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A B S T R A C T

Objectives: The prevention and control of dengue fever (DF) has been a major public health issue
in Guangdong (GD) province, China. This study aims to analyze the return period (RP) and the
return level (RL) of DF epidemic in GD, to help the formulation of prevention and control plan.
Methods: Three models, namely Lognormal distribution (Lognor D.), normal distribution (Norm
D.), and generalized logistic distribution (GLD) were selected to fit the annual number of
indigenous DF cases in GD from 1978 to 2021. The coefficient of determination (R2), the root
mean squared error (RMSE), and the Akaike information criterion (AIC) were used to evaluate the
goodness of fit. We predicted the RP of 45130 historical maximum cases that occurred in 2014
and the RP of 4884 peak cases that occurred in 2019 over the 5 years up to 2021.
Results: Fitting through the three models, the R2 was 0.98, 0.98, and 0.96, respectively. The
predicted RLs of the annual DF case number were between 297 and 43234, 297 and 43233, 362
and 41868 for the RPs of 2–45 years. The predicted RPs of DF outbreaks exceeding the historical
maximum were 43, 43, and 44 years, and the RPs of DF epidemic exceeding the peak in 2019
were 7, 7, and 8 years, respectively. Therefore, we predicted that GD would experience a DF
outbreak beyond the historical maximum in the next 35 or 36 years from 2022. And in the next 4
or 5 years from 2022, there would be a DF epidemic exceeding the peak in 2019.
Conclusions: The study discloses a temporal periodicity inherent to the DF epidemic in GD. The
three models are applicable for forecasting and evaluating the RP and RL of DF epidemic in GD,
separately.

1. Introduction

Dengue fever (DF) is a viral disease, mainly transmitted by Aedes aegypti and Aedes albopictus, and is the most serious mosquito-
borne infectious disease in the world. In the past 10 years, the incidence has shown a significant upward trend, and its prevention
and control have become increasingly urgent, posing a major challenge to global public health. In 2019, DF was listed as one of the "top
ten global health threats" by the World Health Organization [1]. In China, the DF epidemic has also been a major public health
problem, and Guangdong (GD) province has faced the highest risk [2]. Aedes aegypti has become widespread in Yunnan province but
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has diminished in Guangxi, Guangdong, and Hainan provinces in recent years. Aedes albopictus is distributed throughout mainland
China, spanning 25 provinces and municipalities [3]. GD is located in the southernmost part of mainland China, along the southern
coast, with a subtropical monsoon climate on the whole. It is suitable for breeding of Aedes albopictus. GD is a highly populated and
developed province, with 21 prefecture-level cities, and 122 counties. It has a permanent population of over 120 million and has
frequent exchanges with foreign countries. People are generally susceptible to dengue fever. Dengue fever was prevalent in GD mainly
in Foshan City, in 1978, with 22,122 reported cases. Subsequently, the annual reported dengue fever cases exceeding 3000 in GD were
15,205 in 1980, 16,999 in 1981, 3335 in 1985, 5292 in 1986, 6812 in 1995, 45,188 in 2014, and 6101 in 2019, respectively [2,4,5].
During 2005–2020 in mainland China, there were 12,701 imported cases and 81,653 indigenous cases recorded. The indigenous cases
were mainly clustered in GD (74.0 %). During this period, counties with high occurrence frequencies of indigenous dengue fever are
mainly located in GD. Indigenous dengue fever occurred more than ten times in each of the seven counties of GD [3].

Worldwide DF research focuses on the DF virus evolution, epidemiology, immunology, pathogenesis, vector control, therapeutics,
and vaccine research [6–8]. Some studies showed that the epidemiological characteristics of DF in GD have been undergoing new
changes in the past 10 years, with a trend of multi-point outbreaks and an increasing trend of incidence. In 2014, a recorded historical
maximum outbreak of DF occurred in GD with more than 45000 reported cases [5]. In the past 5 years up to 2021, the incidence of DF
in 2019 was the highest. A few studies pointed out that the epidemic of DF in GD had a periodicity, and the outbreak interval was
shortening [9,10]. However, this was only a simple and intuitive description based on the DF epidemic curve. The return period (RP)
refers to the mean time before a random variable reaches or exceeds a certain threshold over a long period of time. The variable
threshold is the return level (RL), also known as the return intensity [11]. The RP is commonly used to characterize the period of
extreme weather events or extreme meteorological element threshold recurrence [12]. Nevertheless, there might be an important
epidemiological feature of the RP and RL of DF epidemic in GD. An in-depth study on this issue to reveal the rules and characteristics of
the RP and RL of DF may provide important reference information for GD health authorities to formulate strategies of DF prevention
and control, as well as to prepare necessary health resources.

Diverse models have been employed for the forecast of dengue incidence, outbreaks, or risk assessment, including generalized
linear regression models (GLRM) [13], seasonal autoregressive integrated moving average models (SARIMA), generalized additive
models (GAM), artificial neural networks (ANN) [14], and spatiotemporal Bayesian models [15]. The above-mentioned models have
been mainly used for short-term DF incidence or incidence rate prediction [14,15], and a few have been applied for short-term
outbreak prediction [13,15]. But seldom no studies have dealt with the RP and the RL of DF epidemic. Chiu et al. [16] proposed
quantile regression methods to determine the spatial distributions of DF incidence rates in various RPs, and RPs at distinct incidence
rates in two areas in Taiwan. Lim et al. [11] used the Extreme Value Theory (EVT) model to study the RP of DF outbreak on provincial
level in Thailand. Therefore, this paper aims to study the RP and RL of DF epidemic in GD.

In this study, three probability distribution models, namely lognormal distribution (Lognor D.), normal distribution (Norm D.), and
generalized logistic distribution (GLD), were selected to fit the RP and RL of DF in GD. Norm D. and Lognor D. are the most commonly
used models for studying the epidemiological characteristics of infectious diseases [11]. GLD is mostly used to describe the growth and
development laws of biological populations and is also widely used in the medical field [17]. In recent years, they have been
particularly useful in the research of COVID-19 epidemic trend [18,19]. Up to now, the reports on the above distribution models used
for the study of the RP of infectious diseases are still rare. However, the DF epidemic has certain periodicity [9,10] and
spatial-temporal heterogeneity [11]. Therefore, it is meaningful to use appropriate models to study the characteristics of RP and RL of
the DF epidemic in GD, China.

2. Materials and methods

2.1. Data collection

In China, dengue fever is a notifiable disease, and all cases of dengue fever were diagnosed according to the unified diagnostic
criteria issued by the Chinese Ministry of Health. Three editions of guidelines for dengue prevention and control were issued formally
by the GD provincial public health authorities. The first version was released in 1979 and then updated in 1987 and 2015, respectively
[20]. The reported DF cases in GD from 1978 to 2021 were collected through the Collection of Epidemic Data in Guangdong Province,
the National Infectious Disease Reporting Information Management System accessed from Guangdong Provincial Center for Disease
Control and Prevention, and also from some relevant publicly published papers [4,5,21,22]. The imported DF cases were excluded, and
the indigenous cases were analyzed in this paper. We have obtained permission from the Guangdong Provincial Center for Disease
Control and Prevention to use this data.

2.2. Model applicability evaluation methods

Regarding the definition of DF outbreak [23], in this study, the occurrence of 3 or more indigenous cases per year was defined as the
occurrence of an epidemic. At first, the years that presented an annual number of indigenous cases of 3 or more were selected for
analysis in the model directly. And then the sample selection rate was calculated (that is the sample size N selected for analysis divided
by the total sample size N0) for correction of analysis results. To meet the requirements of the model fitting conditions of independent
identical distribution, a logarithmic transformation was applied to the data. Subsequently, the model fitting was conducted, and the
results were obtained through the inverse logarithm transformation. Anderson Darling method (AD value) was used for data normality
test. The applicability of the model was evaluated by drawing a probability diagram (P–P diagram). And we plotted the probability
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density distribution curve of the annual case numbers based on the three models to further investigate the applicability of the model.

2.3. Probability density functions and guaranteeing probability functions of the three distribution models [24]

In this study, 13 probability distribution models, namely Norm D., Gumbel’l D., Exponweib D., Geneextreme D., Gumbel’r D.,
Weibull_max D., Weibull_min D., Logistic D., Pearson3 D., Gompertz D., Expon D., Lognorm D., and Genlogistic D. were used for a trial
fitting separately, and finally the best 3 models, namely Norm D., Lognor D., and GLD were selected for analysis according to the
goodness of fit with R2, RMSE, and AIC.

The probability density function f(x) and the guaranteeing probability (GP) function P(x≥ xp) of Norm D. , Lognor D., and GLD, are
shown in formula (1) (2), (3) (4), and (5) (6) respectively. Where xp is x with a given probability.

f(x)NormD. =
exp (− x2 /2)

̅̅̅̅̅̅
2π

√ (1)

P
(
x ≥ xp

)

NormD. =

∫ ∞

xp

exp(− x2/2)
̅̅̅̅̅̅
2π

√ dx (2)

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale
parameters. Specifically, norm.pdf(x, loc, scale) is identically equivalent to norm.pdf(y)/scale with y = (x - loc)/scale. The following
four probability density functions were also defined in the "standardization" form.

f(x, s)LognorD. =
1

sx
̅̅̅̅̅̅
2π

√ exp

(

−
log2(x)
2s2

)

(3)

P
(
x ≥ xp

)

LognorD. =

∫ ∞

xp

1
sx

̅̅̅̅̅̅
2π

√ exp

(

−
log2(x)
2s2

)

dx (4)

Where x > 0, s > 0 and s is the shape parameter.

f(x, c)GLD = c
exp (− x)

(1+ exp (− x))c+1
(5)

P
(
x ≥ xp

)

GLD =

∫ ∞

xp
c

exp (− x)
(1+ exp (− x))c+1

dx (6)

Where x ≥ 0, c > 0 and c is the shape parameter.

2.4. Evaluation methods of model goodness of fit

The coefficient of determination (R2; (7)), the root mean squared error (RMSE; (8)), and the Akaike information criterion (AIC; (9))
were used to evaluate the goodness of fit of the models. Their calculation formulas are as follows [18,19,25]:

R2 =1 −

∑n
t=1(yt − ŷt)

2

∑n
t=1(yt − yt)

2 (7)

RMSE=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(ŷt − yt)2

√

(8)

AIC= 2k+ n ln

[∑n
t=1(ŷt − yt)2

n

]

(9)

Where, n is the sample size, k is the number of parameters, yt is the observed value at t, ŷt is the fitted value at t, and yt is the average of
the observations.

The R2 explains the variance of the model relative to the total variance. The value of R2 is between 0 and 1. The higher the value, the
better the goodness of fit. The value of R2 is closer to 1, the model is more acceptable. The RMSE is the average of the squared errors of
the residuals of a model. It can be used to compare the goodness of fit among different models. The lower value of RMSE indicates a
better model. AIC measures the relative distance between the true likelihood function of the original data series and the built-in
likelihood function of the model. A model with the minimum AIC value will be the best model [19,25].
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2.5. Calculation of RP and RL

Assuming that the logarithm values of the numbers of annual DF cases conform to the normal probability density distribution, and
the N (the number of measured years) values are sorted from small to large, then the empirical cumulative probability Pi ((10)) of the
ith value is calculated as the follows [26]:

Pi = i/(N+1) (10)

Where i is the order of the logarithm of the number of dengue fever cases in a year among N years. The quantile function is the inverse
of the cumulative probability density distribution function. Thus, the corresponding quantile value will be calculated according to the
given empirical cumulative probability.

Assuming that the annual number of cases x is a continuous random variable, and its probability density function is f(x). For any
real number x, the cumulative probability distribution function less than x is represented by F (x) ((11)), that is [27,28].

F(x)= F
(
x< xp

)
=

∫ xp

− ∞
f(x)dx (11)

Therefore, according to the empirical cumulative probability Pi of the ith observation value and the fitted distribution function F
(x), the fitted value can be calculated corresponding to the ith observation value.

The probability of xp occurrence with a RP ((12)) is the GP [P
(
x≥ xp

)
], also known as exceeding probability (EP; (13))). The

calculation formula is [27,28]

RP=1
/
P
(
x≥ xp

)
(12)

EP=P
(
x≥ xp

)
=1 − P

(
x< xp

)
=1 − F(x)=1

/
RP (13)

Where, xp is the RL of the RP. The EP corresponding to the RL of the RP of 50, 30, and 10 years is 1/50, 1/30, and 1/10, respectively.
In this study, because the case numbers in some years were less than 3, they were not directly included in the model fitting, so it was

necessary to use the sample selection rate (N/N0) to correct EP ((13)), that was,

EPc =P
(
x ≥ xp

)

c =1
/
(RP×N /N0) (14)

And then EPc ((14))were used to calculate the RP and RL.

2.6. Application of the fitting results

The RPs, RLs, and their 95 % CIs estimated with the three models were used to evaluate the RP of DF epidemic of different levels.
Therefore, the RPs were predicted for the recorded historical DF epidemic maximum that happened in GD in 2014, and for the highest
DF epidemic level that occurred in 2019 in the past 5 years up to 2021.

2.7. Data processing and visualization tools

In this study, Python language mainly with the packages of “NumPy”, “Pandas”, “Pylab”, “Seaborn”, “Matplotlib.pyplot”, and
“Scipy.stats” were used for data analysis and figure plotting [24,29]. All statistical analyses were two-sided and values of P< 0.05 were
considered statistically significant.

Table 1
The number of indigenous dengue fever cases reported in Guangdong from 1978 to 2021.

Year Number of cases Year Number of cases Year Number of cases Year Number of cases

1978 22122 1989 0 2000 384 2011 49
1979 635 1990 374 2001 342 2012 441
1980 15205 1991 371 2002 1342 2013 2811
1981 16999 1992 2 2003 37 2014 45130
1982 0 1993 359 2004 42 2015 1529
1983 0 1994 4 2005 0 2016 418
1984 0 1995 6812 2006 1008 2017 1470
1985 3335 1996 0 2007 377 2018 2990
1986 5292 1997 632 2008 66 2019 4884
1987 2601 1998 480 2009 7 2020 11
1988 1 1999 290 2010 111 2021 1
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3. Results

3.1. Data assessment

The reported indigenous dengue cases in 44 years from 1978 to 2021 years was shown in Table 1. Among the 44 (N0) years, 35(N)
years had an annual number of DF cases higher than 2. Thus, 35 years of data were directly included in the model fitting, and the
sample selection rate was N/N0 = 35/44 = 0.7955. The sample composed of 35 numbers was tested for normality, AD = 6.65, P <

0.01. It indicated that the data did not conform to the normal distribution. Therefore, we performed the logarithmic transformation
and retested the transformed data, which met the normal distribution with AD = 0.375 and P > 0.15.

Fig. 1. The P–P diagram of the series data of annual case number fitted with the three distribution models respectively (A0, B0, and C0) and the P–P
diagram of the logarithmic series data of annual case number fitted with the three distribution models respectively (A1, B1, and C1). Color should be
used for Fig. 1 in print.
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3.2. Model fitting suitability assessment results

Fig. 1 shows the one-to-one matched P–P diagrams of the series data of annual case number of DF sorted from small to large and that
of the logarithmic series data, fitted with the three models respectively. The results showed that after logarithmic transformation of the
annual number of cases, the P–P diagram fitted with the three models presented an approximate straight line correspondingly,
indicating that the model fitting was applicable. And Fig. 2 shows the histogram and the probability density distribution curves of the
logarithmic series data fitted with the three models. The results showed that the curves fitted by the three models were all basically
"bell-shaped" after logarithmic transformation of the annual number of cases, which further indicated that the model fitting was
applicable.

3.3. Evaluation of goodness of fit

Table 2 shows the goodness of fit of the three models. The goodness indicated that all three models fitted pretty well. Fig. 3 shows
the comparison of the cumulative probability distribution curves of the sample values and the three model fitted values, individually. It
shows that the goodness of fit of the model shown in Fig. 3 and Table 2 are highly consistent. Therefore, the models can be applied to
predict and evaluate the RP of DF epidemic in GD.

3.4. Results of RP and RL

Table 3 show the RLs and their 95 % confidence intervals (CIs) of the case numbers of DF for different RPs of 2–45 years in GD fitted
with the three models. According to the 95 % CIs, the RPs of the DF outbreak as large as what occurred in GD in 2014 (45130 cases)
were 43 years (41365, 95 % CI: 36426–46973), 43years (41363, 95 % CI: 36425–46971), and 44 years (40809,95 % CI:36392–45762)
assessed by the three models, separately. The RPs of the DF epidemic with the same prevalence intensity as that occurred in 2019 (4884
cases) were 7 years (4732, 95 % CI:4167–5374), 7 years (4732, 95 % CI: 4167–5374), and 8 years (5163, 95 % CI:4604–5790).
Considering that 8 or 3 years have passed from 2014 or 2019 to 2022 and according to the result, we predicted by the three models
independently, GD would have a large outbreak of DF that would exceed the historical maximum epidemic in the next 35, 35, or 36
years from 2022, and also in the next 4, 4, or 5 years from 2022, there would be a DF epidemic that would exceed the epidemic level
occurred in 2019.

4. Discussion

This paper screened out 3 models with a criterion of R2 above 0.95 from the 13 models. The assessment results showed that the
annual DF case number sequence after logarithmic transformation essentially met the fitting conditions of independent and identical
distribution. Logarithmic transformation of the data can significantly improve the applicability of fitting the three models. Therefore,
the fitting analysis using the three models was appropriate.

As the main result of this study, a two-dimensional data table of the RPs, RLs,and their 95 % CIs was formed as a DF epidemic
evaluation tool. The results showed that there were significant differences between the RLs of the two adjacent RPs with different time
intervals (2–15 years apart) (95 % CI did not overlap), and it indicated that the DF epidemic in GD had a time periodicity of different
epidemic intensity, so it told us there was a RP. The estimates of RLs, RPs, and EP are helpful for health resource planning purposes,
especially for policy-makers [11]. Table 3 can be used as a professional tool to dynamically assess the intensity and transmission risk of
DF outbreaks, assess the historical status of the epidemic, and evaluate the effectiveness of epidemic prevention and control measures.
Therefore, it has important implications to study the RP and RL of DF epidemic in GD dynamically.

This study indicates that these models can be used to quickly assess how many years once of the epidemic intensity of DF had

Fig. 2. Histogram of the annual case number (logarithm) of dengue fever and the probability density curves fitted by the three distributions,
respectively. Color should be used for Fig. 2 in print.
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Table 2
Parameter estimates and goodness of fit of the three models.

Models Model parameter estimates (Logarithmic fitted) Goodness of fit

location scale shape R2 RMSE AIC

Lognor D. 1.21e-05 − 7.98e04 7.98e04 0.98 1234.28 504.28
Norm D. 2.79 0.97 0.98 1234.40 502.28
GLD 0.71 3.09 0.48 0.96 1703.63 526.84

Lognor D., lognormal distribution; Norm D.,normal distribution; GLD, generalized logistic distribution; R2, the coefficient of determination; RMSE,
the root mean squared error; AIC, the Akaike information criterion.

Fig. 3. Cumulative probability distribution curves of the sample values and the model fitted values. Color should be used for Fig. 3 in print.
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occurred, and also be used to predict how many years an epidemic of certain intensity may recur in the future. However, it is note-
worthy that the selection of fitting model for calculating the RP of a widespread outbreak of DF and the application of the fitted results
should be more careful to prevent "overestimation" or "underestimation", to make more scientific evaluation and prediction.

Up to now, imported cases and local transmission caused by them are still typical features of DF epidemic in GD [5,30]. The number
of analyzed cases in this study does not include imported cases. However, it is worth noting that GD has the natural conditions and
vector for local transmission of DF [30]. The spread of DF is affected by mosquito vectors, dengue virus, climate, social environment
and other factors [6,31]. With the warming of climate, the development of economy, trade and tourism, and the acceleration of ur-
banization, the global incidence rate of DF has increased significantly in recent decades [31]. Judging from the epidemic trend of DF in
the world and in GD of China in the past 10 years, more attention should be paid to the possibility of an "extremely" high prevalence of
DF epidemic in the future. Therefore, in the future, the evaluation and prediction of RP and RL of DF must take into account the above
factors and the extrapolation ability of the model.

A key issue in public health resource planning is to predict the possibility of abnormal or extreme events in the future. The practice
of dealing with the COVID-19 epidemic shows that we should use "probabilistic thinking" to deal with public health emergencies.
Therefore, the study on the epidemic characteristics of infectious diseases, especially on the RP and RL of the outbreak, is greatly
significant for the health departments to do a good job in the planning of prevention and control policy and epidemic risk management

Table 3
The RLs and their 95 % CIs of the DF case number for different RPs in GD fitted with the three models.

RPs EPs (GPs) EPcs RLs(95 % CIs)

Lognor D. Norm D. GLD

2 0.500 0.629 297(262–337) 297(262–337) 362(322–405)
3 0.333 0.419 971(855-1102) 971(855-1102) 1056(942-1184)
4 0.250 0.314 1806(1591–2051) 1806(1591–2051) 1820(1623–2041)
5 0.200 0.251 2733(2407–3104) 2733(2407–3104) 2621(2338–2940)
6 0.167 0.210 3715(3272–4219) 3715(3272–4219) 3450(3076–3868)
7 0.143 0.180 4732(4167–5374) 4732(4167–5374) 4298(3833–4820)
8 0.125 0.157 5772(5083–6555) 5772(5083–6555) 5163(4604–5790)
9 0.111 0.140 6827(6012–7752) 6826(6011–7752) 6042(5389–6776)
10 0.100 0.126 7890(6948–8960) 7890(6948–8960) 6934(6184–7776)
11 0.091 0.114 8959(7890–10,174) 8959(7890–10,174) 7837(6989–8788)
12 0.083 0.105 10,031(8834–11,391) 10,031(8833–11,391) 8749(7803–9811)
13 0.077 0.097 11,104(9778–12,609) 11,104(9778–12,609) 9671(8624–10,845)
14 0.071 0.090 12,175(10,722–13,826) 12,175(10,722–13,826) 10,601(9454–11,888)
15 0.067 0.084 13,245(11,664–15,041) 13,245(11,664–15,041) 11,539(10,290–12,939)
16 0.062 0.079 14,312(12,604–16,253) 14,312(12,603–16,252) 12,483(11,132–13,998)
17 0.059 0.074 15,376(13,540–17,461) 15,376(13,540–17,460) 13,435(11,981–15,065)
18 0.056 0.070 16,436(14,473–18,664) 16,435(14,473–18,664) 14,392(12,835–16,139)
19 0.053 0.066 17,491(15,403–19,863) 17,491(15,403–19,862) 15,356(13,694–17,220)
20 0.050 0.063 18,542(16,329–21,056) 18,542(16,328–21,056) 16,325(14,558–18,307)
21 0.048 0.060 19,589(17,250–22,245) 19,588(17,250–22,244) 17,300(15,428–19,400)
22 0.045 0.057 20,630(18,167–23,427) 20,630(18,167–23,427) 18,280(16,301–20,498)
23 0.043 0.055 21,667(19,080–24,605) 21,666(19,080–24,604) 19,264(17,179–21,602)
24 0.042 0.052 22,699(19,989–25,776) 22,698(19,988–25,775) 20,254(18,062–22,712)
25 0.040 0.050 23,725(20,892–26,942) 23,724(20,892–26,941) 21,247(18,948–23,826)
26 0.038 0.048 24,747(21,792–28,102) 24,746(21,791–28,101) 22,245(19,838–24,945)
27 0.037 0.047 25,763(22,687–29,256) 25,762(22,686–29,255) 23,248(20,732–26,069)
28 0.036 0.045 26,774(23,578–30,404) 26,773(23,577–30,403) 24,254(21,629–27,198)
29 0.034 0.043 27,780(24,464–31,547) 27,780(24,463–31,546) 25,264(22,530–28,330)
30 0.033 0.042 28,782(25,345–32,684) 28,781(25,345–32,683) 26,278(23,434–29,467)
31 0.032 0.041 29,778(26,223–33,815) 29,777(26,222–33,814) 27,295(24,341–30,608)
32 0.031 0.039 30,769(27,096–34,941) 30,768(27,095–34,940) 28,316(25,252–31,753)
33 0.030 0.038 31,756(27,964–36,061) 31,755(27,963–36,060) 29,341(26,165–32,902)
34 0.029 0.037 32,738(28,829–37,176) 32,736(28,828–37,175) 30,368(27,082–34,054)
35 0.029 0.036 33,714(29,689–38,285) 33,713(29,688–38,284) 31,399(28,001–35,210)
36 0.028 0.035 34,687(30,545–39,389) 34,685(30,544–39,388) 32,433(28,923–36,370)
37 0.027 0.034 35,654(31,397–40,488) 35,653(31,396–40,487) 33,470(29,848–37,533)
38 0.026 0.033 36,617(32,245–41,582) 36,616(32,244–41,580) 34,511(30,775–38,699)
39 0.026 0.032 37,576(33,089–42,670) 37,574(33,088–42,668) 35,553(31,705–39,868)
40 0.025 0.031 38,530(33,929–43,753) 38,528(33,928–43,752) 36,599(32,638–41,041)
41 0.024 0.031 39,479(34,766–44,832) 39,477(34,764–44,830) 37,648(33,573–42,217)
42 0.024 0.030 40,424(35,598–45,905) 40,423(35,596–45,903) 38,699(34,511–43,396)
43 0.023 0.029 41,365(36,426–46,973) 41,363(36,425–46,971) 39,753(35,450–44,577)
44 0.023 0.029 42,302(37,251–48,037) 42,300(37,250–48,035) 40,809(36,392–45,762)
45 0.022 0.028 43,234(38,073–49,096) 43,233(38,071–49,094) 41,868(37,337–46,950)

RLs, the return levels; CIs, confidence intervals; DF, dengue fever; RPs, the return periods; GD, Guangdong province; EPs, exceeding probabilities;
GPs, guaranteeing probabilities; EPcs, corrected EPs; Lognor D., lognormal distribution; Norm D., normal distribution; GLD, generalized logistic
distribution.

S. Zeng et al.



Heliyon 10 (2024) e36413

9

and emergency response to the outbreak. This study is the beginning of the research on the RP of infectious diseases grounded in the
theory of probability distribution. Up to now, no comparable research papers have been published in China, underscoring the urgent
need to bolster such study.

The methods used in this study mainly include data screening, probability distribution test, logarithmic transformation of data,
goodness of fit analysis and model screening, optimal probability model fitting and fitting result analysis. These methods have uni-
versal applicability for analyzing the return period of other similar diseases.

However, there are several limitations of this study. First, this study takes the provincial DF epidemic in GD as the study population,
but there are some differences of occurrence frequencies of indigenous dengue fever among 21 cities, and among 122 counties in GD
[2–5]. So this study can reveal the overall situation at the provincial level, but it cannot reveal its regional specificity. Second, this
study is based on a data-driven model, which does not include factors affecting the epidemic situation in the model.

In conclusion, we demonstrate that the DF epidemic in GD has a temporal periodicity in this paper. The three models are applicable
to predict and evaluate the RPs and RLs of DF epidemic in GD. The results show that GD is predicted to experience a DF outbreak
beyond the historical maximum in the next 35 or 36 years from 2022. The findings offer valuable advisory insights to health authorities
for strategic health resource allocation and preparedness in the prevention and control of DF, and may also provide a framework that
enables health professionals to investigate the unique epidemiological features of relevant infectious diseases.
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