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for Ecological Research, GINOP Sustainable Ecosystems Group, Tihany, Hungary

☯ These authors contributed equally to this work.

* kertesz.miklos@okologia.mta.hu

Abstract

Climate change and land use change are two major elements of human-induced global

environmental change. In temperate grasslands and woodlands, increasing frequency of

extreme weather events like droughts and increasing severity of wildfires has altered the

structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and

the year-to-year differences in precipitation on species composition changes in semi-arid

grasslands of a forest-steppe complex ecosystem which has been partially disturbed by

wildfires. Particularly, we investigated both how long-term compositional dissimilarity

changes and species richness are affected by year-to-year precipitation differences on

burnt and unburnt areas. Study sites were located in central Hungary, in protected areas

characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity.

Data were used from two long-term monitoring sites in the Kiskunság National Park, both

characterized by the same habitat complex. We investigated the variation in species compo-

sition as a function of time using distance decay methodology. In each sampling area, com-

positional dissimilarity increased with the time elapsed between the sampling events, and

species richness differences increased with increasing precipitation differences between

consecutive years. We found that both the long-term compositional dissimilarity, and the

year-to-year changes in species richness were higher in the burnt areas than in the unburnt

ones. The long-term compositional dissimilarities were mostly caused by perennial species,

while the year-to-year changes of species richness were driven by annual and biennial spe-

cies. As the effect of the year-to-year variation in precipitation was more pronounced in the

burnt areas, we conclude that canopy removal by wildfires and extreme inter-annual vari-

ability of precipitation, two components of global environmental change, act in a synergistic

way. They enhance the effect of one another, resulting in greater long-term and year-to-year

changes in the composition of grasslands.

PLOS ONE | https://doi.org/10.1371/journal.pone.0188260 November 17, 2017 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kertész M, Aszalós R, Lengyel A, Ónodi G
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Introduction

In recent years, human-induced global change and its effects on ecosystems have been one of

the most important research topics in ecology [1,2]. As an element of global change, climate

change has major influence on grasslands and grassland-woodland complexes [3,4], altering

their extent, species richness and composition [5,6]. The ecological impacts of climate change

components, i.e. the rise of temperature and changes in precipitation, are the subject of inten-

sive research [7,8]. Among other variables, the distribution of precipitation is one of the most

important regulating factors of ecosystems, especially in arid and semiarid grasslands [9,10].

The year-to-year variation in precipitation can be a dominant driver of species turnover in arid

or semiarid ecosystems [11] because both previous and current year precipitation amounts are

important regulating factors of species diversity and composition in these communities [12].

However, few studies have investigated the relationship between year-to-year species dynamics

and year-to-year differences in precipitation [13].

Land use change is another major component of global change. Introduction and abandon-

ment of crop production, changes in grazing pressure, deforestation and afforestation are key

components of this transformation [14]. In the temperate climate zone, semi-arid grasslands

and woodlands have become more fire-prone in the last decades as an indirect effect of the

land use change and climate change [15–17]. Even in habitats where fire is part of the natural

disturbance regime, its increasing frequency and severity change the composition and pattern

of the mosaic of grassland and woody vegetation [18]. Increasing fire frequency may lead to a

decrease in shrub or wood cover [19]. The effects of fire are studied from several perspectives,

such as resilience of communities to fire, post-fire succession processes, regeneration, or fire as

a management option [20]. The removal of the woody canopy of wood-grassland habitat com-

plexes makes the microclimate warmer [21] and alters the species composition and richness of

the herbaceous layer [22].

In densely-populated areas of Central and Southern Europe, less productive areas have

been left in a semi-natural state, thus, they often serve as biodiversity hotspots in depleted agri-

cultural landscapes. In Hungary, the forest-steppe on sandy soil characterized by juniper and

poplar is a grassland-woodland vegetation mosaic [23], which is relatively less-altered. This

habitat type has high conservation value since it harbors many unique communities and spe-

cies, including several that are endemic [24]. In the last decades, as a consequence of extensive

afforestation of the highly combustible black pine [25], about 50% of the juniper-poplar forest-

steppe had been burnt by wildfires (Kiskunság National Park, unpublished). The increased

number and extent of wildfires have transformed the forest-steppe vegetation to a grassland

habitat. Our previous results showed that in this community, changes in patch types of the

grassland vegetation are more frequent in the fire-made gaps, independent of the time since

fire [26]. We also found that these changes were affected by the amount of precipitation on the

burnt areas. As the year-to year differences are predicted to be more extreme in the future

[27], this raises the question of how precipitation contributes to year-to-year species-level veg-

etation dynamics in burnt and unburnt grasslands.

In this paper, we report on our study of the impacts of wildfires on the long-term changes

in species composition in grasslands of a forest-steppe ecosystem. We aimed to answer two

questions regarding long-term as well as year-to-year vegetation changes and their differences

in burnt and unburnt areas. 1) Does compositional dissimilarity increase with time, and if so,

is this increase different in burnt and unburnt areas? 2) Do year-to-year changes in species

richness depend on year-to-year differences in precipitation, and if so, is this dependence dif-

ferent in burnt and unburnt areas? We studied the above questions in relations to all vascular

plant species, as well as separately for short-lived (i.e. annual and biennial) and long-lived
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(perennial herb and woody) plants. We investigated two discrete sites characterized by the

same habitat complex.

Materials and methods

Study sites

Study sites were located in the Kiskunság National Park, in the Bugac (N 46˚ 39.0’, E 19˚ 36.4’)

and Orgovány (N 46˚ 47.7’, E 19˚ 27.3’) sites of the KISKUN LTER project [28], central Hun-

gary. Kiskunság Nemzeti Park (Kiskunság National Park) provided permission to carry on

field sampling in protected natural areas. The distance between the study sites is 20 km. Eleva-

tion of the study area ranges from 115 to 125 meters in the Bugac site, and from 112 to 121

meters in the Orgovány site. The climate is temperate continental with sub-Mediterranean

effect [29]. The mean annual precipitation is 500–550 mm, and monthly mean temperatures

range between -1.8˚C (January) and 21˚C (July). The soil is calcaric arenosol, formed of coarse

sand with high calcium carbonate (5–10%) and low (<1%) humus content [30]. Study areas

have been protected since 1975 as core areas of the national park, so no agricultural activity

has occurred recently. The main historical human disturbances were extensive grazing by cat-

tle and sheep until the mid-19th century, deforestation of some areas for military purpose dur-

ing the 19th and 20th centuries, and afforestation by alien tree species since the 1950’s [31,32].

The study sites are at the western edge of the Eurasian forest-steppe zone. The potential vegeta-

tion is an edaphic mosaic of open sand grasslands and woodlands [23,30]. Grasslands are co-

dominated by perennial grasses: Festuca vaginata Waldst. & Kit. ex Willd., Stipa pennata L.

Woody vegetation is dominated by juniper (Juniperus communis L.), and poplar species (Popu-
lus alba L., and Populus nigra L.), forming a shrub cover typically three to six meters high. The

woody canopy is often sparse due to historical human disturbances, but can reach a continu-

ous matrix up to approximately 75% cover, as occurred in our study sites. Thus, in the unburnt

areas the grasslands are fragmented into patches, typically between 50 and 500 square meters.

While wildfire events differ in their severity, in this vegetation complex fire always extermi-

nates junipers in the burn areas, usually decreases the cover of the woodland matrix to a maxi-

mum of 10%, and induces the re-sprouting of poplar species. During the secondary succession

process, grassland species and sprouts of poplar species occupy the burnt areas [26,33].

Experimental design and data collection

We compared vegetation composition changes in open sand grassland patches of unburnt for-

est-steppe vegetation and grassland patches of burnt forest-steppe. The latter patches were for-

merly isolated from each other by juniper and poplar woody vegetation. At the beginning of

the study, 21 years after the fire in Bugac, and 2 years after the fire in Orgovány (see Table 1),

we chose grassland patches (ten patches per hectare [26]) in both sites to cover the composi-

tional variation of the grasslands. Although we sampled grassland patches, sprouts of woody

poplar species and young specimens of introduced alien black pine (Pinus nigra F.J.Arnold)

also occurred in the sample.

Table 1. Summary of observation areas.

Site Year of fire Sampled years Area Patch number Quadrat number

Orgovány 2000 2002–2013 Burnt 20 5 x 20

Unburnt 20 5 x 20

Bugac 1976 1997–2011 Burnt 10 5 x 10

Unburnt 10 5 x 10

https://doi.org/10.1371/journal.pone.0188260.t001
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Results from initial years in these study sites were analyzed in Ónodi et al. [26], and the

present research includes the results from additional years (Table 1). In the case of the Orgo-

vány site, which was partially burnt in 2000, 20 grassland patches were selected in both burnt

and unburnt areas. They were sampled annually from 2002 until 2013, providing a chronose-

quence of 2×20 patches for 12 years. For the Bugac site, which was partially burnt in 1976, we

selected 10 patches in burnt areas and 10 patches in unburnt areas, and sampled them annually

since 1997. We analyze the Bugac dataset until 2011, because another large wildfire changed

the vegetation in 2012. Thus for the Bugac site we used a chronosequence of 2×10 patches for a

period of 15 years.

In each patch, five permanent 1×1 m2 quadrats were sampled [26]. In order to track sea-

sonal variation in species composition during the vegetation period, occurrence of vascular

plant species, including annuals, biennials, perennial herbs and woody species, was recorded

in the sampling quadrats twice a year (in late May to early June and in late September to early

October). Presence-absence data were obtained by combining spring and fall recordings in all

five quadrats, which resulted in a single record for each patch for each year. Precipitation data

were collected by regional meteorological stations in Bugac and Fülöpháza (6 km from the

Orgovány site).

Statistical analyses

We investigated the variation in species composition as a function of time using distance

decay methodology [34]. In community ecology and biogeography, distance decay models are

generally used to calculate pairwise dissimilarities of communities in terms of their spatial,

temporal or environmental distances, thus both the dependent and the explanatory variables

are in form of distance matrices. When analyzing temporal gradients, year-to-year variation in

species composition without directional changes can be detected in the form of non-significant

relationships between dissimilarity and distance, i.e. time lag (or time interval). By contrast,

directional long-term compositional change results in a statistically significant slope parameter

of the linear function between dissimilarity and time lag.

Several indices are available for expressing community patterns with pairwise dissimilarities

[35]. We used two indices, one of them sensitive to compositional turnover and one expressing

change in species richness.

For expressing compositional dissimilarity, we used the complement of the simple match-

ing coefficient SM:

1 � SM ¼ 1

�
number of common presence of speciesþ number of common absence of species

total number of species

The total number of species was determined separately for the two sites (see Table 1). Then

1-SM between pairs of samples of different years on the same grassland patch was calculated.

Next, dissimilarities representing the same pair of years were averaged across grassland

patches, separately for the burnt and the unburnt grasslands. These average dissimilarities

were used as a response matrix in the distance decay model. 1-SM is a symmetric measure of

dissimilarity and it can get only non-negative values.

The second index expresses changes in species richness providing valuable information on

negative and positive changes separately. Then, species richness change (RC) was calculated

using the difference in species number between pairs of years.

RC ¼ species number of plot in year 2ð Þ � ðspecies number of plot in year 1Þ
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RC was also averaged for each pair of year across patches, separately for burnt and unburnt

patches.

These two types of distances were used as response variables against three explanatory vari-

ables. The first explanatory variable was the simple temporal distance, or time lag, that is, the

time interval between the samples in a given pair of years. The second explanatory variable

was the difference in precipitation in the growing seasons between the two years: precipitation

of April to September of year two minus precipitation of April to September of year one. The

third explanatory variable was the burning as a binary variable. The following models were

built and tested:

• Dissimilarity (1-SM), as well as differences between dissimilarities in burnt and unburnt

areas, vs. sampling time interval: Mantel test between 1-SM, or 1-SM in burnt area minus

1-SM in unburnt area, and time lag using Spearman correlation coefficient and 9999 number

of unrestricted permutations. This was calculated separately for burnt and unburnt patches,

as well as for the differences, and all pairs of years were involved in this analysis. These rela-

tionships were illustrated by fitting a linear regression line.

• Year-to-year species richness changes (RC), as well as the difference between burnt and

unburnt areas, vs. precipitation change: linear mixed model of RC, on precipitation and

burning as fixed factors and pairs of years as random factor. Only pairs of consecutive years

were included.

All analyses were carried out for three sets of species. In the first case, all species were

counted, 76 species in Orgovány and 62 species in Bugac. Then, long-lived (perennial herbs

and woody species; 50 and 36 species, respectively) and short-lived (annual and biennial; 26

for both sites) species were differentiated and the analyses were carried out for each group.

Calculations were performed using the R statistical software [36] using the ade4 package [37].

Results

Compositional dissimilarity increased with the time intervals between the sampling events in

both areas of both sites (Fig 1 and Section A of Table 2). The gradient of the increase was

higher in burnt than in unburnt areas (see columns ‘Burnt-Unburnt’ of Section A of Table 2).

Burnt areas were more variable and changed more over time than the unburnt areas—see Fig

1 for an example, where their dissimilarities are higher and have steeper gradients. We found

the same results for the subsamples of the long-lived species. However, neither the composi-

tion of the short-lived plants, nor their burnt-unburnt differences changed significantly with

the length of time intervals in the Orgovány site.

We found that the species richness difference between consecutive years significantly

increases with the precipitation difference of those years (Fig 2 and Section B of Table 2). In

the case of burnt patches, the increase is significantly steeper compared to in unburnt patches

(Section B of Table 2, Burnt-Unburnt columns). The subsamples of short-lived species show

the same statistical relationship as the all-species samples. The richness of long-lived species

changed with the year-to-year precipitation difference only in the Orgovány site, and we

found no differences between the burnt and unburnt areas.

Discussion

The two study sites provided similar results regarding year-to-year changes in species richness,

as well as in terms of long-term compositional changes. In our previous study, we found that

open sand grassland patches of low productivity regenerate quickly after wildfires [33], similar

to the results of Knops [38], while the juniper trees, the major woody component in our sites,

Synergistic effects of global change components
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has not regenerated for decades [26]. We did not find post-fire juniper establishments during

this study. This finding is in line with research done in the southwestern United States, where

fire was recommended for the removal of juniper [39,40]. Even the poplar sprouts showed

noticeably limited growth during the 12 or 15 years of the study, as none of them started to

grow to tree in the sampling quadrats. Thus, due to the similarities in the results from the two

sites we conclude that the major factor behind the differences of burnt and unburnt grassland

Fig 1. The compositional dissimilarity as a function of time lag on the two sites. Trend lines for illustrative purpose are fitted for significant

relationships (bold for unburnt, simple line for burnt areas) according to Mantel-tests.

https://doi.org/10.1371/journal.pone.0188260.g001

Table 2. Summary of statistical tests.

variables site Bugac Orgovány

area Burnt Unburnt Burnt-Unburnt Burnt Unburnt Burnt-Unburnt

A) Dissimilarity vs time lag All *** *** *** *** *** **

Long *** *** *** *** *** ***

Short ** ** + + - +

B) Year-to year species richness change vs precipitation difference All *** ** ** *** * **

Long - - - * * -

Short *** ** ** *** * ***

“All”, “Long”, and “Short” refer to all species, long-lived and short-lived species subsamples, respectively. “Burnt-Unburnt” stand for the differences between

the average dissimilarities (Section A) or burning and precipitation difference effects and their interactions on species richness difference (Section B). The

signs show the significance of Mantel test (Section A) or the parameters of the linear mixed model (Section B):

*** p<0.001

** p<0.01

* p<0.05

+ p<0.1

- p>0.1

https://doi.org/10.1371/journal.pone.0188260.t002
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dynamics was the long-term removal of the woody component by the wildfires, which deter-

mined grassland dynamics in the long run.

We found that all grassland areas that were studied changed significantly over a decadal

time span (Fig 1). The burnt areas yielded greater long-term changes than the unburnt areas

(Section A of Table 2, Burnt-Unburnt columns). This significant result in both study sites

shows that the compositional dissimilarity grew faster in the burnt areas. We interpret this dif-

ference to mean that burnt grasslands proved to be more dynamic, which is in line with our

previous result that there were more changes in the patch types of the grassland vegetation in

the burnt areas [26].

The long-lived species consistently showed long-term dynamics, even in the unburnt areas,

and the results for this set of species were the same as the results for all-species samples (Sec-

tion A of Table 2, long-lived species). We found that the short-lived species showed long-term

dynamics in the Bugac site (Section A of Table 2, short-lived species). In contrast, in Orgovány,

the short-lived species did not show long-term dynamics. We assume that in this case, the

short-lived species were permanently present in the seed bank and appeared and disappeared

according to the moisture availability as a short-term environmental filtering agent [41].

Regarding our second question, species richness significantly changed with year-to-year

differences in precipitation at each site (Fig 2). The three largest year-to-year precipitation dif-

ferences since 1900 occurred after 1999, during our study period, in the nearby Kecskemét

Meteorological Station of the Hungarian Meteorological Service (S1 Fig). The close relation-

ship between year-to-year changes in species richness and year-to-year differences in growing

season precipitation underlines the importance of this pattern. Our finding is similar to the

results of Keeley et al. [42] who reported a consistently significant positive precipitation effect

on species richness in a 90-site 5-year Californian shrubland study. However, we found that

year-to-year differences in growing season precipitation caused significantly more changes in

Fig 2. The relationship between year-to-year differences in growing season precipitation and species richness. Trend lines denote significant

(p<0.05) regressions. Bold trend lines stand for unburnt areas, and regular ones for burnt areas.

https://doi.org/10.1371/journal.pone.0188260.g002
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species richness on the bunt areas than on unburnt areas in both study sites (Section B of

Table 2, Burnt-Unburnt columns). Although post-fire vegetation dynamics is well-studied, we

did not find any research explicitly comparing the effect of inter-annual precipitation variabil-

ity on species richness in burnt and unburnt areas. The stronger effect of year-to-year precipi-

tation differences on the burnt vegetation is most likely due to the higher range of temperature

and air humidity in the unshaded patches [43]. Indeed, plant biomass removal by fires or by

other means may contribute to making those stands more open [19] and warmer [21], magni-

fying the effects of drought.

The short- and long-lived species contributed differently to the year-to-year dynamics. In

the case of long-lived species, we found statistically significant year-to-year dynamics only in

the Orgovány site (Section B of Table 2, long-lived species). This difference between Bugac

and Orgovány might be the consequence of the different long-lived species pool; in Orgovány,

some matrix species’ size can considerably change between years, and thus the species can

appear in or disappear from the sampling units. The short-lived species strongly responded to

the year-to-year changes in precipitation. This result is in accordance with the 29-year long

observation of Yan et al. [44] in a dry steppe, who reported higher variability of annual bio-

mass in more dry years and strong correlation between precipitation and annual species rich-

ness. Cleland et al. [13] found that among the grassland experiments of the US LTER

programme, both relative abundance of annuals and year-to-year species turnover increased

with aridity. These findings correspond to the “pulse” behavior of semi-arid or arid grassland

annuals in a “pulse-reserve” paradigm [45] in which] the annuals are adapted to utilize

shorter-term resources to growth and propagation, which in turn may contribute to a reserve

in form of seed bank. We found higher changes of short-lived species richness in the burnt

areas, which might be due to the more extreme microclimate [21,43], as discussed earlier. We

interpret our finding to mean that the “pulse” behavior of the short-lived species is boosted by

the more extreme microclimate of the burnt areas.

Conclusion

We found that compositional changes in decadal time span and year-to-year changes of species

richness are both affected by previous fire events. These interactive effects of burning and sam-

pling time interval or year-to-year precipitation difference can be detected in two separate forest-

steppe stands, one of which burnt decades before and the other two years before the beginning

of the study. The most important decadal change of the two studied burnt areas is that the woody

vegetation component was decreased by wildfires and only poplar species started a slow regenera-

tion. Thus, land use change, and specifically afforestation by black pine, was found to induce indi-

rect changes in the vegetation pattern and microclimate of grasslands in forest-steppe vegetation

via more frequent and severe wildfires. Furthermore, climate change is expected to increase the

incidence of droughts and heatwaves. Thus, these factors of global change, including woody

canopy removal by wildfires and increasing inter-annual variability of precipitation, act in a syn-

ergistic way and result in greater long-term and year-to-year changes in the composition of the

grasslands of forest-steppe. Our results draw attention to the protection of the woody element

of the remaining forest-steppe stands from the effects of the land use change. The damage to the

woody component makes the grassland component more sensitive to precipitation variability,

accelerating the vegetation dynamics, thus may endanger reaching conservation goals.

Supporting information

S1 Fig. The year-to-year differences in precipitation between 1901 and 2015, Kecskemét

meteorological station. The three highest year-to-year differences, i.e. 1999–2000, 2009–2010,
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and 2010–2011, as well as the annual minimum (2003) and maximum (2010) precipitation

occurred during our study period of 1997–2013.

(TIF)

S1 Dataset. Vegetation data from Bugac and Orgovány sites. Plant names are used accord-

ing to The Plant List (Version 1.1. Published on the Internet. 2013. Available: http://www.

theplantlist.org/).

(XLSX)

S2 Dataset. Seasonal precipitation data from Bugac and Fülöpháza meteorological sta-

tions. Fülöpháza data were used for Orgovány site, 6 km from the meteorological station.

(XLSX)
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References
1. Vitousek PM. Beyond global warming: ecology and global change. Ecology. Wiley Online Library; 1994;

75: 1861–1876.

Synergistic effects of global change components

PLOS ONE | https://doi.org/10.1371/journal.pone.0188260 November 17, 2017 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188260.s002
http://www.theplantlist.org/
http://www.theplantlist.org/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188260.s003
https://doi.org/10.1371/journal.pone.0188260


2. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terres-

trial ecosystems. Ecol Lett. 2008; 11: 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x

PMID: 19062363

3. Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO. Impact of climate change on grassland pro-

duction and soil carbon worldwide. Glob Chang Biol. Wiley Online Library; 1995; 1: 13–22.

4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global overview

of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol

Manage. Elsevier; 2010; 259: 660–684.

5. Accatino F, De Michele C, Vezzoli R, Donzelli D, Scholes RJ. Tree-grass co-existence in savanna:

Interactions of rain and fire. J Theor Biol. Elsevier; 2010; 267: 235–242. https://doi.org/10.1016/j.jtbi.

2010.08.012 PMID: 20708629

6. Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB. Additive effects of simulated climate

changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci. National

Acad Sciences; 2003; 100: 7650–7654. https://doi.org/10.1073/pnas.0932734100 PMID: 12810960

7. Jentsch A, Kreyling J, Beierkuhnlein C. A new generation of climate-change experiments: events, not

trends. Front Ecol Environ. Wiley Online Library; 2007; 5: 365–374.

8. Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, et al. Precipitation manipu-

lation experiments—challenges and recommendations for the future. Ecol Lett. Wiley Online Library;

2012; 15: 899–911. https://doi.org/10.1111/j.1461-0248.2012.01793.x PMID: 22553898

9. Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, et al. Productivity is a poor pre-

dictor of plant species richness. Science (80-). 2011; 333: 1750–1753. https://doi.org/10.1126/science.

1204498 PMID: 21940895

10. Jones SK, Collins SL, Blair JM, Smith MD, Knapp AK. Altered rainfall patterns increase forb abundance

and richness in native tallgrass prairie. Sci Rep. Nature Publishing Group; 2016; 6: 20120. https://doi.

org/10.1038/srep20120 PMID: 26830847

11. Xia Y, Moore DI, Collins SL, Muldavin EH. Aboveground production and species richness of annuals in

Chihuahuan Desert grassland and shrubland plant communities. J Arid Environ. Elsevier; 2010; 74:

378–385.

12. Dudney J, Hallett LM, Larios L, Farrer EC, Spotswood EN, Stein C, et al. Lagging behind: have we over-

looked previous-year rainfall effects in annual grasslands? McCulley R, editor. J Ecol. Wiley Online

Library; 2016; 105: 484–495. https://doi.org/10.1111/1365-2745.12671

13. Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, et al. Sensitivity of grassland

plant community composition to spatial vs. temporal variation in precipitation. Ecology. Wiley Online

Library; 2013; 94: 1687–1696. PMID: 24015513

14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land

use. Science (80-). American Association for the Advancement of Science; 2005; 309: 570–574. https://

doi.org/10.1126/science.1111772 PMID: 16040698

15. McKenzie D, Gedalof Z, Peterson DL, Mote P. Climatic change, wildfire, and conservation. Conserv

Biol. Wiley Online Library; 2004; 18: 890–902.

16. Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, et al. Climate change and dis-

ruptions to global fire activity. Ecosphere. Ecological Society of America; 2012; 3: 1–22. https://doi.org/

10.1890/ES11-00345.1

17. Pitman AJ, Narisma GT, McAneney J. The impact of climate change on the risk of forest and grassland

fires in Australia. Clim Change. 2007; 84: 383–401. https://doi.org/10.1007/s10584-007-9243-6

18. Peterson DW, Reich PB. Fire frequency and tree canopy structure influence plant species diversity in a

forest-grassland ecotone. Plant Ecol. Springer; 2008; 194: 5–16.

19. Bond WJ, Keeley JE. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems.

Trends Ecol Evol. 2005; 20: 387–394. https://doi.org/10.1016/j.tree.2005.04.025 PMID: 16701401
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vár Alapı́tvány kiadó; 2003.
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