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Abstract

The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body
involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver
is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within
apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that
cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with
a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was
developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver
must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol
derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely
recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the
exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron
remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels
represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these
distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet,
underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of
therapeutic agents such as statins.
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Cholesterol, an amphipathic four-ringed lipid mole-
cule, was discovered in gallstones in 1784. The word-
cholesterol- is derived from the ancient Greek: "chole"
meaning bile and "stereos" meaning solid. Since then,
cholesterol has been studied extensively, and success-
fully, with 13 Nobel Prizes awarded for describing its
synthetic and transport pathways. Cholesterol is a
critical component of biologic membranes providing

stability but also fluidity in the plasma membrane of
cells with no cell wall. Cholesterol is also a precursor to
many biologically essential products such as steroid
hormones, bile acids, vitamins, and co-factors. Some
have suggested that the evolution of animals was
dependent on the presence of cholesterol[1] and it is
found in all eukaryotes: yeast[2], C. elegans[3], zebra-
fish[4], moths[5], and vertebrates. Because of its unique

✉
Corresponding author: Robert Scott Kiss, Research Institute of the

McGill University Health Centre and the Department of Medicine,
McGill University, 1001 Decarie Boulevard, Glen site Hospital,
EM1.2220, Montreal, Quebec H4A 3J1, Canada, Tel:514-934-1934
ext.76410 Email:robert.kiss@mcgill.ca.

Received 24 October 2016, Revised 15 November 2016, Accepted
06 December 2016, Epub 10 January 2017
CLC number: R587.1, Document code: A
The authors reported no conflict of interests.

Available online at www.jbr-pub.org

Open Access at PubMed Central

The Journal of Biomedical Research, 2017 31(2): 95–107

© 2017 by the Journal of Biomedical Research. All rights reserved doi:10.7555/JBR.31.20160139



amphipathic nature, cholesterol must be transported
through the blood packaged within lipoprotein particles.
This transport is achieved by different lipoprotein
particles that transport the dietary cholesterol from
the intestine to the liver and from the periphery to the
liver. In the early 1960s, the risk of atherosclerotic
coronary artery disease was positively related to the
plasma levels of total cholesterol and then low density
lipoprotein-cholesterol (LDL-C). For this reason, the
regulation of cholesterol transport and synthesis have
been major directions of research. Clinical outcomes
have improved substantially with the development and
implementation of statins and our biologic under-
standing with the recognition and elucidation of
clathrin-dependent receptor-mediated endocytosis of
lipoprotein particles.

Current model of cholesterol homeostasis
within the liver

The current cholesterol homeostatic models are
deeply entrenched in the literature[6-17]. Brown, Gold-
stein, their colleagues and others constructed and
explicated an explanatory model with several key
steps. Embedded in the ER membrane, sterol-cleavage
activated protein (SCAP) binds sterol response element
binding protein (SREBP1 or SREBP2) and serves as a
chaperone to both SREBPs[6]. For the present discus-
sion of cholesterol metabolism, we will restrict our
discussion to SREBP2. With lower cellular cholesterol,
the SCAP/SREBP2 complex traffics through the
secretory pathway where SREBP2 interacts with two
separate proteases in the Golgi apparatus: Site 1
protease (S1P) and Site 2 protease (S2P)[18-19]. S1P
cleaves SREBP2 removing the domain that SCAP binds
to, releasing a membrane bound truncated SREBP2.
Subsequent S2P interaction and cleavage releases a
soluble truncation form of SREBP2 that is a transcrip-
tion factor. This soluble form migrates to the nucleus
and interacts with specific DNA sequences termed sterol
response elements (SRE)[6]. Genes that possess SRE
include, but are not limited to, the low density
lipoprotein receptor (LDLR) and 3-hydroxyl, 3-methyl-
glutaryl coenzyme A reductase (HMGCR). Binding of
SREBP2 to the SRE of the LDLR gene and HMGCR
gene promotes transcription of the mRNAs, ultimately
resulting in increased LDLR protein on the cell surface
and increased HMGCR protein in the ER membrane.
Increased LDLR on the cell surface results in increased
binding and uptake of LDL particles from the extra-
cellular milieu, thus increasing intracellular cholesterol.
HMGCR is the rate-limiting enzyme of cholesterol
biosynthesis[9]. An increase in HMGCR results in an

increase of de novo synthesized cholesterol. This two-
punch combination-increased uptake and increased
synthesis-increases the cellular content of cholesterol.
When cholesterol content tends to become excessive,

mechanisms exist to reduce cellular cholesterol levels
and restore cholesterol homeostasis. LDL is taken up by
receptor mediated endocytosis in clathrin coated pits.
LDLR and bound LDL are internalized within endo-
somes; LDLR is recycled back to the plasma membrane
and LDL is degraded in lysosomes, with LDL-derived
cholesterol trafficked out of the lysosome by Niemann-
Pick Type C protein 1 and 2 (NPC1, NPC2). LDL-
derived cholesterol is trafficked to the ER membrane,
where it interacts with SCAP, strengthening SCAP's
interaction with the insulin induced gene 1 (INSIG1)
preventing the trafficking of the SCAP/SREBP2 com-
plex to the Golgi apparatus[20-21]. Thus, no cleavage of
SREBP2 occurs, no trafficking of SREBP2 to the
nucleus takes place, and no transcriptional activation of
SREBP2-regulated genes results. HMGCR and LDLR
gene transcription are shut down, closing the cycle.
This is the core of the conventional model of

cholesterol homeostasis within cells. If the mass of
cholesterol within the cell increases, then endogenous
synthesis of cholesterol decreases as does the synthesis
of the LDLR, preventing exogenous uptake of LDL-
derived cholesterol. If the mass of cholesterol within the
cell decreases, endogenous synthesis of cholesterol and
exogenous uptake of cholesterol is increased.
Acute regulation of both LDLR and HMGCR also

occurs. Inducible degrader of LDLR (IDOL) acts as an
E3 ubiquitin ligase specific for LDLR and promotes the
proteolytic degradation of LDLR[17,22-23] independent
of SREBP2. Ubiquitination of HMGCR also occurs
although the mechanism may involve one of many
identified effectors[24-26]. Likewise, gp78 is the E3
ubiquitin ligase for INSIG1[27]. Ubiquitination of
squalene synthase, another key regulatory enzyme of
de novo cholesterol biosynthesis[28-29], occurs mediated
by MARCH6[30-31]. Ubiquitination of HMGCR and
INSIG1 is dependent on the presence and binding of an
oxysterol, such as 25-hydroxycholesterol, to each
protein. This adds a level of complexity in that
oxysterols may be key in regulating the over-accumula-
tion of cholesterol in cells (for more information, please
see reviews[32-33]).
Liver X receptor (LXR) forms a heterodimeric

transcription factor and, in response to binding of
oxysterols, binds LXR response elements (LXRE)
promoting the transcription of a number of genes
including ATP binding cassette transporter A1 and G1
(ABCA1, ABCG1), stearoyl Co-A desaturase, apolipo-
protein E, SREBP1c, fatty acid synthase (FAS), and
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IDOL[34-41]. LXR activation rids the cell of cholesterol
through cholesterol efflux to high density lipoprotein
(HDL) particles via ABCA1 and ABCG1, while
actively promoting the degradation of LDLR, resulting
in less cholesterol uptake. Thus, oxysterols could
promote the ubiquitin-dependent degradation of
HMGCR and INSIG1 (lowering endogenous synthetic
levels of cholesterol), stimulate the expression of IDOL
to degrade LDLR, and stimulate the expression of
ABCA1/ABCG1 to promote cholesterol removal from
the cell, thereby acting as an effective foil to the
SREBP2 pathway. The one catch to the beneficial action
of LXR is that in the liver, FAS and SREBP1c are also
target genes of LXR mediated upregulation. FAS
facilitates synthesis of fatty acids and SREBP1c is a
master regulator of lipogenesis, which result in
triacylglycerol (TAG) accumulation, generating a fatty
liver, and diminishing the potential utility of LXR
agonists in treatment of hypercholesterolemia.
The liver is the central organ of cholesterol uptake,

regulation and export[36-41] in the organism. All the
major fluxes of cholesterol involve the liver: dietary
cholesterol goes to the liver; cholesterol goes from the
liver to peripheral cells; cholesterol from peripheral
cells goes to the liver; the liver is the major site of
cholesterol synthesis for the organism. The hepatocyte
is polarized having a basolateral surface in contact with
the blood supply and an apical surface connected to the
bile canalicula. It is very difficult to reproduce polarized
hepatocytes in culture, but this has been achieved in a
few studies[42-45].
Notwithstanding that the vast majority of the

cholesterol flux into, through, and out of the body
occurs in the hepatocyte[15] the vast majority of
experiments of cellular cholesterol transport, metabo-
lism and homeostasis have been performed in fibro-
blasts, which are so much easier to culture and study.
The cultured skin fibroblast was the experimental model
in which the principles of the regulation of intracellular
cholesterol homeostasis were identified and extrapo-
lated to all the other cells in the body. The cultured skin
fibroblast was also the experimental model in which the
primary molecular defect in the LDL pathway, a
mutation in the LDL receptor that is responsible for
familial hypercholesterolemia, was identified. However,
regulation of cholesterol homeostasis in the hepatocyte
appears to be substantially different than in the
fibroblast, which should not be surprising given the
vastly different metabolic challenges and realities these
two cells face. Accordingly, we will present an updated
model of hepatocyte cholesterol homeostasis, which
takes these realities into account.

Cholesterol influx into the hepatocyte

Numerous lipoprotein receptors exist on the surface
of the hepatocyte: LDLR, VLDLR, LRP1, LRP5/6,
apoER2, scavenger receptors SR-BI, and P2Y13, as
well as potentially other yet unidentified scavenger
receptors. The most important is the LDLR responsible
for uptake of LDL in the liver. The VLDLR, though
predominantly expressed in neurons and adipose tissue,
may play a role in uptake of VLDL and in TAG
metabolism in the liver[46-49]. LRP1 is a type I
transmembrane protein receptor with over 50 known
ligands including protease inhibitor complexes (e.g.
uPR), transfer proteins (e.g. lactoferrin), and signaling
proteins (e.g. transforming growth factor beta)[50-54].
Importantly, LRP1 may be the primary receptor for
apoE containing lipoproteins including chylomicron
remnants (CR). Chylomicrons are produced in the
intestine, released into the portal circulation, where they
are acted upon by lipoprotein lipase primarily in adipose
tissue and skeletal muscle, hydrolyzing the TAG-rich
core of the chylomicrons and releasing the fatty acids to
be taken up and utilized by the adjacent cells. The
residual lipoprotein particle, CR, is TAG-depleted but
retains its complement of cholesterol and cholesteryl
ester. The liver takes up almost all of the CR suggesting
that LRP1 plays a role in the uptake of the majority of
CR. LRP5/6 and apoER2 (LRP8) are predominantly
expressed in nervous tissue and play a major role in
signaling in the Wnt pathway[55-60]. However, a role of
these receptors in liver hepatocyte lipoprotein metabo-
lism cannot be ruled out. SR-BI is a scavenger receptor
that mediates selective uptake of HDL-derived choles-
teryl ester (and also partially LDL-derived cholesteryl
ester), but may also serve as a vehicle for efflux of free
cholesterol to lipoprotein acceptors[61-62]. Knockout
models and genetic variants in human populations have
demonstrated that SR-BI plays a major role determining
plasma HDL-levels and in the reverse cholesterol
transport pathway (ie. return of cholesterol from the
periphery to the liver). Therefore, SR-BI is a major
contributor to the cholesterol pool of the hepatocyte.
Ecto-F1-ATPase, expressed at the basolateral mem-
brane of hepatocytes, binds HDL[63]. Subsequent
activation of the purinergic receptor P2Y13 results in
clathrin-mediated endocytosis of HDL. P2Y13 plays
a role in HDL uptake and in sterol transport into
bile[64-68]. In addition to the defined lipoprotein
receptors, heparan sulfate proteoglycans are glycopro-
teins on the surface of cells that bind lipoproteins, and
assist in their uptake by the hepatocyte[69].
The uptake of lipoproteins in the hepatocyte has
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primarily been assessed by knockout mouse models.
KO of the LDLR in fibroblasts virtually abolishes LDL
uptake (>95% inhibition); however, KO of LDLR in
the hepatocyte does not abolish LDL uptake but results
in a decrease from 50 to 70%[70-74]. Heparan sulfate
proteoglycans account for some but not all of the
residual LDL uptake, suggesting other receptors,
previously mentioned or unknown, may also be
contributing[14,41,69,75-76]. Multiple KOs have also
been attempted demonstrating a partial overlap of
specificity and compensation of different receptors.
For example, a recent study demonstrated that hepatic
uptake of VLDL in the LRP1/LDLR/VLDLR triple KO
is also mediated by heparan sulfate proteoglycans and
SR-BI. It is for these reasons (number of different
receptors and overlap of lipoprotein receptor specificity)
that the hepatocyte cannot easily be compared with
simpler cell models such as fibroblasts. Likewise, the
mouse model system is not a perfect model of human
lipoprotein metabolism (hence the attempt to derive
“humanized” mouse models), and conclusions drawn
from mouse KOs must be assessed in this light.

Cholesterol synthesis

The enzyme pathway that converts acetyl CoA into
the 27 carbon, 4-ring structure that is cholesterol has
been described in detail. The rate limiting enzymes for
cholesterol biosynthesis are HMGCR and squalene
synthase (also called farnesyl diphosphate farnesyl-
transferase)[6,28-29]. Most of the literature has focused on
HMGCR (as the majority of regulation does occur here)
and so we will focus our attention here. HMGCR is
regulated by insulin/glucagon and by cellular energy
levels (by AMP-dependent protein kinase). At a
transcriptional level, HMGCR is activated by
SREBP2. At a post-translational level, HMGCR is
targeted for proteolytic degradation in acute response to
high cellular cholesterol levels. The liver produces
about 75% of the total body cholesterol. This demon-
strates that dietary cholesterol plays a significant but
lesser role in total body cholesterol and that the
regulation of cholesterol synthesis in the liver is the
most important metabolic target. For this reason, statins
which target the liver have been an effective treatment
for hypercholesterolemia[6].

Hepatic cholesterol influx and efflux

The liver is the central organ for cholesterol
metabolism and homeostasis. On the influx side, the
liver is the major site for cholesterol synthesis in the

organism. The liver is also the major site to which
cholesterol is delivered to the liver within CR, VLDL,
LDL and HDL particles in amounts that are substan-
tially larger than the capacity of the liver to secrete
cholesterol within bile or as bile acids. The most
obvious physiologic role of VLDL is to remove excess
TAG from the liver and deliver it to adipose tissue and
skeletal muscle. However, VLDL particles contain
substantial amounts of co-secreted cholesterol or CE
plus substantial amounts of cholesterol transferred from
HDL particles by cholesteryl ester transfer protein.
We ingest between 500 mg and 1 g of cholesterol per

day. We secrete between 500 mg and 1 g of cholesterol
per day either as bile acids or cholesterol dissolved
within the bile. At least 3-4 g of cholesterol per day
return to the liver within CR, VLDL, LDL and HDL
particles[77]. If the only routes of cholesterol out of the
liver were dissolved in bile acids or broken down to bile
acids, cholesterol would accumulate progressively, and
soon unacceptably, within the hepatocyte. Secretion
within VLDL particles or transfer to HDL particles are
the only options to maintain the balance. Thus,
microsomal triglyceride transfer protein (MTP) co-
translationally loads the apoB-100 with CE as well as
TAG to generate a VLDL particle[78-81]. Thus, secretion
of VLDL can offload CE as well as TAG from the liver.
Most of the cholesterol secreted from the hepatocyte
within VLDL particles plus all of the cholesterol
transferred from HDL particles to either VLDL or
LDL particles returns to the liver. The VLDL secretion
pathway is, therefore, largely a futile cycle without
physiologic purpose so far as net movement of
cholesterol in and out of the liver. The hepatocyte
produces the highest level of any cell type of the ATP
binding cassette transporter ABCA1 which, with the
help of apoA-I, generates nascent HDL particles, which
can remove cholesterol from the hepatocyte.

Regulatory intracellular cholesterol pool

The cytosolic enzyme, acylCoA:cholesterol acyl-
transferase (ACAT or stearoylCoA-O-acyltransferase
(SOAT)), converts the amphipathic free cholesterol, the
biologically active form of cholesterol, which regulates
the activity of the SREBP2 pathway, to the hydrophobic
CE, the biologically inactive form of cholesterol, which
must then be stored within a lipid droplet to sequester its
hydrophobicity[7,12]. The storage capacity of lipid
droplets is substantial in many cell types (for example
macrophages that become foam cells). CE hydrolases
(CEH) are also present to provide ready access to stored
CE, if necessary[7].
The regulatory pool represents a pool of cholesterol
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that serves as a reservoir for cellular needs, but, more
importantly, as the driver of the mechanisms to regulate
the total cellular cholesterol content of the cell[6,9,15]. If
there is too little cholesterol, mechanisms are activated
to rectify the shortfall. If there is too much, then
alternate mechanisms are activated to rectify the excess.
Regulation of ACAT/CEH activity can control the
regulatory pathways of cholesterol within the cell. The
actual physical site of the regulatory pool is likely the
ER membrane. The SCAP/SREBP2 complex is in the
ER membrane. HMGCR is found in the ER membrane.
VLDL is synthesized in the ER lumen. It is safe to say
that the ER membrane is where the action is occurring.
However, the ER membrane is characterized by very

low levels of cholesterol. This is advantageous for
regulation of cholesterol by SCAP/SREBP, HMGCR
and ACAT, as cholesterol levels can be maintained at a
low threshold that when exceeded can be promptly
detected and reacted to[82-84]. However, the plasma
membranes, not the ER membranes, are the location of
the bulk of free cholesterol in the cell. Furthermore, all
the major physical pools of cholesterol (plasma
membrane, mitochondria, lipid droplet, TGN, ER
membrane) are either in close contact or have access
to transport mechanisms that allow rapid equilibrium or
functional accumulation. Moreover, cholesterol can be
removed from the regulatory pool and stored as CE or
released from this compartment to re-enter the regula-
tory pool. This is the conventional model of cholesterol
homeostasis.

Hepatocyte cholesterol homeostasis

Unlike the simple model of cholesterol homeostasis
described in fibroblasts[6], the liver model of home-
ostasis is much more complicated. There are multiple
mechanisms of influx of cholesterol and efflux of
cholesterol as well as complex regulation of endogen-
ous synthesis. Furthermore, the LDLR is regulated by a
protein called proprotein convertase subtilisin/kexin
type 9 (PCSK9)[13,40,47-48,85]. PCSK9, which is synthe-
sized and secreted by hepatocytes, binds the LDLR on
its ligand binding domain, leading to the internalization
of the LDLR:PCSK9 complex and their subsequent
degradation in the lysosome, rather than allowing
LDLR’s recycling back to the plasma membrane.
Paradoxically, PCSK9 is regulated by SREBP2, which
can lead to a confounding effect of low cellular
cholesterol levels leading to upregulation of HMGCR,
LDLR (increasing cellular cholesterol levels through
endogenous and exogenous pathways) and upregulation
of PCSK9 (decreasing cell surface levels of LDLR).
Hepatocytes also express two types of ACAT (in

contrast to fibroblasts): ACAT1 (SOAT1) and ACAT2
(SOAT2)[12]. These proteins are independently regu-
lated and serve two separate physiologic functions.
ACAT1, expressed at nominal levels and unregulated, is
responsible for the cytosolic pool of CE generation
stored in the lipid droplets, which is intimately
connected to the regulatory pool. ACAT2, which is
strongly inducible, produces CE dedicated to VLDL
secretion[86]. The source of cholesterol for ACAT2 is
not known, since it is unlikely that ACAT1 and ACAT2
share a substrate pool. In addition to these hepatocyte
specific features of cholesterol homeostasis, a number
of observations in hepatocytes have argued against the
cholesterol homeostatic mechanism described above.
1) LDLR is not downregulated upon LDL uptake in

hepatocytes: Even in patients with hypercholesterole-
mia (high plasma LDL-C), the LDLR is still expressed
on the surface of hepatocytes[70-74]. Under high LDL-C
conditions, LDL uptake is continuous and each
hepatocyte should have amassed a large surplus of
intracellular cholesterol[87]. According to the conven-
tional model of cholesterol homeostasis, LDL-derived
cholesterol that is taken up by hepatocytes should enter
the regulatory pool, should inactivate SREBP2, and
over time, should shut down synthesis of the LDLR as it
does in fibroblasts[6]. However, this does not occur and
this suggests that the hepatic LDLR is regulated in a
different fashion by cholesterol and other factors[86,88-
99]. On the other hand, uptake of CR and the
accompanying cholesterol results in a significant down-
regulation of the LDLR.
2) HMGCR activity and endogenous cholesterol

synthesis is not downregulated by uptake of LDL. LDL-
derived cholesterol should bind SCAP preventing
SREBP2 trafficking and processing, leading to a
downregulation of HMGCR expression, especially
under chronic high LDL-C conditions. However,
endogenous synthesis of cholesterol and HMGCR
activity remain elevated in high LDL condition[71]. On
the other hand, and again in contrast to LDL-uptake of
CR-derived cholesterol results in a significant repres-
sion of endogenous cholesterol synthesis.
3) If LDL-derived cholesterol is not affecting LDLR

or HMGCR expression, then LDL-derived cholesterol
is not entering the regulatory pool[72,100]. On the other
hand, CR-derived cholesterol significantly downregu-
lates LDLR and HMGCR expression and clearly enters
the regulatory pathway. Accordingly, we postulate that
in hepatocytes LDL-derived cholesterol and CR-
derived cholesterol go to different intracellular loca-
tions.
4) LDL uptake occurs in the absence of LDLR:

Familial hypercholesterolemia (FH) is characterized by
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defective functioning LDLR. Nevertheless, LDL is still
taken up by hepatocytes[95,101-102]. LDL can be taken up
by receptors other than the LDLR (LRP1, LRP5/6,
Sort1)[14,48,51,57,61,76,103-109]. In addition, several
researchers have postulated the occurrence of a low
affinity, unsaturable binding site mediating uptake of
LDL[102,110]. It was postulated that this binding site may
account for up to 30% of total uptake (in the presence of
LDLR) and a higher proportion under high plasma
cholesterol conditions. However, it is not known what
the fate of the LDL-derived cholesterol would be when
LDL is taken up by these different pathways.
5) PCSK9 is the main regulator of hepatocyte LDLR

expression levels, not SREBP2. In the fibroblast, the
SCAP/SREBP2 mechanism is the primary regulator of
LDLR levels notwithstanding IDOL’s function. In
addition, there are acute mechanisms to regulate
cholesterol levels (discussed above). However, in the
hepatocyte, PCSK9 expression is the primary regulator
of LDLR cell surface expression[13,40,47,85]. Therefore,
the coincident upregulation of PCSK9 may have the
most profound effect on LDLR but not HMGCR.
6) VLDL secretion is a major outlet for cholesterol

from hepatocytes: Lipid availability is a prerequisite for
VLDL secretion. Both TAG and CE are essential
components and inhibition of either is sufficient to
inhibit VLDL secretion[78,80,111-116]. Furthermore,
experiments with an ACAT2-specific inhibitor resulted
in a diminishment of VLDL secretion[117-120], but,
interestingly, increase in ABCA1 expression and efflux
of cholesterol to HDL[121] and fecal excretion of
cholesterol[122]. Accordingly, we posit that VLDL
secretion is a major outlet for cholesterol from the
hepatocyte and can be enhanced under conditions of
excess hepatocyte cholesterol.
7) LDL-derived cholesterol is a substrate for ACAT2:

There is evidence that CR-derived cholesterol is
preferentially esterified by ACAT1 through its interac-
tion with the regulatory pool whereas LDL-derived
cholesterol is preferentially esterified by ACAT2[86].
Importantly, when an ACAT inhibitor is added to LDL-
treated cells, the LDL-derived cholesterol does invoke a
regulatory effect on LDLR and HMGCR (similar to CR-
derived cholesterol) suggesting that esterification of
LDL-derived cholesterol is an essential step in its
redirection from the regulatory pool. These observations
imply different physical intracellular locations of the
active sites of ACAT1 (ER-cytosolic facing) and
ACAT2 (ER-lumen facing). They also suggest separate
intracellular trafficking itineraries of LDL-derived
cholesterol and CR-derived cholesterol.
8) LDL-derived cholesterol is preferentially rese-

creted within VLDL: Since ACAT2 provides the

substrate CE for VLDL secretion and LDL-derived
cholesterol is a preferential substrate for ACAT2, then it
is postulated that LDL-derived cholesterol is preferen-
tially shunted into an ACAT2 accessible pool for
secretion within VLDL. Experimental observations
have demonstrated this in a primary hamster hepatocyte
model but need to be confirmed in other models[86].
Taken together, these observations provide evidence

for a “shunt” pathway in which LDL-derived choles-
terol does not enter the regulatory cholesterol pool but
instead bypasses it by being esterified by ACAT2-
dependent fashion. The newly formed CE then becomes
associated with newly synthesized apoB100 and is
secreted with VLDL particles. By this metabolic route,
LDL-derived cholesterol cycles through hepatocytes
without ever entering the regulatory pool (Fig. 1).
Because it does not enter the regulatory pool, synthesis
of LDLR and HMGCR is not downregulated.

Metabolic rationale for the shunt pathway

Why would a shunt pathway exist? One possibility is
that the biologic challenge of a high plasma LDL is a
relatively modern development. Previously in our
evolutionary history, we must have eaten animal
products rarely to the point that our bodies conserved
cholesterol, a point reinforced by the very efficient
recycling of bile acids and cholesterol in bile. Recently,
we farmed animals and began consuming larger
amounts of cholesterol containing animal products:
milk, eggs, and meat. Accordingly, cholesterol and fatty
acid intake increased. Increased delivery of dietary fatty
acids to the liver leads to not only to increased TAG
synthesis but also to increased synthesis of cholesterol.
As the amount of cholesterol accumulated in our bodies,
so did the cholesterol found in LDL. Instead of LDL
delivering cholesterol to peripheral tissues (forward
cholesterol transport), the vast majority of LDL was
taken back up by the liver[74]. Our biology simply did
not evolve to deal with accumulating plasma LDL, with
the liver left to deal with most of the cholesterol burden.
Why would a hepatocyte recycle LDL-derived choles-
terol without allowing that cholesterol to interact with
the regulatory pool? The answer may lie in the unique
position that the liver plays in total body cholesterol
homeostasis. Peripheral cells have a limited capacity to
take up LDL particles. The hepatocyte does not. Even
without any LDL receptors, as in patients with
homozygous familial hypercholesterolemia, LDL parti-
cles will be removed by the liver by non-specific
internalization. In compensation for this unfavorable
position, the hepatocyte has tools to deal with
cholesterol. Since it cannot limit its intake of choles-

100 Kiss RS et al. J Biomed Res, 2017, 31(2)



terol, the hepatocyte transforms biologically active
cholesterol to biologically inert CE by ACAT. Also,
hepatocytes transform free cholesterol to CE and then
export it within VLDL. Moreover, the hepatocyte
expresses the highest level of apoA-I and ABCA1
promoting cholesterol release to HDL. The hepatocyte
secretes cholesterol and bile acids (derived from
cholesterol) directly into the bile. In this way, one
could envision a substantial capacity to survive excess
cellular cholesterol levels.
The biologic irony is that the organ is protected at the

cost of the organism. The increased secretion of VLDL

particles by the liver leads to increased numbers of LDL
particles accumulating in the plasma compartment and
the increased number of LDL particles drives the
atherosclerotic process within the arterial wall. The net
result is that the liver is protected but at a potentially
fatal cost to the organism.

HDL-bile acid channel

Many researchers demonstrated that SR-BI mediates
selective uptake of CE from HDL (reviewed in[62,123]).
SR-BI on the basolateral membrane of hepatocytes

Fig. 1 Endosomal transport channels and regulation of lipoprotein-derived cholesterol in hepatocytes. In many models, it was thought
that cholesterol from all sources would enter a common regulatory pool before subsequent trafficking and regulatory steps. We present evidence
here that supports a model where there is independent uptake, trafficking and regulation of cholesterol taken up from LDL, chylomicron remnants
(CR) and HDL. HDL-derived cholesterol is taken up by SR-BI or ecto-F1-ATPase/P2Y13 (right side), directed to the apical surface of the plasma
membrane and released into the bile. CR-derived cholesterol (from the diet; middle section) is directed to the ER membrane to interact with
SCAP (so-called “regulatory” pool) to prevent release of SREBP2, thereby preventing upregulation of transcription of LDLR and HMGCR
(among others). Excess cholesterol in the ER membrane can be esterified to CE by ACAT1 and stored within a cytosolic lipid droplet (LD). LDL-
derived cholesterol is directed to a subdomain of the ER where the cholesterol is esterified by ACAT2. This CE is directed toward the lumen of
the ER to interact with apoB-100 forming a precursor VLDL particle. Upon sufficient lipidation, the VLDL is secreted. Since the LDL-derived
cholesterol bypasses SCAP (or other elements of the regulatory pool), we have termed this a shunt pathway. ABCA1/ABCG1 mediate cholesterol
efflux to form HDL and reduce the cholesterol load in hepatocytes. Interestingly, cholesterol efflux and HDL biogenesis and then reuptake of
HDL by SR-BI or P2Y13 may not represent a futile cycle if that cholesterol is redirected to bile acid secretion. All of these pathways represent
channels with independent effectors mediating trafficking and regulation, with independent effects on intracellular cholesterol homeostasis.
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internalizes only CE (not the whole particle) and that
CE must be hydrolyzed to free cholesterol. Then, the
cholesterol is preferentially trafficked to the apical
surface for secretion into bile[124-126] (Fig. 1). We have
only a hint as to the mechanism of transport of
cholesterol via transcytosis[127]; however, it is accepted
in the literature as a channel specific for HDL-derived
CE. In addition, HDL-apoA-I binds to the ecto-F1-
ATPase expressed at the basolateral membrane of
hepatocytes and stimulates the hydrolysis of extracel-
lular ATP to ADP[63,128]. The extracellular ADP
generated then selectively activates the P2Y13 puriner-
gic receptor, resulting in cytoskeleton reorganization
and subsequent clathrin-dependent endocytosis of
whole HDL particles. P2Y13-knockout mice displayed
impaired biliary cholesterol secretions[64,67-68] and were
prone to atherosclerosis on apoE-KO background[65],
consistent with the role of P2Y13 in HDL endocytosis
by hepatocytes. Conversely, overexpression of P2Y13
in mice is atheroprotective[66]. These observations
support the work of Robins and Fasulo[129] describing
that HDL, but not other lipoproteins, provide a vehicle
for sterol transport to bile. Together, they represent a
channel as an independent trafficking itinerary for HDL-
derived cholesterol.

Endosomal transport channels for lipoprotein
cholesterol

The evidence we have reviewed points to specific
endosomal transport channels within hepatocytes for the
different lipoprotein particles that are taken up by
hepatocytes (Fig. 1). CR-derived cholesterol enters the
regulatory pool of cholesterol (causing the down-
regulation of synthesis of cholesterol and the LDLR).
This is also true of cholesterol delivered via VLDL, β-
VLDL, chylomicron, or through non-lipoprotein means.
Therefore, all these lipoproteins, besides HDL and
LDL, deliver their cholesterol to the plasma membrane/
regulatory pool. LDL-derived cholesterol preferentially
enters the VLDL secretory pathway, not the regulatory
pool (therefore the cholesterol within this endosome has
little effect on cholesterol and LDLR synthesis). HDL-
derived cholesterol is preferentially trafficked to the
apical surface for secretion into bile (Fig. 1). Impor-
tantly, when one of these channels is blocked or
inhibited, another channel is turned on[86,121-122]. This
suggests that there can be overlap or compensation
under conditions where one channel is blocked. There-
fore, we postulate the existence of lipoprotein-specific
channels that direct cholesterol to a specific location
with differential outcomes (Fig. 1). However, simply by
the fact that we can identify the lipoprotein-derived

cholesterol specific channels suggests that these chan-
nels constrain the direction and flow and incoming
cholesterol.

Discussion

The hepatocyte is the epicenter of whole body
cholesterol homeostasis and, accordingly, faces unique
and evolving metabolic changes. The endosomal
transport model posits that the cholesterol derived
from three different lipoproteins endosomes has three
different fates: LDL-derived cholesterol is largely
recycled into VLDL, HDL-derived CE is transcytosed
into bile, and CR-derived cholesterol enters the
regulatory pool. These channels represent distinct
physiologic fates for cholesterol and create a new
model of cholesterol homeostasis within the hepatocyte.
These channels may have great physiologic relevance,
as in human subjects with high plasma LDL-C, where
one would expect that these pathways play a major role
in determining plasma LDL-C levels and hepatocyte
cholesterol levels.
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