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3D-QSAR approach has been widely applied and proven to be useful in the case where no reliable crystal structure of the complex
between a biologically active molecule and the receptor is available. At the same time, however, it also has highlighted the sensitivity
of this approach. The main requirement of the traditional 3D-QSAR method is that molecules should be correctly overlaid in what
is assumed to be the bioactive conformation. Identifying an active conformation of a flexible molecule is technically difficult. It
has been a bottleneck in the application of the 3D-QSAR method. We have developed a 3D-QSAR software named AutoGPA
especially based on an automatic pharmacophore alignment method in order to overcome this problem which has discouraged
general medicinal chemists from applying the 3D-QSAR methods to their “real-world” problems. Applications of AutoGPA to
three inhibitor-receptor systems have demonstrated that without any prior information about the three-dimensional structure of
the bioactive conformations AutoGPA can automatically generate reliable 3D-QSAR models. In this paper, the concept of AutoGPA
and the application results will be described.

1. Introduction

There are two major types of in silico drug discovery tech-
niques: structure-based and ligand-based techniques. Quan-
titative structure-activity relationship (QSAR) approach only
based on biological activities and chemical structures of a
series of molecules with the modest biological activities is
one of the ligand-based techniques. The QSAR approach
explicitly considering three-dimensional shape of molecules
is called 3D-QSAR. The CoMFA method proposed by
Cramer et al. [1] is one of the 3D-QSAR approaches which
has been widely applied and proven that the 3D-QSAR
approach is better than the traditional QSAR one. The
CoMFA method is based on the idea that biological activity
can be analyzed by relating the shape-dependent steric and
electrostatic field of molecules to their biological activity.

The results of a 3D-QSAR depend on a number of fac-
tors, each of which must be carefully considered. One of

the most important considerations involves the selection of
biologically active conformations and their alignment prior
to the analysis. This may be relatively straightforward when
one is working with a congeneric series of compounds that
all have some key structural features that can be overlaid. For
example, the original CoMFA paper [1] examined a series
of steroid molecules which can be overlaid easily using the
rigid steroid nucleus. In most cases, however, molecules of
interest for drug discovery have flexible structural features
and overlaying them objectively is not easy.

Expansion of the possibility of the 3D-QSAR is highly
important to substantially promote many drug discovery
projects where obtaining reliable X-ray structures of com-
plexes between the active molecule and the relevant receptor
is technically difficult. We have developed an automated 3D-
QSAR method named AutoGPA in order to solve the above-
mentioned difficult problem practically and make the 3D-
QSAR easier to use by ordinary medicinal chemists.
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Figure 1: The process of developing AutoGPA models.

A pharmacophore is defined as an ensemble of steric and
electronic features that is necessary to ensure the optimal
supramolecular interactions with a specific biological target
and to trigger (or block) its biological response. Since biolog-
ically active molecules for the same active site should share
the common interactions at the site, their active conforma-
tions should possess common three-dimensional arrange-
ments of pharmacophores. It is hoped that the geometries
of pharmacophore features common to many of the actives
will contain information related to the important interac-
tions between the bound conformations of the actives and
the receptors. Therefore, it is naturally expected that the
selection of the active conformations and overlaying them
can be undertaken objectively by searching the arrangement
of pharmacophore features that induce good overlay of the
most active molecules. In AutoGPA, pharmacophores in a
set of molecules with biological activities are fully exploited
to find the conformations closely related to their biological
activities and overlay them.

Applications of AutoGPA to three inhibitor-receptor sys-
tems have demonstrated that AutoGPA can automatically
generate reliable 3D-QSAR models from the 2D chemi-
cal structures and the biological activities of sets of the
inhibitors.

2. Method

The software AutoGPA was coded by Scientific Vector Lan-
guage implemented in Molecular Operating Environment
(MOE) [2]. The process of AutoGPA is illustrated in Figure 1.

2.1. Pharmacophore-Based Alignments of Molecules. A func-
tion named conformation import implemented in MOE
was applied to generate possible conformations with low
strain energy for each molecule. The molecular mechanics
setting using MMFF94x [3] force field with generalized Born

solvation model [4] was applied. Typical pharmacophore
features such as hydrogen bond acceptor, hydrogen bond
donor, hydrophobic area, and positively and negatively
ionized areas are assigned to each conformation. The three-
dimensional arrangements of the pharmacophore features
are compared for a set of biologically active molecules
and the common 3D arrangements of pharmacophore
features (hereafter pharmacophore queries) are extracted.
The pharmacophore queries are used for selection of the
conformations and their alignment prior to the 3D-QSAR
modeling. The function named pharmacophore elucidation
implemented in MOE can exhaustively search for all phar-
macophore queries that induce good overlay of most of the
active molecules and distinguish actives from inactives. This
function is suitable for our purpose and is implemented
in AutoGPA. Pharmacophore elucidation normally gives
multiple possible alignments. Appropriate pharmacophores
induce good alignment of the active molecules. Alignments
are scored according to atomic overlap [5].

2.2. Building of 3D-QSAR Models. The algorithm of the com-
parative molecular field analysis (CoMFA) [1] is employed
to develop 3D-QSAR models. Hydrogen atoms are added
to all conformers of the molecules and the partial charges
for all atoms are evaluated using the MMFF94x force field.
A regular three-dimensional grid with a 2.0 Å separation
surrounding all of the molecules is created. A “probe atom”
is placed at each intersection grid point. An sp3 carbon atom
with charge +1.0 is used as the probe atom. Molecular fields
around each molecule are evaluated by calculating the elec-
trostatic (Coulombic, with a 1/r dielectric) and steric (van
der Waals 6–12) interaction energies between the molecule
and a series of probe atoms placed at each grid point. The
potential energy in kcal/mol is assigned to each grid point
and a set of the grids is designated as a grid potential model
in this paper. Wherever the probe atom experiences a steric
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repulsion greater than +30 kcal/mol, the relevant grid point
is discarded from consideration. Other grid points named
scoring grids are used to develop 3D-QSAR models.

The partial-least-squares analysis is used to derive the
3D-QSAR models. The optimal number of components up
to ten is identified by leave-one-out cross-validation. Each
alignment yields the corresponding grid potential model and
the cross-validated r2(q2). The set of pharmacophore model
and the grid potential model that gives the best q2 value is
saved as an AutoGPA model for each alignment.

3. Results and Discussion

PDK1 is a promising target for developing anticancer drugs.
Islam et al. have reported the inhibitory activities against
PDK1 of 70 indolinone-based molecules [6, 7]. Using the
chemical and biological data, Abdul-Hameed et al. have
developed good CoMFA models [8]. They used the con-
formation of an inhibitor bound to PDK1 in the crystal
structure (PDB ID: 2PE2) [7] of the complex between
the inhibitor and PDK1 as a template for alignment of
molecular structures. It means that they restricted the
bioactive conformation from the beginning. In “real-world”
situations, however, high-quality crystal structure of the
complex between an active molecule and the target protein is
not always available and identification of the bioactive
conformation is usually extremely difficult. Practically this
difficulty has severely limited the applicability of CoMFA and
the objectivity of the results obtained. On the contrary, Auto-
GPA models can be obtained without prior knowledge of
the three-dimensional molecular structures of the bioactive
conformations. The greatest merit of AutoGPA lies in the fact
that reasonably reliable 3D-QSAR models can be automati-
cally obtained from a set of molecules with a suitable range
of biological activities. It is interesting to compare the 3D-
QSAR models obtained by CoMFA and AutoGPA.

The dataset was separated into a training set for which
AutoGPA models are derived and a test set that will prove
the external predictivity of the resulting models. For
comparison with the results by Abdul-Hameed et al. by
CoMFA, we adopted the same training and test sets as they
used. Representative molecules in the training and test
sets are given in Figure 2 together with their pIC50 values.
The molecules in the test set are asterisked. All molecules
share a common chemical skeleton. Ten different AutoGPA
models were generated and the results are summarized in
Table 1. The statistics of the CoMFA model is also shown
for comparison. In this table, various parameters that can
assess the appropriateness of the models are given. The
statistical parameters of the best model in terms of the cross-
validated correlation coefficient (q2) suggest that this model
is reasonable and should have a good predictive ability.
The q2 and r2 values are significantly higher and the mean
squared error is significantly lower than those obtained for
the CoMFA model. It is noteworthy that the AutoGPA model
can also suggest the pharmacophores which are essential
for ligand binding at the binding site of the expected target
protein. The best AutoGPA model indicates that there are

Table 1: Statistics of ten AutoGPA models based on the training set.

Model Overlap PH4 NOC Grids MSE r2 q2

1 46.91 RRRd 6 28 0.092 0.923 0.760

2 46.45 RRHa 7 16 0.141 0.882 0.731

3 46.44 RRHd 4 28 0.214 0.821 0.724

4 46.83 RRda 4 22 0.174 0.854 0.695

5 46.91 RRRa 4 17 0.218 0.818 0.675

6 46.84 RRHd 3 21 0.252 0.789 0.661

7 46.27 RHda 4 25 0.201 0.832 0.660

8 46.49 RRda 3 19 0.233 0.805 0.650

9 46.92 RRRd 3 26 0.249 0.791 0.626

10 46.41 RHda 5 19 0.192 0.839 0.612

CoMFA∗ — — 5 — 0.354 0.907 0.737

Overlap: atomic overlapping score in pharmacophore-based alignment.
PH4: pharmacophore feature labels; R: aromatic or π-ring center,
H: hydrophobic, d: projected donor, a: projected acceptor.
NOC: number of components.
Grids: number of grid points for QSAR model.
MSE: mean squared error.
r2: correlation coefficient.
q2: predictive coefficient in leave-one-out cross-validation.
∗The CoMFA model obtained by Abdul-Hameed et al. [8].

three aromatic or π ring centers, and a hydrogen donor.
Such information about pharmacophore features at the
binding site is helpful to grasp the chemical characteristics
of bioactive molecules. In Figure 3(a), the alignment of the
conformations of the molecules in the training set is shown
together with the pharmacophore features. Three aromatic
or π ring centers agree nicely to the corresponding three
rings in the conformations. The satisfactory overlay clearly
indicates that AutoGPA can successfully identify the bioactive
conformation and the molecular alignment objectively in
this case. In Figure 3(b), the molecular fields obtained by
AutoGPA are depicted by steric and electrostatic contour
maps. The conformation of molecule 35 is also shown in
Figure 3(b). The combination of pharmacophore features
and the grid potentials gives us an image of the characteristics
of the binding site. In Figure 3(c), the molecular interactions
observed in the crystal structure of the complex between
molecule 35 and PDK1 [6] are illustrated. The pharma-
cophore features and the grid potentials generally correspond
to the experimentally observed interactions. The projected
hydrogen donor feature (Don2) shown in Figure 3(a)
obviously corresponds to Ser160. The red polyhedra located
over the urea group accept the approach of Lys111 and
Thr222. The significant green polyhedron corresponds to the
open space observed in the crystal structure of the complex.

The best AutoGPA model with a q2 value of 0.760 was
further validated by use of an external test set of 14 mole-
cules. Since the biological activities of all the conformations
which satisfy both the pharmacophore and grid potential
models are evaluated in AutoGPA, multiple predicted values
are assigned for each molecule. In this study, the maximum
value is adopted as the predicted activity for each molecule.
The correlations between observed and predicted pIC50

values are depicted in Figure 4. The best AutoGPA model
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Figure 2: Chemical structures and the pIC50 values of PDK1 inhibitors used for validation of AutoGPA. The molecules used for a test set
are asterisked, and other molecules are used for a training set.

predicts adequately the biological activities of molecules not
included in the training set. The rpred2 value of 0.811 attained
is almost identical to that of 0.812 obtained by the CoMFA
model. Despite the fact that no prior knowledge about the
three-dimensional structure of the active conformation is
employed to develop the 3D-QSAR model, the predictive
ability of AutoGPA is highly satisfactory.

Additional two 3D-QSAR studies were undertaken to
assess the performance of AutoGPA. The results will be
concisely described below. The first study is on inhibitors

of epidermal growth factor receptor (EGFR). Pasha et al.
[9] developed 3D-QSAR model by CoMFA and CoMSIA.
In this study, the X-ray structure of EGFR was used to
obtain best-fit docking-based 3D-QSAR model. 46 and 12
molecules were used for training and test sets, respectively.
The docked geometry-based CoMFA and CoMSIA models
gave q2 of 0.66 and 0.59, respectively, for the training set. For
the test set, r2 were 0.72 and 0.63, respectively. Although the
AutoGPA model has given q2 of 0.564 that is lower than those
obtained by CoMFA and CoMSIA, r2 of 0.768 is better than
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Figure 4: Plots of the experimental versus predicted pIC50 values
using the training set of 56 molecules and the test set of 14 mole-
cules.

those obtained by CoMFA and COMSIA. Judging from the
fact that AutoGPA used no three-dimensional information of
the receptor in the analysis, the result indicates that AutoGPA
gave a reasonably good 3D-QSAR model. The second study
is on inhibitors of human dihydrofolate reductase (DHFR).
Dixon et al. [10] introduced the software named PHASE
and developed a 3D-QSAR model for a set of human DHFR
inhibitors. Since PHASE is based on identification of
common pharmacophore among active molecules and does
not require experimentally determined three-dimensional
structures of both ligands and receptors, it is conceptually
similar to AutoGPA. They used training and test sets which
comprise of 20 and 57 molecules, respectively. The q2 value
for the training set and the r2 value for the test set are
0.932 and 0.492, respectively. The corresponding values
obtained by AutoGPA are 0.910 and 0.500, respectively. The
correlation coefficients obtained by PHASE and AutoGPA
are only marginally different. However, the numbers of
molecules ranked high are significantly different. Six
molecules of the top 10 active molecules were predicted
in the top 10 by AutoGPA, but only three active molecules
were predicted in the top 10 by PHASE. In addition, the
best molecule with the experimental pIC50 value of 8.57
was ranked 24 and 42 by AutoGPA and PHASE, respectively.
These results obviously indicate that AutoGPA is relatively
superior to PHASE in the prediction ability.

In addition to PHASE, various ligand-based approaches
employing pharmacophoric hypotheses have been reported
in the literatures [11, 12]. Since in these approaches several
different computer programs are used in combination, rather
complicated tasks are required and relatively deep knowledge
and experience on 3D QSAR are essential. On the contrary,
the great merit of AutoGPA is that researchers, even novices

on 3D QSAR, can obtain the comparable 3D QSAR only
from a dataset of compounds with the chemical structures
and the biological activities by executing a practically single
job.

4. Conclusions

The present study has clearly shown that AutoGPA can
develop reliable 3D-QSAR models without prior knowledge
about the three-dimensional structure of bioactive confor-
mations. The results obtained for three inhibitor-receptor
systems have demonstrated that AutoGPA can substantially
resolve the problem of objective identification of bioactive
conformations and their alignments that has severely limited
the application of 3D-QSAR method such as CoMFA so far.
Since prerequisite of AutoGPA is only a set of 2D structures
of inhibitors with their biological activities, the analysis can
be undertaken almost without human intervention. It is
highly expected that AutoGPA can be practically applicable
to various “real-world” drug discovery projects.

Acknowledgment

This work was partly supported by Grant-in-Aid for Scien-
tific Research on Innovative Areas (22133012) from MEXT
(Ministry of Education, Culture, Sports, Science and Tech-
nology) for N. Hirayama.

References

[1] R. D. Cramer, D. E. Patterson, and J. D. Bunce, “Comparative
molecular field analysis (CoMFA). 1. Effect of shape on bind-
ing of steroids to carrier proteins,” Journal of the American
Chemical Society, vol. 110, no. 18, pp. 5959–5967, 1988.

[2] “Molecular Operating Environment (MOE),” Chemical Com-
puting Group Inc., 2010.

[3] T. A. Halgren, “MMFF VI. MMFF94s option for energy mini-
mization studies,” Journal of Computational Chemistry, vol. 20,
no. 7, pp. 720–729, 1999.

[4] M. Wojciechowski and B. Lesyng, “Generalized Born model:
analysis, refinement, and applications to proteins,” Journal of
Physical Chemistry B, vol. 108, no. 47, pp. 18368–18376, 2004.

[5] P. Labute, C. Williams, M. Feher, E. Sourial, and J. M. Schmidt,
“Flexible alignment of small molecules,” Journal of Medicinal
Chemistry, vol. 44, no. 10, pp. 1483–1490, 2001.

[6] I. Islam, J. Bryant, Y.-L. Chou et al., “Indolinone based phos-
phoinositide-dependent kinase-1 (PDK1) inhibitors. Part 1:
design, synthesis and biological activity,” Bioorganic and Medi-
cinal Chemistry Letters, vol. 17, no. 14, pp. 3814–3818, 2007.

[7] I. Islam, G. Brown, J. Bryant et al., “Indolinone based phos-
phoinositide-dependent kinase-1 (PDK1) inhibitors. Part 2:
optimization of BX-517,” Bioorganic and Medicinal Chemistry
Letters, vol. 17, no. 14, pp. 3819–3825, 2007.

[8] M. D. M. Abdul-Hameed, A. Hamza, J. Liu, and C. G. Zhan,
“Combined 3D-QSAR modeling and molecular docking study
on indolinone derivatives as inhibitors of 3-phosphoinositide-
dependent protein kinase-1,” Journal of Chemical Information
and Modeling, vol. 48, no. 9, pp. 1760–1772, 2008.

[9] F. A Pasha, M. Muddassar, A. K. Srivastava, and S. J. Cho, “In
silico QSAR studies of anilinoquinolines as EGFR inhibitors,”



International Journal of Medicinal Chemistry 9

Journal of Molecular Modeling, vol. 16, no. 2, pp. 263–277,
2010.

[10] S. L. Dixon, A. M. Smondyrev, E. H. Knoll, S. N. Rao, D. E.
Shaw, and R. A. Friesner, “PHASE: a new engine for pharma-
cophore perception, 3D QSAR model development, and 3D
database screening: 1. Methodology and preliminary results,”
Journal of Computer-Aided Molecular Design, vol. 20, no. 10-
11, pp. 647–671, 2006.

[11] F. Manetti, S. Schenone, F. Bondavalli et al., “Synthesis and 3D
QSAR of new pyrazolo[3,4-b]pyridines: potent and selective
inhibitors of A1 adenosine receptors,” Journal of Medicinal
Chemistry, vol. 48, no. 23, pp. 7172–7185, 2005.

[12] A. Tafi, C. Bernardini, M. Botta et al., “Pharmacophore based
receptor modeling: the case of adenosine A3 receptor antag-
onists. An approach to the optimization of protein models,”
Journal of Medicinal Chemistry, vol. 49, no. 14, pp. 4085–4097,
2006.


	Introduction
	Method
	Pharmacophore-Based Alignments of Molecules
	Building of 3D-QSAR Models

	Results and Discussion
	Conclusions
	Acknowledgment
	References

