in detail? Or conversely, does the reaction chemistry converge,

while the substrate specificity differs? Quantitatively, how similar or

different are the catalytic mechanisms of functional analogs? Is at

least a key mechanistic step shared among functional analogs? Do

the enzymes have similar active sites? If not, how do different active

sites perform similar overall reactions? Answering these questions

may provide insight into the evolutionary constraints that overall

reactions impose on the enzymes that catalyze them, specifically in

their requirements of catalytic species (amino acid residues, organic

cofactors and metal ions), reaction mechanisms, binding sites, and

ultimately, their tertiary and quaternary structures. This knowledge

could be used in many ways, for instance, to inform functional

annotation of newly determined sequences and structures, and to

select appropriate enzyme scaffolds for engineering new functions.

It also allows us to address whether similarity of enzyme function

according to the EC is reflected in shared reaction strategies, or even

in shared structural characteristics such as active sites, and how the

resulting information could be used to refine definitions in the

current EC classification or propose alternative quantitative

classifications for enzymes.

Recently, interest has reawakened in studying functionally

analogous enzymes [11,25] due in part to the availability of

databases containing information about amino acid residues

(Catalytic Site Atlas, CSA) [26] and metal cofactors (Metal-

MACiE) [27,28] involved in catalysis and the step-by-step reaction

mechanisms of enzymes (MACiE [29,30], SFLD [31,32] and

EzCatDB [33]). Using the catalytic residues annotated in the CSA

[26], evolutionary information from the SCOP database [34], and

a program that compares the positions of residues in protein

structures, Query3d [35], Gherardini and colleagues investigated

whether functionally analogous enzymes have similar active sites

[11]. They found that enzymes catalyzing reactions in 110 out of

the 169 different enzyme commission sub-subclasses (third level of

the EC classification) analyzed in their study belonged to at least

two different SCOP structural superfamilies, i.e. they were

examples of convergence of function. Furthermore, they found

that 24% (26 out of 110) of the sub-subclasses with examples of

convergence of function were catalyzed by at least two non-

homologous enzymes with structurally equivalent active site

residues playing equivalent roles in catalysis (convergence of

active site). They concluded that convergent evolution of active

sites is not a rare phenomenon among functionally analogous

enzymes.

Here, other unanswered questions regarding functionally

analogous enzymes have been addressed. Specifically, we

quantified similarity in bond changes in overall reactions and

reaction steps for 95 pairs of functionally analogous enzymes (non-

homologous enzymes with identical first three numbers of their EC

codes) from the MACiE database. MACiE currently includes 223

reaction mechanisms for enzymes with both a structure deposited

in the PDB [36] and a plausible reaction mechanism published in

the literature [29,30], information we required for this study. To

compare these reactions, we used a method we recently developed

to measure similarity between reactions based on their explicit

mechanisms [37]. For that work, mechanistic steps in enzyme

reactions were coded as sets of bond changes or fingerprints.

Similarity between all possible combinations of steps among every

pair of reactions was calculated using a Tanimoto coefficient [38]

or a normalized Euclidean distance [39], respectively. Reaction

sequences were globally aligned and another Tanimoto coefficient

calculated to describe the similarity of each pair of reactions based

on the aligned steps.

For the present work, we extended our method for comparing

bond changes in pairs of enzymes to consider reversibility of

enzyme reactions, to allow for circular permutation of steps in the

reaction sequences, and to include local alignments (using the

Smith-Waterman algorithm [40]). We first assessed whether the

sub-subclass level of the EC classification, commonly used to

define similarity of enzyme catalytic activity in this and other work,

is indicative of overall reaction similarity for pairs of functionally

analogous enzymes. We then compared the mechanistic steps of

each pair of reactions in the dataset and looked for global and local

alignments of the steps to determine the extent to which similarity

of overall reaction entails similarity of the stepwise reaction

mechanisms that describe each overall reaction. For those pairs of

enzymes with similar overall reactions, convergence to the same

mechanism was found in one third of the examples, with a subset

of these pairs also having at least one identical mechanistic step.

However, the results also indicated that over two-fifths of the EC

sub-subclasses represented in the study contain pairs of enzymes

whose overall reaction similarity is not significantly higher than

that of pairs of non-homologous enzymes sharing two, one or none

of the numbers of their EC codes.

Results

Overview of the Dataset and Methods
The dataset of functionally analogous enzymes was created from

version 2.3.9 of the MACiE database [30]. Ninety-five pairs of

enzymes (a total of 80 of 223 proteins included in MACiE) from

the same sub-subclass level of the EC classification [1], but non-

homologous according to the CATH database [41], were selected

(Table S1). Although this set represents only a small proportion of

the known examples of convergence of function existing in nature,

it broadly samples those enzymes that have been both structurally

and functionally characterized. The dataset contains enzymes

from all EC classes and from 29 of the 190 different EC sub-

subclasses for which there are enzymes of known structure.

Similarly, the enzymes in the dataset represent all four CATH

Author Summary

When species evolve, their genes duplicate and diverge to
allow for adaptation of their functional repertoires to the
changing environment. In this scenario, unrelated genes
can convergently evolve to produce proteins with the
same molecular function, termed ‘‘functionally analogous.’’
A quantitative determination of the reaction similarities
among functionally analogous enzymes could provide
insight about the different structural solutions nature has
used to evolve similar catalysts. Bond changes between
substrates and products, and between successive reaction
intermediates, were used to compare the reactions
catalyzed and the mechanisms of catalysis for 95 pairs of
functionally analogous enzymes. Less than half of the
reactions catalyzed by unrelated enzymes, but defined as
similar by the Enzyme Commission (EC) classification, are
similar in terms of bond changes, suggesting that this
classification often fails to capture quantitative differences
between many enzyme reactions. Furthermore, we ad-
dressed for the first time whether the chemical mecha-
nisms by which similar overall reactions are achieved in
functional analogs are also similar. We conclude that
convergence of reaction is often accompanied by conver-
gence of chemical mechanism. These results will be useful
for classifying enzymes, guiding functional annotation of
newly determined enzyme sequences and structures and
for informing the engineering of enzymes with new
functions.

Reaction Similarity in Analogous Enzymes
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structural classes. To assess the significance of the results, a

background dataset was assembled from all enzymes in MACiE

that were not included in the dataset of functional analogs. Only

one instance of each different EC sub-subclass and CATH code

was maintained, so that pairs of enzymes were not related either

by function or by structure. Thus, similarity of overall reactions

and reaction mechanisms only occurs in the background dataset

because of the limited repertoire of bond types involved in

catalysis, rather than from evolutionary constraints. The back-

ground dataset consisted of 85 proteins (Table S2), forming a total

of 3570 possible pairs of enzymes. Figure S1 plots the distribution

of all currently defined EC sub-subclasses [42] and CATH

superfamilies [41], the fraction of those present in enzymes of

known structure [43], and those present in the dataset and

background dataset.

Overall reaction similarity and mechanistic similarity for each

pair of reactions in the dataset and background dataset were

calculated based on bond change information (Figure 1, see

Methods). Similarity scores for overall reactions were computed as

Tanimoto coefficients between the sets of bond changes describing

the transformation from substrates to products in each pair of

reactions (Figure 1A). For mechanistic similarity, the bond changes

in each individual mechanistic step of one reaction were compared

to bond changes in all mechanistic steps of the other reaction in a

pair using a Tanimoto coefficient (Figure 1B). Then, similarity

scores for each possible combination of steps were stored in a

similarity matrix and the Needleman-Wunsch algorithm [44] was

used to obtain a score based on the best alignment of mechanistic

steps. Finally, a new Tanimoto coefficient was computed based on

the Needleman-Wunsch alignment score and the number of

mechanistic steps in the reactions compared. Reversibility of

reactions and circular permutations of mechanistic steps were

considered explicitly in our calculations. The Smith-Waterman

algorithm [40] was also implemented to look for local alignments

of mechanistic steps (see Methods).

Overall Reaction Similarity
It is commonplace in the literature to consider the EC sub-

subclass (third number in the EC classification) as a description of

the chemistry catalyzed by an enzyme [2,9,11,12,14,45,46]. In

particular, this number specifies the acceptors, donors and groups

that undergo transformation in enzyme reactions such that each

sub-subclass is specific to a class and defines the type of acceptor

(EC 1), other information about the group transferred (EC 2),

nature of the substrate (EC 3, EC 5 and EC 6), or group

eliminated (EC 4), respectively. Therefore, two enzymes in the

same EC sub-subclass are expected to be functionally similar, i.e.

catalyze a similar chemical reaction irrespective of substrate

specificity (see Methods). Using similarity in bond changes to

measure overall reaction similarity, we tested this assumption by

assessing whether or not two enzymes in the same EC sub-subclass

catalyze similar overall reactions. The results show that less than

half of the pairs of reactions in our dataset of functional analogs

share a significant number of bond changes in their overall

reactions (see below). Table S3 provides values for the similarity of

overall reactions for all 95 pairs of functionally analogous enzymes

in the dataset. Figure 2A shows the distribution of overall reaction

similarity scores in the dataset and in the background dataset.

Figure 2B plots F-measures (harmonic mean of precision and

recall, see Methods) and significance levels for all possible

similarity scores, and Figure 2C plots a receiver operating

characteristic (ROC) curve showing the true positive rate

(sensitivity) vs. the false positive rate (1-specificity) for the different

possible similarity scores. The true positive rate is the proportion of

pairs in the dataset that score above a given cutoff similarity score,

and the false positive rate is the proportion of pairs in the

background dataset that score above the same cutoff similarity

score (see Methods).

Based on their EC classifications, one might also expect that the

overall reaction similarities between the 95 pairs of functionally

analogous enzymes in the dataset should be higher than those

similarities that occur between random pairs in the background

dataset. This was true to a certain extent – at every similarity score

the true positive rate was always higher than the false positive rate

(Figure 2C), with the ROC curve resembling more the curve

generated by an ideal classification method than that of a non-

discriminating method. However, as the similarity score decreases,

the enrichment factor (true positives divided by positive examples

expected by random chance) decreases too. This means that the

discrimination between true positives and false positives worsens as

similarity scores get lower. To find an objective optimized cutoff

for the overall similarity score above which there is certainty that

the pairs of enzymes are significantly more similar than those in

the background dataset, we looked at the score that maximizes the

F-measure (Figure 2B, see Methods). The Tanimoto coefficient at

this point was 0.8750 (Figure 2C), and the enrichment factor was

16.99. Using this cutoff, 34.7% (33 out of 95) of the functionally

analogous pairs of enzymes from the dataset were retrieved as

similar by our metric, compared to only 2.0% of those in the

background dataset. This cutoff value was very stringent and all

pairs of enzymes with an overall similarity score equal or higher

than 0.8750 were called ‘‘highly similar.’’ An additional threshold

score was also considered, that where similarity scores were

significant at the 5% level. By allowing this increase in the number

of false positives, the true positive rate increased to 44.2% (42

pairs). The Tanimoto coefficient at this point was 0.5833, and the

enrichment factor was 10.18. The 9 pairs with scores lower than

the F-measure optimized cutoff, but equal or higher than the

cutoff at the 5% significance level were called ‘‘distantly similar.’’

In summary, we observed that only the 33 highly similar and the 9

distantly similar pairs of functionally analogous enzymes shared a

sufficient number of bond changes to allow them to be identified as

statistically significantly different from random pairs of reactions.

Similar and Non-Similar Overall Reactions
Of the 42 pairs of overall reactions for which the similarity was

statistically significant at the 5% significance level, 32 were

identical in terms of bond changes, and seven consisted of a pair of

reactions where the bond changes of one overall reaction were a

perfect subset of the bond changes of the other. There were three

cases where the bond changes in one overall reaction were a subset

of the bond changes in the other, but the reactions were not found

to be significantly similar (pairs M0045 and M0205, M0079 and

M0214, and M0194 and M0206). This was due to one of the

reactions containing #50% as many bond changes as the other

reaction, leading to a decrease in the Tanimoto coefficient below

the 5% significance level. Of the 42 pairs with significantly similar

overall reactions, there were only three pairs where the bond

changes of one reaction were neither identical nor a perfect subset

of the bond changes of the other reaction (M0092 and M0093,

M0112 and M0120, and M0075 and M0200).

In addition to the above 42 pairs, 53 pairs of enzymes had

overall similarity scores lower than those of the top 5% of scores in

the background dataset, and were thus regarded as non-similar.

These pairs of reactions spanned 12 of the 29 EC sub-subclasses

considered (groups 2 and 3 in Table 1, where group 1 consists only

of EC sub-subclasses with similar overall reactions, group 2

consists of EC sub-subclasses with both similar and non-similar

Reaction Similarity in Analogous Enzymes
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Figure 1. Quantification of overall reaction and mechanistic similarity. The reactions catalyzed by alkaline phosphatase (MACiE M0044, EC
3.1.3.1, PDB 1alk) [118–120], and protein-tyrosine-phosphatase (MACiE M0047, EC 3.1.3.48, PDB 1ytw) [121–123] are used as examples. Each reaction
in MACiE is described as an overall transformation (A) and as a sequence of mechanistic steps (B). For measuring reaction similarity, each overall
reaction and mechanistic step is represented as the set of bond changes occurring in the transformation from substrates to products, with c: bond
cleaved, d: bond decreased in order, f: bond formed, and i: bond increased in order. Similarity between sets of bond changes is computed using
Tanimoto coefficients (Tc). (A) Overall similarity is computed as the Tanimoto coefficient between the set of bond changes occurring in the
transformation of substrates to products of the reactions. (B) Mechanistic similarity is computed from a global alignment of the mechanistic steps.
First, Tanimoto coefficients between all possible pairs of steps are stored in a similarity matrix, and then the maximum-match pathway is obtained
using the Needleman-Wunsch algorithm. To obtain the mechanistic similarity a new Tanimoto coefficient is computed using the number of steps in
each reaction and the Needleman-Wunsch alignment score as inputs (see Methods).
doi:10.1371/journal.pcbi.1000700.g001
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reactions, and group 3 consists only of EC sub-subclasses with

non-similar reactions). That is, in the dataset, over two-fifths of the

sub-subclasses defined by the Enzyme Commission included at

least one pair of reactions with an overall similarity score not

significantly higher than those of random pairs of reactions. In

general, there was a good linear correlation between the number

of pairs of enzymes in the EC sub-subclasses and the average

proportion of pairs that were non-similar (R2 = 0.74). This

indicated that according to our metric, EC sub-subclasses that

map to several different structural scaffolds encompass a complex

mixture of overall reactions, and may be better redefined as

separate sub-subclasses. The most dramatic example is that of the

carbon-oxygen lyases acting on phosphates (EC 4.2.3), for which

none of the six pairs of reactions exhibited significant overall

reaction similarity. By contrast, of the 19 sub-subclasses with only

one pair of enzymes in our dataset, 13 had a pair with significant

overall reaction similarity.

EC classes with more than one sub-subclass in the dataset

populated two or three of the groups in Table 1. That is, all EC

classes have sub-subclasses containing similar and non-similar

overall reactions, apart from the ligases for which there is only one

sub-subclass contained in the dataset. Looking at a finer granularity,

we observed that all pairs were significantly similar in all four sub-

subclasses of the hydrolases acting on ester bonds subclass (EC 3.1).

Examples are the overall reactions catalyzed by the carboxylic-ester

hydrolases (EC 3.1.1) (Figure S2). By contrast, both sub-subclasses of

the intramolecular transferases subclass (EC 5.4) had pairs that were

significantly different from each other. We also looked at the bond

changes shared across all members of each sub-subclass to

investigate what bond types were involved (Figure S3). Six of the

seven bond types most commonly involved in enzyme catalysis, i.e.

O-H, C-O, N-H, C-C, C-N, and P-O (1st, 2nd, 3rd, 4th, 5th, and 7th

most common according to [47]) were shared in EC sub-subclasses

with or without significantly similar overall reactions (all groups in

Table 1). Less common bond changes, involving C-H, S-H and C-S

bond types (6th, 8th and 10th most common in [47]) were shared in

EC sub-subclasses in which at least some pairs of overall reactions

were significantly similar (groups 1 and 2 in Table 1). Finally, C-Cl

bond changes (37th most common in [47]) were only catalyzed by an

EC sub-subclass in which overall reactions were significantly similar

(EC 3.8.1 in group 1 in Table 1). Thus, in the dataset, sharing of

rare bond changes alone was a strong indicator of high overall

reaction similarity. The results also suggest that the additional bond

changes associated with less common bond types (e.g. the C-O bond

formation and the O-H bond cleavage that are associated with C-Cl

bond cleavage in the overall reactions in EC 3.8.1) are more

conserved than those associated with more common bond types.

We also observed that the 12 sub-subclasses with non-similar

overall reactions (groups 2 and 3 in Table 1) contained reactions

which were on average larger and more dissimilar in terms of the

Figure 2. Overall reaction similarity. (A) Distribution of overall
similarity scores for pairs of reactions in the background dataset
(Background) and for the functionally analogous pairs in the dataset
(Dataset). (B) F-measures and significance levels for all possible similarity
scores. Selected overall similarity scores are shown within the plot,
including the cutoff for similarity where the F-measure is maximized
(0.8750), and the cutoff at the 5% significance level (0.5833). (C) ROC
curves for the overall similarity scores of pairs of reactions in the dataset
assessed against those in the background (Dataset vs. Background,
AUC = 0.88), for an ideal classification method with no false positives
and no false negatives (Ideal, AUC = 1.00), and for a non-discriminating
classification method (Random, AUC = 0.50). Selected overall reaction
similarity scores are shown within the curves.
doi:10.1371/journal.pcbi.1000700.g002
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Table 1. Summary of results clustered according to overall reaction similarity.

EC sub-
subclass EC sub-subclass definition

Domain combi-
nations PDB-
SprotEC

Domain
combinations
dataset

Pairs in
dataset

Pairs with
similar overall
reaction

Pairs with
similar
mechanism

Pairs with
identical
steps

Group 1: Sub-subclasses containing only highly similar and/or distantly similar overall reactions

1.3.99 Oxidoreductases; Acting on the CH-CH group of donors;
With other acceptors

2 2 1 1 0 0

1.5.1 Oxidoreductases; Acting on the CH-NH group of donors;
With NAD+ or NADP+ as acceptor

9 2 1 1 0 0

2.2.1 Transferases; Transferring aldehyde or ketonic groups;
Transketolases and transaldolases

2 2 1 1 0 0

2.3.3 Transferases; Acyltransferases; Acyl groups converted into
alkyl groups on transfer

2 2 1 1 1 1

2.6.1 Transferases; Transferring nitrogenous groups; Transaminases 4 2 1 1 0 1

3.1.1 Hydrolases; Acting on ester bonds; Carboxylic-ester
hydrolases

13 3 3 3 3 3

3.1.3 Hydrolases; Acting on ester bonds; Phosphoric-monoester
hydrolases

24 3 3 3 1 1

3.1.4 Hydrolases; Acting on ester bonds; Phosphoric-diester
hydrolases

11 2 1 1 1 0

3.1.21 Hydrolases; Acting on ester bonds; Endodeoxyribonucleases
producing 59-phosphomonoesters

10 2 1 1 0 0

3.2.1 Hydrolases; Glycosylases; Glycosidases, i.e. hydrolysing
O- and S-glycosyl compounds

21 2 1 1 1 0

3.5.1 Hydrolases; Acting on carbon-nitrogen bonds, other than
peptide bonds; In linear amides

12 4 6 6 2 1

3.5.2 Hydrolases; Acting on carbon-nitrogen bonds, other than
peptide bonds; In cyclic amides

5 2 1 1 1 1

3.8.1 Hydrolases; Acting on halide bonds; In carbon-halide
compounds

2 2 1 1 0 0

4.1.2 Lyases; Carbon-carbon lyases; Aldehyde-lyases 5 3 3 3 1 0

4.6.1 Lyases; Phosphorus-oxygen lyases; Phosphorus-oxygen lyases 4 2 1 1 0 0

5.1.1 Isomerases; Racemases and epimerases; Acting on amino
acids and derivates

4 2 1 1 0 0

6.3.1 Ligases; Forming carbon-nitrogen bonds; Acid-ammonia
(or amine) ligases (amide synthases)

3 2 1 1 1 1

Group 2: Sub-subclasses containing highly similar and/or distantly similar plus non-similar overall reactions

1.1.1 Oxidoreductases; Acting on the CH-OH group of donors;
With NAD+ or NADP+ as acceptor

11 3 3 1 2 3

2.3.1 Transferases; Acyltransferases; Transferring groups other
than aminoacyl groups

25 4 6 1 0 1

2.4.2 Transferases; Glycosyltransferases; Pentosyltransferases 15 6 15 3 2 4

4.1.1 Lyases; Carbon-carbon lyases; Carboxy-lyases 20 5 10 6 1 1

4.2.1 Lyases; Carbon-oxygen lyases; Hydro-lyases 24 7 21 3 1 3

Group 3: Sub-subclasses containing only non-similar overall reactions

2.1.1 Transferases; Transferring one-carbon groups;
Methyltransferases

14 2 1 0 0 0

2.4.1 Transferases; Glycosyltransferases; Hexosyltransferases 4 2 1 0 0 0

3.2.2 Hydrolases; Glycosylases; Hydrolysing N-glycosyl compounds 6 2 1 0 1 0

3.5.4 Hydrolases; Acting on carbon-nitrogen bonds, other than
peptide bonds; In cyclic amidines

8 2 1 0 0 0

4.2.3 Lyases; Carbon-oxygen lyases; Acting on phosphates 5 4 6 0 0 0

5.4.2 Isomerases; Intramolecular transferases; Phosphotransferases
(phosphomutases)

5 2 1 0 0 0

5.4.99 Isomerases; Intramolecular transferases; Transferring other
groups

6 2 1 0 0 0

doi:10.1371/journal.pcbi.1000700.t001
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number of bond changes than those in the sub-subclasses

containing only similar overall reactions (Table S4). Therefore,

some reactions in these 12 sub-subclasses contain extra bond

changes that render them significantly different from other overall

reactions in the same sub-subclass. To avoid penalizing the sets of

bonds compared for differences in size, each Tanimoto coefficient

was normalized by the maximum possible similarity given the

number of bond changes contained in the reactions compared (see

Methods). The cutoff at the 5% significance level for the

normalized overall similarity scores was 1.0000, and only those

42 pairs where one reaction was a perfect match or a subset of the

other reaction (see above) were considered to be significantly

similar (Table S3). Of those 42 pairs, 39 were already considered

highly or distantly similar according to the original measure of

overall reaction similarity, showing that the extra bond changes

alone are not responsible for the differences we identified in non-

similar overall reactions.

Mechanistic Similarity
To further explore the basis of reaction similarity of functionally

analogous enzyme pairs, we investigated the extent to which

similarity of overall reaction entails similarity of reaction

mechanism. Table S3 provides values for the mechanistic

similarity for all 95 pairs of functionally analogous enzymes in

the dataset, as well as the alignments of reaction steps for each

pair. Figure 3A shows the distribution of mechanistic similarity

scores in the background dataset, in the functionally analogous

dataset, and in the pairs of functional analogs with significant

overall reaction similarity (‘‘filtered dataset’’). Figure 3B plots F-

measures and significance levels for all possible similarity scores.

Figure 3C shows a ROC curve for the mechanistic similarity of

pairs of reactions in the dataset assessed against those in the

background dataset (Dataset vs. Background), and for the filtered

dataset assessed against those in the background dataset (Filtered

Dataset vs. Background). The score where the F-measure was

maximized, which coincides for both the dataset and the filtered

dataset (Figure 3B), retrieved 11 (11.6%) of the pairs in the dataset

and 10 (23.8%) of the pairs in the filtered dataset as similar, but

only 0.95% of those in the background dataset. The Tanimoto

coefficient at this point was 0.3793 and the enrichment factor was

12.16 for the dataset and 25.00 for the filtered dataset. Similar to

the treatment of overall reactions, the pairs with mechanistic

similarity scores equal or higher than this cutoff were called highly

similar. The less stringent cutoff score for mechanistic similarity,

i.e. including all pairs with similarity significant at the 5% level,

was 0.2537. Using this second cutoff, the true positive rate

increased to 20.0% (19 pairs) for the dataset and 33.3% (14 pairs)

Figure 3. Mechanistic similarity. (A) Distribution of mechanistic
similarity scores for pairs of reactions in the background dataset
(Background), for all functionally analogous pairs in the dataset
(Dataset), and for functionally analogous pairs with high overall
reaction similarity (Filtered Dataset). (B) F-measures for the dataset
and filtered dataset, and significance levels at all possible mechanistic
similarity scores. Selected scores are shown within the plot, including
the cutoff for similarity where the F-measure is maximized (0.3793), and
the cutoff at the 5% significance level (0.2537). (C) ROC curves for the
mechanistic similarity scores of pairs of reactions in the dataset assessed
against those in the background (Dataset vs. Background, AUC = 0.76),
for pairs in the filtered dataset assessed against those in the
background (Filtered Dataset vs. Background, AUC = 0.81), for an ideal
classification method with no false positives and false negatives (Ideal,
AUC = 1.00), and for a non-discriminating classification method
(Random, AUC = 0.50). Selected mechanistic similarity scores are shown
within the curves.
doi:10.1371/journal.pcbi.1000700.g003
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for the filtered dataset, and the enrichment factor was 4.25 and

7.08 for the dataset and filtered dataset, respectively. The pairs of

enzymes with mechanistic similarity significant at the 5% level but

below the F-measure optimized cutoff were called distantly similar.

In general, functionally analogous pairs of enzymes, as defined by

identical first three numbers of their EC codes, were more

mechanistically similar than expected from the distribution of

mechanistic similarity in the background, with almost half (14 of

29) of the EC sub-subclasses in the dataset containing at least one

example of convergence of mechanism (Table 1). In total, 20% (19

of 95) of pairs shared significant mechanistic similarity, and this

proportion increased to 33% (14 of 42) for pairs in the filtered

dataset. Thus, at least as represented in the limited dataset

available for this study, nature often converges to the same

mechanistic solution when solving a related chemical problem,

even when the starting templates belong to completely different

structural scaffolds.

Two new features implemented in our algorithm for this study

allowed us to consider reversibility of enzyme reactions and

circular permutations of the steps in the reaction sequences (see

Methods). Circularly permuting the steps of at least one of the

reactions in a pair increased the similarity scores in 47 of the 95

pairs in the dataset. After inspection of all the permutations, we

identified nine reaction mechanisms (M0010, M0043, M0047,

M0049, M0055, M0093, M0097, M0098, M0216) where proton

transfers at the beginning or end of the reaction sequence could be

permuted to the end or beginning, respectively, without altering

the outcome of the catalytic reaction. We therefore allowed the

permutation of steps in these nine reaction mechanisms in our

calculations, which in total accounted for improvements in the

mechanistic similarity in 21 of the 47 possible pairs identified.

Reversing the mechanism of one of the reactions in a pair

increased the mechanistic similarity for 23 pairs, and in a further

28 pairs the same mechanistic similarity was obtained for both the

alignment where the mechanisms were in the direction presented

in MACiE and for the alignment where the direction of one of the

mechanisms was reversed. Overall, the mechanistic similarity for

93 of the 95 pairs in the dataset was maximized when the

mechanisms were aligned in the same direction that maximized

overall reaction similarity. The two pairs that did not follow this

rule (M0022 and M0077, M0054 and M0073) showed neither

significant mechanistic similarity nor significant overall reaction

similarity. After considering reversibility of enzyme reactions and

circular permutation of steps, our classification of four pairs of

enzymes (M0007 and M0093, M0008 and M0091, M0029 and

M0098, and M0092 and M0093) went from mechanistically non-

similar to similar.

Similar and Non-Similar Catalytic Mechanisms
Of the 19 pairs with significant mechanistic similarity, none

were identical in all steps, but for ten pairs the bond changes in all

steps of one reaction were identical to or a subset of the bond

changes in the steps of the other reaction. The remaining 76 pairs

in the dataset had mechanistic similarity scores below the 5%

significance level, and spanned 22 of the 29 EC sub-subclasses

considered (Table 1). At the EC class level, more than half of the

pairs of hydrolases (EC 3) had significant mechanistic similarities,

whereas none of the pairs of the isomerases (EC 5) did. Looking at

sub-subclasses with more than one pair in the dataset, we found

that the carboxylic-ester hydrolases (EC 3.1.1) are the only sub-

subclass where all possible pairs of mechanisms were similar. In

contrast, there were several sub-subclasses with more than one

non-similar pair. The two most striking examples were acyltrans-

ferases transferring groups other than aminoacyl groups (EC 2.3.1)

and carbon-oxygen lyases acting on phosphates (EC 4.2.3). For

each of these two sub-subclasses, none of the six possible pairs of

reactions shared significant mechanistic similarity. The dataset

had only two pairs of enzymes with identical four number EC

codes, corresponding to beta-lactamase {Class A} (MACiE

M0002, EC 3.5.2.6, PDB 1btl) [48–51], and beta-lactamase

{Class B} (MACiE M0016, EC 3.5.2.6, PDB 1bc2) [52]; and 3-

dehydroquinate dehydratase {type I} (MACiE M0054, EC

4.2.1.10, PDB 1qfe) [53], and 3-dehydroquinate dehydratase

{type II} (MACiE M0055, EC 4.2.1.10, PDB 1gu1) [54,55]. Both

pairs of enzymes had identical overall reactions, but only the

former pair (beta-lactamases) had significant mechanistic similar-

ity. It has been reported in the literature that type I and type II

dehydroquinases catalyze the same chemical reaction but by

completely different mechanisms [53,56]. Our algorithm correctly

aligns the C-O bond cleavage common to the sub-subclass, which

is catalyzed in the sixth step of M0054 and in the second step of

M0055 (Table S3). However, type I dehydroquinase catalyzes the

reaction in nine steps, whereas type II does so in only three. This

difference in the number of steps severely diminished the

mechanistic similarity calculated for the pair, and thus they are

classified as non-similar by our metric.

As exemplified above, and in analogy to the dissimilarity in the

numbers of bond changes found for non-similar overall reactions,

sub-subclasses containing non-similar mechanisms included reac-

tions with dissimilar numbers of steps (Table S5). Therefore, some

of the mechanisms of enzymes in the 22 sub-subclasses with

mechanistically non-similar pairs were embellished with extra

steps, and this could explain in part the low mechanistic

similarities calculated by our method. To avoid penalizing pairs

of reactions with disparate numbers of steps, each mechanistic

similarity score was normalized by the maximum possible

similarity that could have been calculated given the number of

steps in the mechanisms compared (see Methods). The cutoff at

the 5% significance level for the normalized mechanistic similarity

was 0.4583; 15 pairs had a score equal to or higher than this

cutoff. Nine of these 15 pairs were considered similar according to

the original (not normalized) measure of mechanistic similarity.

Thus, six new pairs scored highly for mechanistic similarity after

normalization (including the 3-dehydroquinate dehydratases

referred to above), while ten of the 19 pairs that were

mechanistically similar according to the original measure of

similarity were non-similar according to the normalized mecha-

nistic similarity. Thus, additional steps in some reaction mecha-

nisms play a crucial role in their being designated as mechanis-

tically dissimilar according to our measure.

Mechanistic vs. Overall Reaction Similarity
In general, pairs of enzymes from EC sub-subclasses containing

similar overall reactions were more likely to share mechanistic

similarity than those from EC sub-subclasses including non-similar

overall reactions (Table S4). This observation is also in agreement

with the ROC curves for the dataset and filtered dataset in

Figure 3C, the latter of which outperforms the former. Of the 19

pairs of reactions that presented significant mechanistic similarity,

12 had highly similar overall reactions, two had distantly similar

overall reactions, and five had non-similar overall reactions.

Figure 4 plots mechanistic similarity against overall reaction

similarity for all 95 pairs of functionally analogous enzymes and

for all 3570 pairs in the background dataset. Pairs in the

background dataset populated all areas of the plot, whereas pairs

in the functionally analogous dataset almost exclusively populated

the area below the diagonal. Only one pair from the dataset

appeared above the diagonal in Figure 4: phosphoenolpyruvate
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carboxykinase (ATP) (MACiE M0051, EC 4.1.1.49, PDB 1aq2)

[57] and methylmalonyl-CoA decarboxylase (MACiE M0070, EC

4.1.1.41, PDB 1ef8) [58]. These enzymes share an identical step

and highly similar mechanisms, yet the extra phosphorylation

catalyzed by the former enzyme makes the overall reactions non-

similar (Table S3). Thus, for functionally analogous pairs of

enzymes, overall reaction similarity serves as an upper bound on

mechanistic similarity. This is expected since functionally

analogous enzymes are proteins without a common ancestor that

have converged to catalyze a similar overall reaction. In contrast,

in homologous superfamilies of enzymes, conserved active site

residues, organic cofactors or metal ions catalyze at least one

identical catalytic step, even in very different overall reactions

[4–7,19–21]. Thus, homologous superfamilies exhibit significant

mechanistic similarity, but not necessarily significant overall

reaction similarity [59]. This notwithstanding, the higher the

overall reaction similarity attained by a pair of functionally

analogous enzymes, the higher the chances are that the pair also

shows mechanistic similarity. Considering both functionally

analogous and homologous enzymes, it seems that overall reaction

similarity can vary greatly after sequence divergence, with

mechanistic similarity being much more conserved in homologous

superfamilies. A companion study to this one is currently under

way to compare in detail overall reaction and mechanistic

similarities in homologous superfamilies.

Identical Mechanistic Steps
As mentioned above, there is evidence of conservation of at least

one common fundamental mechanistic step among all members in

several homologous superfamilies of enzymes [4–6]. This prompt-

ed us to investigate whether functional analogs have converged to

share at least one catalytic step as well. First, the Smith-Waterman

algorithm [40] was used to search for all possible identical steps

between pairs of reactions in forward and reverse alignments of

mechanistic steps. Sixty-six identical paired steps were identified in

22 pairs of reactions. Then, we looked at how many of these

identical steps were present in the global alignments that maximize

mechanistic similarity between pairs of reactions. Thirty-one of the

66 identical paired steps were identified in 21 of the total 22 pairs

of reactions (Table 1 and Table S3). In all 21 pairs, the identical

step(s) included bond changes common to the overall reactions

catalyzed. Instead, none of the bond changes in the identical step

in the reactions where the step was not included in the best

alignment (M0030 and M0077) were common to the overall

transformation catalyzed by the enzymes. In general, the 31 pairs

of identical steps contained from two to eight bond changes, and

were present in enzymes from 12 of the 29 EC sub-subclasses in

the dataset, spanning all EC classes except the isomerases (EC 5).

The oxidoreductases contained the highest proportion of pairs

with an identical catalytic step (three out of five pairs). In terms of

EC subclasses, the hydrolases acting on ester bonds (EC 3.1) had

the highest proportion of pairs with identical steps (four out of

eight pairs). Six sub-subclasses contained only pairs with at least

one identical mechanistic step. Four of these sub-subclasses

contained only one pair of reactions, and two contained three

pairs each: the oxidoreductases acting on the CH-OH group of

donors with NAD+ or NADP+ as acceptor (EC 1.1.1), and the

carboxylic-ester hydrolases (EC 3.1.1).

Identical mechanistic steps were more likely to occur in pairs of

enzymes from EC sub-subclasses containing similar overall

reactions (Table S4). Because there is a direct correlation between

overall reaction and mechanistic similarity, it is unsurprising that

identical mechanistic steps were also more likely to occur in pairs

of enzymes from EC sub-subclasses containing similar mechanisms

(Table S5). Figure 5 shows a Venn diagram summarizing all

possible combinations of overall reaction similarity, mechanistic

similarity and identical catalytic steps for the pairs of enzymes in

the dataset of functional analogs. Twelve of the 21 identical steps

were found in pairs with similar overall reactions, and of those,

most (10 of 12 identical steps) were also included in pairs of

Figure 4. Mechanistic vs. overall reaction similarity. All 95 pairs in
the dataset of functional analogs and 3570 pairs in the background
dataset are included. Sizes of shapes are not proportional to the
number of pairs they contain.
doi:10.1371/journal.pcbi.1000700.g004

Figure 5. Venn diagram showing combinations of similarity of
overall reaction and mechanism, and identical mechanistic
steps for pairs of enzymes in the dataset. Sizes of shapes are not
proportional to the number of pairs they contain.
doi:10.1371/journal.pcbi.1000700.g005
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enzymes with significantly similar mechanisms. An example of

convergence to the same overall reaction (Figure S2), together with

convergence of mechanisms and identical mechanistic steps

(Figure S4) is offered by the carboxylic-ester hydrolases (EC

3.1.1), represented in the dataset by phospholipase A2 (MACiE

M0083, EC 3.1.1.4, PDB 1l8s) [60,61], 1-alkyl-2-acetylglycer-

ophosphocholine esterase (MACiE M0094, EC 3.1.1.47, PDB

1bwp) [62,63], and triacylglycerol lipase (MACiE M0218, EC

3.1.1.3, PDB 1hpl) [64–67].

Similarity of Active Sites: Residues, Cofactors and Metals
Gherardini and colleagues recently reported [11] on the

structural convergence of sets of catalytic residues in functionally

analogous enzymes in the Catalytic Site Atlas (CSA) [26]. Because

the dataset in MACiE originated from the catalytic residue dataset

of Bartlett and colleagues [68] and the CSA, the results presented

in this prior work can be extended to the dataset studied here (see

Methods). For fifteen of the enzymes in our dataset of functional

analogs, the same enzyme or a homolog was present in the set of

convergently evolved active sites identified by Gherardini et al.

[11]. These enzymes span nine of the 29 sub-subclasses in the

dataset, with three sub-subclasses presenting one or more pairs

(Table S6).

Of the four pairs presenting structurally equivalent active site

residues in the dataset, the two pairs of hydrolases had similar

mechanisms. Phospholipase A2 and 1-alkyl-2-acetylglyceropho-

sphocholine esterase have already been introduced in the previous

section in the context of identical mechanistic steps in the

carboxylic-ester hydrolases (Figure S4). The other pair is that of

N-carbamoylsarcosine amidase (MACiE M0025, EC 3.5.1.59,

PDB 1nba) [69,70] and glutamin-(asparaginase) (MACiE M0029,

EC 3.5.1.38, PDB 1djo) [71]. A convergently evolved catalytic

triad in the former enzyme is responsible for nucleophilic attack by

a cysteine residue on the substrate and for activation of a water

molecule that subsequently displaces the covalently attached

cysteine. In the latter enzyme the triad is instead only responsible

for activation of the water molecule, while an additional triad is

responsible for the nucleophilic attack (by threonine) on the

substrate. This pair of reactions was classified by our method as

highly similar in terms of both overall reaction and mechanism,

and two steps in these reactions also involve identical bond

changes. In contrast, neither of the two pairs of acyltransferases

showed mechanistic similarity. The equivalent histidine residue in

aralkylamine N-acetyltransferase (MACiE M0022, EC 2.3.1.87,

PDB 1b6b) [72] and acyl-[acyl-carrier-protein]-UDP-N-acetylglu-

cosamine O-acyltransferase (MACiE M0069, EC 2.3.1.129, PDB

1lxa) [73,74] acts as a general base in both enzymes, but additional

residues in the former enzyme play additional functional roles not

present in the latter. The equivalent pair of cysteine residues in

formate C-acetyltransferase (MACiE M0030, EC 2.3.1.54, PDB

2pfl) [75–77] and acetyl-CoA-acyltransferase (MACiE M0077, EC

2.3.1.16, PDB 1afw) [78,79] undergo reactions that proceed only

through homolytic chemistry in the former enzyme, but

exclusively through heterolytic chemistry in the latter. In

accordance with this last case, the homologs of formate C-

acetyltransferase and acetyl-CoA-acyltransferase present in the

work by Gherardini and colleagues were used by the authors to

exemplify the scenario where two unrelated enzymes have

convergently evolved active sites but approach the reactions with

different chemical detail [11].

In addition to comparing structural similarities (as defined by

[11]) in the set of catalytic residues used by the functional analogs,

we also compared the usage of metal ions and organic cofactors,

which extend the repertoire of enzyme catalysis by allowing

exploration of chemical space that is not possible using the

canonical amino acid residues [28,47]. In total, in 31 of the 95

pairs of functional analogs both enzymes in a pair do not use

organic cofactors or metal ions, and in a further two pairs, both

enzymes use an identical stoichiometric number and type of metal

ions. For the remaining 62 pairs, the cofactors and metal ions used

by one functional analog are different from those used by the

other. These pairs can be divided into four groups:

N In 41 pairs one of the functional analogs uses metal ions,

whereas the other functional analog does not.

N In eight pairs both enzymes utilize different types and/or

stoichiometric numbers of metal ions.

N In four pairs one enzyme uses an organic cofactor, whereas the

other does not.

N In nine pairs one enzyme in the pair uses metal ions and

organic cofactors, while the other enzyme uses metals only

(three cases), cofactors only (one case), or none (five cases).

Previous studies have implied that convergence of active sites

entails mechanistic convergence [80], yet it has been shown before

[11] and further quantified here that this is not always the case.

Particular active site residues, or groups of residues (dyads and

triads), do indeed relate to particular mechanistic steps. However,

this does not ensure that the remaining steps in a mechanism are

similar, or that the type of reaction chemistries used are identical.

In addition, because we have defined mechanistic similarity based

on bond changes for which only the atoms in catalytic species

(amino acid residues, organic cofactors and metal ions) directly

involved in the bond changes are considered, pairs of mechanis-

tically similar enzymes are allowed to present either the same or

different catalytic species. The results indicate that mechanistic

analogs have converged to perform similar catalytic steps,

sometimes with highly similar active sites as in the cases studied

by Gherardini et al. [11], but more often, as shown in this study,

with different active sites. Thus, in order to perform similar

mechanisms, functionally analogous catalytic species do not have

to be of the same type, or be located in a similar 3D environment.

Discussion

Large-scale studies of convergence of function in enzymes have

been relatively rare despite their potential value for many

applications. In this article, we assessed, for a set of 95 pairs of

enzymes defined by the EC classification system as functional

analogs, the similarity in bond changes of both their overall

reactions and the steps of their mechanisms. Although EC

numbers have been used historically in classification of function

in enzymes, our results indicate that, at least for the limited set of

non-homologous enzymes analyzed here, over half (56%) of the

pairs of enzymes fail to show statistically significant similarities in

their overall reactions. However, of those that do show overall

reaction similarity, one third also showed statistically significant

mechanistic similarity. In the following sections, the implications of

these results are discussed along with suggestions for improved

discrimination in the functional classification and annotation of

functionally analogous enzymes and for the selection of appropri-

ate starting scaffolds for enzyme engineering. The limitations of

this study and some concluding remarks are also presented.

Classification of Enzyme Reactions
The EC system [1] has long been recognized as the gold-

standard for the classification of enzyme reactions with the third

level (EC sub-subclass) considered a description of the reaction
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chemistry. In this work, we found, however, that only 44% of the

reaction pairs in the dataset shared sufficient bond changes in their

overall reactions to make them significantly similar. The lack of

similarity at the sub-subclass level of the EC is global, spanning 12

of the 29 sub-subclasses in the dataset. This suggests that in general

more stringent criteria may be required for classification of the

reactions in EC sub-subclasses so that each designates only those

functional analogs with quantitatively similar overall reactions. We

note, however, that the method used to measure overall reaction

similarity is based on the identification of identical bond changes

in the overall reactions and mechanisms of pairs of enzymes, a

rather conservative approach that may miss more remote

similarities (see Limitations of the Study).

Over the past decade, the Gene Ontology (GO) has been

developed to describe three domains of molecular and cellular

biology, including molecular function [81,82], and to allow large-

scale quantitative comparisons of similarities among terms within

each domain, making it relevant to this discussion as well. For the

catalytic activities of enzymes, the GO is largely based on the EC

classification [Text S1], potentially supporting measurement of

functional similarity among enzymes by measuring similarity

between GO terms. Indeed, several methods have been reported

that measure the similarity between GO terms, including one

based on the minimum distance between distal GO IDs [83],

another using an F-score to measure distance between paths on

probabilistic GO trees [84], and a third based on an ‘‘information

content’’ approach [85]. However, all of these methods accept as

an underlying assumption that the EC and GO classifications

correctly distinguish similar overall reactions from dissimilar ones.

Our results contradict that assumption for a large proportion of

pairs of overall reactions in our dataset (56%), suggesting that these

measurements may not accurately reflect functional similarities

and dissimilarities among the actual reactions catalyzed by

enzymes.

Besides the work reported here, others have described

approaches that explicitly take into consideration the overall

reactions of enzymes [45,46,86–90]. Kotera, Yamanishi and

colleagues [45,46] mapped chemical structure changes in

substrate-product pairs to EC numbers. Structural changes were

described automatically with Reaction Classification (RC) num-

bers by aligning substrate-product pairs and defining the reaction

center, matching ligand structures and those atoms that differ in

the ligand structures. Using Jack-knife cross-validation, they

predicted EC sub-subclasses with high recall and precision for

reactions covering most of the sub-subclasses in their dataset [46].

However, they also showed that EC sub-subclasses related to an

average of about 15 different RC combinations and that some RC

combinations corresponded to more than one EC sub-subclass,

leading them to conclude that there was room for improvement in

the consistency of the EC system [45]. Gasteiger, Sacher and

colleagues [86,87] calculated six physicochemical descriptors for

reacting bonds on substrates to capture all major electronic effects

influencing the reaction. They chose hydrolases for their studies, as

the sub-grouping of this class of enzymes in the EC classification is

based on the type of bond that is hydrolyzed, and thus chemically

meaningful. Using Kohonen self-organizing maps, they found that

classification of reactions based on physicochemical effects largely

corresponds to the EC classification for this class of enzymes

[86,87]; their similarity algorithms also reveal finer details, leading

them also to suggest that the EC classification could be improved

[87]. Finally, Latino and colleagues [88–90] used topological and

physicochemical descriptors to encode substrates and products of

reactions. Structural changes were then represented by the

difference between the descriptors of products and substrates.

Also using Kohonen self-organizing maps, they observed that most

EC sub-subclasses clustered together, but that there are examples

of similarity not revealed by the EC as well as cases of problematic

classifications [88]. By using Random Forest classifiers, they also

predicted the sub-subclass of EC reactions with accuracies up to

85% [90].

An ultimate goal of our work is to develop a classification system

based on mechanistic similarity instead of overall reaction

similarity. However, the time lag between overall reaction

determination and mechanistic studies, and the few mechanistic

studies available compared to the number of enzymatic reactions

that are known, means that classifications based solely on overall

reactions are still needed. The overall reaction similarities

calculated here could thus be useful for refining definitions of

EC sub-subclasses so that only significantly similar reactions are

grouped together. An automated method like that of Kotera,

Yamanishi and coworkers could be used to describe bond changes

of overall reactions. Then, as proposed by our method, Tanimoto

coefficient similarities above a certain cutoff could be used to

generate functionally analogous groups. The generation of smaller,

more tightly defined groups of related reactions may help reduce

the apparently high rate of convergence of function seen

across species and in the sequence and structure databases

[2,8–11,14,15,17], which may in part result from an insufficiently

stringent classification of overall reactions at the sub-subclass level.

Prediction and Annotation of Enzyme Function
Most current methods of function prediction use sequence and

structure relationships as the basis for functional inference [91].

The analyses presented here and those of others suggest the

widespread existence of functional analogy [2,8–11,14,15,17],

indicating that methods other than homology must be used to

annotate convergently evolved enzymes. We are thus obliged to

use orthogonal approaches to function prediction, many of which

use biological information, including operon context [92,93], gene

fusion [94], and phylogenetic profiles [95,96]. Especially relevant

to the issues addressed in this work, Hermann and colleagues have

recently reported the docking of high-energy intermediates to

enzyme structures [97], describing how this procedure led to

prediction of the function of an enzyme of previously unknown

activity [98]. Because this procedure exploits transition state

recognition in enzymes by docking transition-state-like conforma-

tions (high-energy intermediates) instead of the ground-state

structures of substrates, it provides evidence about the possible

mechanism of catalysis. However, high-energy intermediates must

be generated a priori, and initial knowledge about the possible

function of an enzyme is a requirement for this step.

Because our results show that functionally analogous enzymes

can have key mechanistic steps in common, it can therefore be

expected that docking high-energy intermediates (deduced from

known reaction mechanisms) into newly determined or predicted

structures could also be useful for function prediction of analogous

enzymes, not just those identified as homologous to enzymes with

known mechanisms. Furthermore, the mechanistic similarity

measures presented in our previous article [37] and developed

further here could contribute to the identification of appropriate

high-energy intermediates for in silico docking, and for searching

for similarities between these intermediates and those catalogued

by MACiE and SFLD. Although there are currently many more

sequences and structures than known mechanisms for enzymes,

these and other publicly available enzyme databases that include

catalytic mechanisms are growing. As these increase in coverage,

we envision that orthogonal approaches to function prediction

such as docking high-energy intermediates, aided by mechanistic
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information and algorithms to measure reaction similarity, will

improve on the success of current homology-based methods. Even

if sequences or structures cannot be annotated with full

mechanisms, it may still be possible to annotate them with

information on individual catalytic steps, helping to guide future

experimental verification.

Enzyme Engineering
The abundance of cases of functional convergence demonstrates

the ability of nature to reach the same solution to a chemical

problem from different starting structures and active site

architectures. Our results also add support to the conclusion from

previous studies that chemistry has been more conserved than

substrate specificity during evolution [4–7,19–21]. In other words,

the chemistry catalyzed by enzymes is less prone to changes than is

substrate recognition. Thus, in order to engineer a new enzyme

with new catalytic properties, the best starting template would

likely be an extant enzyme that catalyzes a reaction with high

mechanistic similarity to the new desired activity [99]. Our

methods for measuring mechanistic similarity can be used to

identify such templates. Global alignment techniques can support

searches for a template enzyme showing high mechanistic

similarity to those of a desired new reaction, perhaps even for

multiple steps. Alternatively, local alignment searches against a

database of enzyme mechanisms can be used to identify known

enzyme structures and active sites capable of catalyzing the

different individual steps of a target reaction. Then, a consensus

active site could be created by combining elements from different

enzymes, in analogy to the procedure adopted by Jiang and

colleagues for designing retro-aldol enzymes [100].

In support of these possibilities, the MACiE database is already

searchable by mechanistic bond changes. The SFLD implements

structure and substructure searches of reaction mechanisms via

SMILES/SMARTS strings and a reaction drawing application.

Further work is under way in our laboratories to offer a web server

implementing the mechanistic and overall reaction similarity

algorithms presented here. The server will allow users to search for

similar overall reactions and reaction mechanisms, as well as

perform global and local alignments of mechanistic steps with

reaction mechanisms currently present in the MACiE and SFLD

databases.

Limitations of the Study
There are several caveats that should be considered when

assessing the results and observations presented here. First, the size

of the dataset used in this study is small compared to known

examples of convergence of function present in nature. The big

limitation in the size of the dataset arises from the lack of

mechanistic information available for enzymes, which we obtain

from the MACiE database. MACiE only includes enzymes with

structures available in the PDB [36] and for which there is

sufficient evidence for a mechanism in the primary literature.

Thus, the enzymes present in MACiE are a subset of those that

have been amenable to both structural and mechanistic studies,

limiting the extent to which the findings of this study can currently

be generalized to other convergently evolved enzymes. Further-

more, overall reaction and mechanistic similarity in this work are

based upon the descriptions of reactions reported in MACiE, thus,

the results presented here are only as good as the reaction data

contained therein. Of particular interest is that when there are

alternative reaction mechanisms proposed for an enzyme reaction,

only one of the possible reaction sequences is represented in

MACiE. Specifically, 27 of the 223 reactions from the version of

MACiE we used in this study are annotated as having alternative

mechanistic steps for one or several of the steps of the canonical

reaction. Of these 27 reactions, three were included in the dataset

of functional analogs (M0002, M0007 and M0222). Additionally,

there are cases where similar mechanisms in different reactions

differ in the number of steps the authors assign to them, and there

are mechanisms not cited as a stepwise reaction in the literature,

for which step-by-step mechanisms had to be inferred (as is the

case for 1-alkyl-2-acetylglycerophosphocholine esterase presented

in Figure S4) [47]. Regardless of these caveats, MACiE is a

valuable resource for enzyme catalytic mechanisms, and the only

publicly available database suited for the type of analysis presented

here. Despite the complications encountered in characterizing and

storing detailed enzyme mechanisms and the uniformity of

nomenclature needed for analyses such as ours, MACiE provided

us with a dataset whose size seems remarkable, and of the same

order of magnitude as datasets previously collected for analysis of

divergence of function in proteins [7,101]. The fact that all entries

also have known structures allows easier discrimination between

homologous and non-homologous pairs of enzymes. Nonetheless,

a dataset of ninety-five pairs of enzymes is still small and caution is

required in interpreting the results broadly.

Second, overall reaction and mechanistic similarity were

obtained for this study using an entirely automated algorithm

based on bond change information. While this approach allows for

consistency in the way similarity is defined, it is not as well suited

as a manual analysis, such as reported by Gherardini et al., [11]

for discrimination of complex issues associated with the difficult

problem of comparing functional characteristics. For example, the

current algorithm disregards the evident similarities between

related but not identical bond types, e.g. carboxylic-ester

hydrolysis vs. phosphoric-ester hydrolysis. Nor does the algorithm

differentiate between atom types for each element, i.e. a single

bond between an aromatic carbon and chlorine is considered

identical to a single bond between an aliphatic carbon and

chlorine. Moreover, the algorithm does not take into consideration

information regarding the catalytic species that support each

mechanism, apart from the identity of atoms in species that are

directly involved in the bond changes. Thus, in its current form,

the method is very conservative and only defines pairs of overall

reactions or mechanisms as similar where there is an obvious

overlap between identical bond types. As a result, it misses those

examples of similarity that do not fulfill this exquisite requirement,

implemented in this preliminary study in part to avoid retrieving

false positive similarity hits. Future developments of the algorithm

could include more nuanced metrics, e.g., to identify similar

reaction mechanisms occurring in related but not identical bond

types or to differentiate atom types.

A third potential limitation for this study is its reliance on the

CATH database [41] to define a gold-standard set of non-

homologous enzymes. As with any other sequence/structure

classification system, distant evolutionary relationships could have

been missed and some of the examples analyzed here could

represent cases of divergently evolved enzymes rather than

convergently evolved ones. However, databases such as CATH

(and SCOP [34]) represent the state of the art with respect to

identification of evolutionary relationships in proteins.

These caveats must be taken into account in evaluating the

extent to which our results can be generalized to the much larger

set of convergently evolved enzymes that could not be included in

this initial study. However, we note the breadth of the dataset with

respect to its coverage of EC functional classes and of structural

classes most frequently represented in enzymes. Thus, we suggest

that this systematic and quantitative comparison of reaction

similarities in functionally analogous enzymes raises legitimate
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questions for further development of reaction classifications. In

particular, the large proportion of enzymes in the same EC sub-

subclass found to be dissimilar by our metric in both overall

reaction and mechanistic steps indeed suggests the potential value

of refining the EC system so that overall reactions in the same sub-

subclass share at least a sufficient number of bond changes to make

them statistically more similar than random pairs of reactions. As

larger and more comprehensive datasets become increasingly

available, we expect that systematic studies using our metric or

others ([11], for example) will elaborate these themes further.

Conclusions
We investigated the relationship between functional similarity in

enzymes according to the EC classification and similarity of overall

reactions based on the bond changes that occur in the

transformations from substrates to products. The dataset we

compiled only represents a small portion of currently known cases

of convergence of function and thus extrapolation of the results to

a broader context should be interpreted with caution. Using our

metric, less than half of the pairs of enzymes in our dataset showed

significant overall reaction similarity, leading us to conclude that

the EC classification, and by extension catalytic activities in the

Gene Ontology, may not accurately reflect functional similarities

among a large subset of the reactions catalyzed by enzymes. We

also investigated the extent to which overall reaction similarity

implies mechanistic similarity in functionally analogous enzymes

and concluded that in contrast to results reported for studies of

homologous enzyme superfamilies, overall reaction similarity

serves as an upper bound for mechanistic similarity in functional

analogs. Additionally, we found that one third of the pairs with

similar overall reactions converged to similar catalytic mecha-

nisms. The constraints imposed by similar overall reactions, as well

as the limited chemical repertoire used in enzyme catalysis suggests

that functionally analogous enzymes invoke similar strategies for

transition state stabilization along their reaction pathways, often

leading to mechanistic similarity, even in the absence of active site

similarities.

It is difficult to assign in a systematic manner a relative value to

the definitions of reaction similarity used by the EC, compared to

those described in this work, for the many applications requiring

explicit definitions of molecular function in enzymes. The EC

system was created to capture major classes of chemical

transformations at a time when reaction and mechanistic data

were sparse and no quantitative measures of reaction similarity

were available. Thus, the EC likely could benefit from a systematic

and quantitative evaluation of its utility now that these data are

becoming both more extensive and more accessible from MACiE

and other databases. This study was designed to provide just such

an evaluation, using as a metric similarity in bond changes,

validated to the extent possible using a relevant background

model. Ultimately, we expect that the foundation laid in this work

will allow the generation of an improved classification for enzymes

based on quantitative similarities of overall reaction and/or

mechanistic information, thereby improving its usefulness for

functional annotation and other applications and allowing it to

serve as an additional resource for comparison of enzyme

reactions.

Methods

Dataset
EC numbers, overall reactions and catalytic mechanisms for

enzymes were obtained from version 2.3.9 of the MACiE database

in ISIS/Base Reaction Data Format (RDF) [29,30]. Functionally

similar enzymes were identified as those that shared the first three

levels of their Enzyme Commission numbers (identical EC sub-

subclass) [1], so that at least the overall chemistry catalyzed by the

enzymes is similar, regardless of their substrate specificity. Each

group of functionally similar enzymes was then made non-

homologous by randomly selecting only one protein among those

with at least one identical domain in the same superfamily as

defined in CATH version 3.2.0 [41]. At this stage, enzymes that

had not yet been divided by CATH into domains, and chains that

had been divided, but not yet assigned to superfamilies were

removed.

Coverage of the dataset in terms of EC space was analyzed via

downloading the list of EC numbers provided by ExplorEnz [42]

as an XML data file on 29 September 2008. Coverage in terms of

structural space was evaluated using version 3.2.0 of the CATH

database [41]. PDBSprotEC [43] version of 24 September 2008

was used as the reference set of structures in the PDB with EC

numbers assigned. The number of structural domains present in

enzymes of known structure was obtained by assigning all PDB

chains with EC number in PDBSprotEC to CATH superfamilies.

To determine the minimum number of non-homologous domain

combinations that map to each EC sub-subclass in PDBSprotEC,

a two-step procedure was followed. First, the CATH database was

parsed to assign the domains of all the enzymes catalyzing each

EC sub-subclass in PDBSprotEC to superfamilies. Enzymes with

chains not chopped or domains not assigned were not considered.

Then, from each EC sub-subclass, we randomly selected enzymes

and removed all other enzymes with any domains in the same

CATH superfamily as the selected one, thus generating a non-

homologous dataset. The random selection was repeated 500

times, provided the number of selections needed to find the best

solution (x) can be approximated to 2ln(p)/f, where p is the

probability corresponding to the confidence level of having found

the best solution and f is the fraction of all possible selections that

produce the best solution. By setting p = f = 0.01, this formula gives

x<461. The number of domain combinations reported in Table 1

corresponds to the minimum number of combinations obtained

from the 500 selections.

Measuring Overall Reaction and Mechanistic Similarity
In MACiE, each catalytic mechanism is presented as a sequence

of mechanistic steps, with substrates and products of each step

representing probable energetic local minima on the reaction

pathway. We recently developed two methods to quantify

similarity between mechanisms of enzyme reactions [37]: one

based on the bond changes (bonds formed, cleaved and changed in

order) that occur in each step, and one based on a fingerprint that

captures various aspects of each catalytic step. Here, the method

based on bond change information was used. In brief, each

mechanistic step was represented as the set of bond changes

occurring in the transformation from substrate(s) to product(s) in

that step. Then, similarity between sets of bond changes for each

possible combination of steps between two reactions was computed

using Tanimoto coefficients [38] and stored in a similarity matrix.

Based on this similarity matrix, the Needleman-Wunsch algorithm

[44] was used to obtain the best global alignment between steps.

Gap openings and gap extensions are not penalized in the

alignments, since we don’t know how the similarity between

reaction mechanisms has arisen and are thus unable to assess

whether insertion or deletion of steps in a reaction sequence should

or should not be penalized. Finally, to obtain the ‘‘mechanistic

similarity’’ between sequences of steps, a new Tanimoto coefficient

was computed using the number of steps in each reaction and the

Needleman-Wunsch similarity as inputs (Figure 1).
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For the present work four new features were added to the

algorithm:

1. First, we were interested in measuring similarity of overall

reactions. For this purpose Tanimoto coefficients were

computed using the set of bond changes occurring in the

transformation of the substrate(s) to product(s) of the reactions

catalyzed (‘‘overall similarity’’) (Figure 1).

2. Secondly, the Smith-Waterman algorithm [40] was imple-

mented for finding local alignments between mechanistic steps

of reaction sequences.

3. Thirdly, reversibility of enzyme reactions was considered. The

direction in which the reactions occur in vivo is not specified by

the EC system. Instead, all reactions in a given class are stored

in a common direction, even if the direction has not been

demonstrated for all enzymes [1] or if the reaction has only

been observed in the reverse direction [102]. By contrast, in

MACiE, reactions are entered in the direction in which they

are reported in the source literature, which often corresponds

to the in vivo direction, not necessarily the common direction

defined by the EC. Unlike amino acid sequences, enzyme

catalytic reactions are by definition reversible and therefore

inverse similarity [103–107] has to be taken into account.

Reversibility of enzyme reactions was considered explicitly for

both overall reaction similarity and mechanistic similarity. This

was done by inverting the bond changes in each set of bonds

(e.g. a formation of a C-O bond was inverted to a cleavage of a

C-O bond) and by reversing the order of the steps in the

reaction sequences. Each pair of overall reactions and reaction

mechanisms were compared in the direction in which they

appear in the MACiE database (forward direction), and then

we reversed the bond changes of one overall reaction and

reaction mechanism of the pair (reverse direction) and

compared it against the bond changes of the other reaction

in the forward direction. The values reported for overall

reaction similarity and mechanistic similarity correspond to the

highest value obtained between the two possible directions. In

principle, prior to measuring mechanistic similarity, it would

have sufficed to orient the reactions in the common direction

defined by the EC classification, or the direction that

maximizes overall reaction similarity (which only for pair

M0031–M0046 turned out to be different to the common

direction defined by the EC). However, the principle of

microscopic reversibility of enzymatic reactions implies that the

transition states that an enzyme stabilizes in converting

substrates to products are identical to those it stabilizes when

catalyzing the reverse reaction [108]. Thus, it might be possible

for two enzyme reactions to have high overall reaction

similarity when oriented in the common direction assigned

by the EC classification or in the direction that maximizes

overall reaction similarity, but still have high mechanistic

similarity when one of the mechanisms is in the opposite

direction.

4. Fourthly, circular permutations of the steps in the reaction

sequences were considered. All possible circular permutations

of both reaction sequences being compared were generated,

and then all possible combinations between circular permuta-

tions of steps were used to search for mechanistic similarities.

Only those permutations that generated mechanistic similarity

scores higher than those obtained for the original reaction

sequences present in MACiE were manually inspected. Those

circular permutations of steps from/to the beginning to/from

the end of reaction sequences that involved simple proton

transfers and that did not otherwise alter the outcome of

catalysis were only accepted.

In MACiE, 8% of enzyme reactions include steps that either

spontaneously form the enzyme’s substrate from the starting

materials of the overall reaction proposed by the EC classification,

or spontaneously form the products of the EC reaction from an

intermediate generated by the enzyme [47]. The inclusion of the

bond changes in these steps obscures the real similarity between

overall reactions and mechanisms of enzymes and therefore they

were not considered for this study [37,47]. That is, for reactions

containing spontaneous steps, these steps were removed when

measuring mechanistic similarity. Additionally, overall reactions

were re-annotated, so that they did not include the bond changes

that occurred in the spontaneous steps. Furthermore, in the overall

reactions in MACiE, in addition to bonds formed, cleaved and

changed in order, there also exists a fourth type of bond change

called bonds involved, defined as bonds that change stereochem-

istry during the course of an overall reaction. Because these

changes in stereochemistry are always the result of combinations of

the other three types of bond changes, all bonds that change

stereochemistry were removed from the overall reactions, and

replaced with bond formations, bond cleavages and bond order

changes wherever appropriate.

Because we found that reactions with non-similar overall

reactions were dissimilar in their number of bond changes, and

that reactions with non-similar mechanisms were dissimilar in

their number of mechanistic steps, each Tanimoto coefficient was

normalized by the maximum similarity that could be obtained

given the reactions compared. For overall reaction similarity, each

similarity score was divided by the maximum Tanimoto coefficient

that could be obtained comparing the reactions, assuming that at

least all bonds in the reaction with the least bond changes are

identical to bonds in the other reaction. For example, if two overall

reactions containing three and five bond changes are compared,

the maximum similarity that could be obtained between them is

0.6000 (3/[3+523]), and the Tanimoto coefficient obtained for

the similarity between their overall reactions would be divided by

this fraction to obtain the normalized similarity. Likewise, for

mechanistic similarity, each Tanimoto coefficient was divided by

the maximum score that could be obtained, assuming that all steps

in the reaction with the least steps are identical to steps in the other

reaction. Table S3 provides values for overall reaction and

mechanistic similarity before and after normalization.

The set of bond changes for every mechanistic step and overall

reaction used in this work were included in Table S7 in the online

supporting information. Overall reactions from the online version

of MACiE can be accessed directly at URLs of the form: http://

www.ebi.ac.uk/thornton-srv/databases/cgi-bin/MACiE/getPage.

pl?id=M0001. Mechanistic steps from the online version of

MACiE can be accessed directly at URLs of the form: http://

www.ebi.ac.uk/thornton-srv/databases/cgi-bin/MACiE/getPage.

pl?id=M0001.stg01.

Assessing Significance
To evaluate the statistical significance of similarity scores, the

results obtained for the dataset of functionally analogous enzymes

were compared with those for a background dataset. To compose

the background dataset, all enzymes from MACiE version 2.3.9,

excluding the 80 enzymes from the dataset of functional analogs,

were considered. From these 143 enzymes, all those with chains

not chopped by CATH, those with chains chopped but with

domains not assigned to a superfamily, and those without bond

changes in their overall reactions were removed. MACiE entry
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M0201 was also removed, since structural information is only

known for one of its two subunits. The remaining 120 enzymes

were filtered to exclude both functional analogs and structural

homologs. This was achieved by randomly selecting proteins from

the pool of 120 enzymes and removing all other enzymes in the

same EC sub-subclass as the selected one (functional analogs) or

with at least one domain in the same CATH superfamily

(structural homologs). Enzymes continued to be selected at

random from the pool until no enzymes were left.

Pairs in the dataset were considered as positive hits, i.e. those

above a given cutoff similarity score were considered true positives

(tp), and those below false negatives (fn). Concordantly, pairs in the

background dataset were considered as negative hits, i.e. those

above a cutoff similarity score were considered false positives (fp),

and those below true negatives (tn). At every possible value for the

similarity of overall reactions and catalytic mechanisms tp, tn, fp

and fn, were computed and stored in confusion matrices. In order

to obtain an objective cutoff score to best separate hits in the

dataset from those that occur in a random distribution

(background dataset), we selected the score that maximizes the

F-measure, the harmonic mean of precision and recall, defined as

(26Precision6Recall)/(Precision+Recall), where Precision is de-

fined as tp/(tp+fp), and Recall as tp/(tp+fn).

The F-measure has been previously shown to be a good

compromise between sensitivity and specificity [109]. Further-

more, the scores obtained maximizing the F-measure for both

overall reaction and mechanistic similarity in the dataset were

identical to those obtained when maximizing the Matthews

Correlation Coefficient (data not shown), which has also been

proposed as a method for optimizing a cutoff score for the

partition between positive hits and hits in a background

distribution [110]. Because the cutoff that maximized the F-

measure was very stringent, significance at the 5% level was also

considered as an additional threshold score. The similarity of

enzyme pairs from the dataset is said to be significant at the 5%

level when less than 5% of pairs of enzymes in the background

dataset have an equal or higher Tanimoto coefficient. Areas under

the Receiver Operating Characteristic curves (AUC) cited in the

figures were calculated using the trapezium rule.

Similarity of Active Sites
Gherardini and colleagues have recently identified structural

matches between active site residues of functionally analogous

enzymes [11]. In brief, the mean position of the side-chain

centroids of all catalytic residues described in the Catalytic Site

Atlas (CSA) were used to define an active site including all catalytic

residues and all those residues whose side chain centroids were

within 7.5Å of the catalytic ones. Query3D [35] was then used to

identify the largest subset of identical residues in a pair of active

sites that can be superimposed under an RMSD threshold of 1.7Å.

Just functionally analogous pairs of enzymes were analyzed and

only matches that comprised at least one pair of superposed

residues listed as catalytic in the CSA were considered. Of the total

169 EC sub-subclasses present in the version of the CSA they used,

110 included instances of non-homologous enzymes as defined in

SCOP [34]. Of these 110 EC sub-subclasses, 67 were shown to

present pairs of enzymes with at least one matching catalytic

residue. Finally, by inspecting the literature, 26 of these 67 sub-

subclasses were identified as having pairs of enzymes with

structurally equivalent active site residues playing equivalent roles

in catalysis.

Because the enzymes in MACiE used in this study are almost a

perfect subset of the enzymes in the CSA used by Gherardini and

colleagues, the results reported in this previous work can be

applicable to the dataset of enzymes studied here. In total, 78 of

the 80 enzymes in our dataset were also present in version 2.2.2 of

the CSA used in Gherardini et al.’s work. The enzymes present in

our dataset but not in version 2.2.2 of the CSA were NAD+
synthase (MACiE M0200, EC 6.3.1.5, PDB 1kqp) [111–113] and

uroporphyrinogen-III synthase (MACiE M0204, EC 4.2.1.75,

PDB 1jr2) [114–117], both of which are reported in MACiE to

catalyze their reactions without involvement of catalytic residues.

In MACiE and the CSA, catalytic species (amino acid residues,

organic cofactors and metal ions) can be generally divided into two

types [47]: reactants, which undergo change in either charge state

or covalent bonding; and spectators, which exert an electrostatic

or steric effect upon another chemical species that is important for

the reaction to occur, but do not change charge state or covalent

bonding during catalysis. Those residues which only bind the

substrate, but do not influence enzyme activity, are not considered

catalytic.

We used Gherardini at al.’s definitions of active site similarity in

the work reported here. Specifically, correspondences between

PDB codes of MACiE entries used in our work and the PDB codes

from the CSA listed in Table 3 entitled ‘‘Instances of convergent

evolution’’ in Gherardini et al.’s work [11] were identified using

the CSA homolog listings facility in the online version of MACiE

[30]. Information about metal ions and organic cofactors used by

the enzymes in the dataset was obtained directly from the online

version of MACiE, and its sister Metal-MACiE database [27,28].
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