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In developed countries, diabetes is the leading cause of chronic kidney disease (CKD) and
accounts for 50% of incidence of end stage kidney disease. Despite declining prevalence
of micro- and macrovascular complications, there are rising trends in renal replacement
therapy in diabetes. Optimal glycemic control may reduce risk of progression of CKD and
related death. However, assessing glycemic control in patients with advanced CKD and
on dialysis (G4-5) can be challenging. Laboratory biomarkers, such as glycated
haemoglobin (HbA1c), may be biased by abnormalities in blood haemoglobin, use of
iron therapy and erythropoiesis-stimulating agents and chronic inflammation due to
uraemia. Similarly, glycated albumin and fructosamine may be biased by abnormal
protein turnover. Patients with advanced CKD exhibited heterogeneity in glycemic
control ranging from severe insulin resistance to ‘burnt-out’ beta-cell function. They
also had high risk of hypoglycaemia due to reduced renal gluconeogenesis, frequent
use of insulin and dysregulation of counterregulatory hormones. Continuous glucose
monitoring (CGM) systems measure glucose in interstitial fluid every few minutes and
provide an alternative and more reliable method of glycemic assessment, including
asymptomatic hypoglycaemia and hyperglycaemic excursions. Recent international
guidelines recommended use of CGM-derived Glucose Management Index (GMI) in
patients with advanced CKD although data are scarce in this population. Using CGM,
patients with CKD were found to experience marked glycemic fluctuations with
hypoglycemia due to loss of glucose and insulin during haemodialysis (HD) followed by
hyperglycemia in the post-HD period. On the other hand, during peritoneal dialysis,
patients may experience glycemic excursions with influx of glucose from dialysate
solutions. These undesirable glucose exposure and variability may accelerate decline of
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residual renal function. Although CGMmay improve the quality of glycemic monitoring and
control in populations with CKD, further studies are needed to confirm the accuracy,
optimal mode and frequency of CGM as well as their cost-effectiveness and user-
acceptability in patients with advanced CKD and dialysis.
Keywords: continuous glucose monitoring, end stage kidney disease (ESKD), dialysis, diabetes, type 2 (non-insulin-
dependent) diabetes mellitus, diabetic kidney disease, diabetic nephropathy
INTRODUCTION

Diabetic kidney disease (DKD) is now the leading cause of
chronic kidney disease (CKD) and end-stage kidney disease
(ESKD) in many countries. In 2014, DKD accounted for 50%
of patients with ESKD in developed world (1). Data from the
United States (US) suggested a slower decline in ESKD incidence
compared with other diabetic complications including
cardiovascular disease. The US Renal Registry reported a
steady increase in incidence of ESKD due to diabetes up to
47% in 2017, compared with 15% in 1985 (2). In the Hong Kong
Renal Registry, diabetes was the cause of ESKD in 50% of
patients which had replaced glomerulonephritis as the leading
cause of renal replacement therapy since 1998 (3).

Patients with diabetes and CKD have increased risk of
morbidity and premature mortality than those without renal
complications. In the Hong Kong Diabetes Register, patients
with CKD had 63% higher risk in all-cause mortality than their
non-CKD counterparts, after adjusting for factors such as age,
body mass index (BMI), blood pressure and use of oral glucose
lowering drugs (OGLDs) (4). Patients with CKD had high risk of
cardiovascular events which accounted for 40-50% of mortality
in those with estimated glomerular filtration rate (eGFR) < 30
ml/min/1.73m2. This excess risk could not be explained by
comorbid factors such as hypertension and dyslipidaemia (5)
and might be attributed to additional factors such as vascular
calcification, chronic inflammation and myocardial fibrosis (6).
Patients with CKD are at increased risk and more vulnerable to
hypoglyceamic episodes (4). In a cohort of over 30,000 US
veterans with diabetes transitioning to dialysis, the frequency
of hypoglycemia-related hospitalizations was associated with
higher post-ESKD mortality in a dose-dependent manner (7).

Optimal glycemic control had been shown to delay
progression of CKD and reduce death rate in diabetes. In the
Diabetes Control and Complication Trial, 1441 patients with
type 1 diabetes (T1D) were randomized to receive intensive or
conventional insulin treatment. The risk of microalbuminuria
was reduced by 34% in the intensive treatment group after at
least four years of follow-up (8). The Action in Diabetes and
Vascular Disease: Preterax and Diamicron MR Controlled
Evaluation (ADVANCE) trial enrolled high risk patients with
ase; ESKD, End-Stage Kidney Disease;
FR, estimated Glomerulus Filtration
Global Outcome; CGM, Continuous
ring Blood Glucose; PD, Peritoneal
Above Range; TIR, Target In Range;
of Variation.
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long duration of type 2 diabetes, (T2D), many of whom had prior
history of complications. The in-trial reductions in the risk of
ESKD was maintained during a total follow-up period of 9.9
years with a hazard ratio of 0.54 (29 events in the intensive
treatment group and 53 events in the usual treatment group) (9).
In a randomized controlled study of Japanese patients with 110
T2D lasting for 8 years, intensive insulin therapy reduced the rate
of progression in nephropathy compared with conventional
treatment (10). In the Dialysis Outcomes and Practice Pattern
Study (DOPPS) including 9201 patients on dialysis with either
T1D or T2D, there was a U-shaped relationship between HbA1c

and all-cause mortality. Using HbA1c 7 – 8% as reference, there
was 38% increased risk of mortality in patients with HbA1c ≥9%
and 21% for those with HbA1c <7% (11). Based on the available
evidence, The Kidney Disease Improving Global Outcome
(KDIGO) 2020 guideline recommended an optimal HbA1c

target range of 6.5-8.0% for patients with diabetes and CKD,
with emphasis on individualization of targets taking age,
comorbidities, life expectancy and hypoglycaemia risks into
consideration (12).

Optimal glycemic management in patients with diabetes and
CKD can be challenging, particularly in those with advanced
CKD. Reasons include progressive decline in beta-cell function
and increase in insulin resistance along with increased risk of
severe hypoglycaemia and limited choices of OGLDs. Indeed, the
heterogeneity in glycemic control amongst patients with CKD
represents inter- and intra-individual variations amongst
multiple interacting factors including insulin secretion, insulin
resistance, renal clearance of insulin, renal gluconeogenesis and
renal function. Increased insulin resistance in early CKD may be
triggered by metabolic acidosis, uremic toxins, and chronic
inflammation associated with reduced kidney function (13–16).
With progression of CKD, the prolonged glucose-lowering
effects of oral glucose lowering-drugs (OGLD) including
insulin, together with reduced renal gluconeogenesis, shifts the
balance towards increased risk of hypoglycaemia (17, 18). In
patients with ESKD, around 30% had “burn-out diabetes” who
required reduction or discontinuation of insulin treatment and
OGLDs (18). In these patients, initiation of dialysis may remove
uremic toxins with restoration of insulin sensitivity. Patients with
“burnt-out diabetes’ often require only low-dose insulin
treatment (19). On the other hand, the dialysis regimen and
glucose content of dialysates can significantly influence day-to-
day glucose profiles.

One of the greatest challenges in optimizing glycemic
management is accurate assessment of glucose control.
Conventional markers such as glycated haemoglobin (HbA1c),
April 2022 | Volume 13 | Article 869899

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ling et al. CGM in Advanced CKD
fructosamine or glycated albumin may be less reliable in in
advanced CKD and ESKD. With the emergence of continuous
glucose monitoring (CGM), this might be a helpful alternative in
assessing and managing diabetes patients with advanced CKD
and ESKD. The aim of this narrative review is to summarise
current clinical evidence on the accuracy and utility of CGM in
CKD patients. We have reviewed the literature on clinical
reports, observational studies and clinical trials of use of CGM
in CKD. Due to potential issues of sensor performance and the
impact of dialysis regimens, we have devoted special attention to
use of CGM in patients on haemodialysis and peritoneal dialysis,
a challenging group who are prone to both hypoglycemic and
hyperglycemic excursions.
CHALLENGES IN GLYCEMIC
ASSESSMENT IN CKD

The monitoring of glycemic status in patients with diabetes and
CKD including ESKD is challenging. HbA1c, the gold standard as
a laboratory glycemic marker, can be influenced by multiple
factors in CKD. The formation of HbA1c is dependent on the
intensity and duration of non-enzymatic interaction between
blood glucose and hemoglobin. At any one time, patients may
have a mixture of erythrocytes with different ages and varying
degrees of exposure to glucose. Therefore, agents that alter
erythropoiesis and lifespan of red blood cells will affect HbA1c.
For example, HbA1c can be biased towards high values by iron or
vitamin B12 deficiency due to reduced synthesis of red blood
cells with increased relative amount of HbA1c. On the other
hand, HbA1c can be biased towards low values by iron therapy
and use of erythropoietin stimulating agents (ESA) with
increased turnover of red blood cells (20, 21). The uremic
environment in patients with advanced CKD can stimulate
carbamylation of haemoglobin which may interfere with
HbA1c assays using ion-exchange method, but this can be
avoided by using other methods such as high-pressure liquid
chromatography (22).

Alternative glycemic indicators such as glycated albumin
(GA) and fructosamine have their own limitations in CKD.
Extracellular GA is more susceptible to glycation than
intracellular hemoglobin (23). Also, GA is unaffected by factors
such as iron therapy and ESA frequently used in patients with
CKD which can affect HbA1c (21). Due to the shorter half-life of
albumin, GA reflects recent glycemic control lasting for 2-3
weeks. However, GA can be affected by albumin metabolism.
In patients with low albumin state or increased protein turnover
due to chronic inflammation, GA can be falsely low or high (24).
In patients treated with peritoneal dialysis (PD) with increased
protein loss, GA value may underestimate true glycaemia (25).
Although GA can be corrected for serum albumin to reflect the
true distribution (26), GA can be affected by oxidative and
uremic environments, as well as reduced renal clearance of
advanced glycation end products, resulting in positive bias (27).

Fructosamine are ketoamines formed by glycation of albumin
and other less abundant serum proteins (28). Although this
Frontiers in Endocrinology | www.frontiersin.org 3
biomarker involves a wider spectrum of glycated proteins,
fructosamine suffers similar bias as GA due to abnormal
albumin metabolism and increased protein loss in patients
with CKD. In patients with diabetes without CKD and normal
serum albumin level, increased albuminuria was associated with
low fructosamine value. Besides, fructosamine is sensitive to the
fluctuation of serum levels of immunoglobulins and low-
molecular-weight molecules (29). In patients with CKD, the
uremic environment with altered immunoglobulin levels may
affect fructosamine levels (30).
OVERVIEW OF CGM

The introduction of continuous glucose monitoring (CGM)
offers an alternative for more reliable and comprehensive
glycemic evaluation in patients with CKD. Adherence to self-
monitoring of blood glucose (SMBG) is often poor due to
inconvenience of finger-pricking. In a survey conducted in
China, only 40% of patients adhered to the recommended
SMBG frequencies (31). Most commercially-available CGM
devices are minimally-invasive by inserting a small filament
into subcutaneous tissue for measurement of glucose in
interstitial fluid. There is a dynamic equilibrium between
interstitial glucose and blood glucose due to diffusion
dependent on concentration gradient. The interstitial glucose is
absorbed into the filament of the CGM device by capillary action.
The concentration of interstitial glucose is determined by
electrochemical reaction in the sensor (32). Minute-to-minute
interstitial glucose readings are transmitted to and displayed in a
mobile device, either a reader or smartphone app.

In general, CGM systems can be classified into three
categories based on their principles of operation and clinical
usage. For professional CGM devices, readings are principally
used for glycemic assessment by health care professionals in
clinical trial settings which may be blinded or unblinded to the
user. Real-time CGM (rt-CGM) devices display readings to the
user continuously and can incorporate hypoglycemic or
hyperglycemic alerts and trend prediction. The intermittently-
scanned or flash CGM devices display readings to user only when
the user scans the transmitter (33). Real-time CGM and flash
CGM are gaining popularity to facilitate self-monitoring in
diabetes. In some countries, CGM devices are reimbursed or
funded by public health systems for patients with T1D, including
those on dialysis, and some patients with T2D receiving intensive
insulin therapy (34).
PERFORMANCE OF CGM SENSORS IN
ADVANCED CKD AND DIALYSIS

The performance of CGM sensor is dependent on the enzymatic
electrochemical reactions which may be subject to multiple
interferences (Figure 1). In early CGM devices, interstitial
glucose was detected by glucose oxidase-peroxidase method
(36). This method continues to be used by some CGM systems
April 2022 | Volume 13 | Article 869899
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due to the small size and rapid response time of the sensor.
However, the electrodes often require pretreatment for attaching
to the enzyme surface. Prolonged chemical reactions may pollute
the surface of transducer and affect the electrochemical response
(37). Both endogenous and exogenous substances may cause
interference of the electrochemical sensing of the oxidase-
peroxidase reaction.

In patients with advanced CKD, hypoxia or hyperoxia can
give rise to false sensor glucose values by changing the oxygen
concentration at the initiation of the glucose oxidase chain
reaction (38). There had been reports on the effects of
hematocrit in altering glucose readings of glucometers that use
glucose-dehydrogenase or glucose-oxidase methods (39).
Endogenous substances such as uric acid and uremia may
affect sensor performance. Ogawa et al. demonstrated
significant interference of uric acid, a reducing agent, on
glucometers using glucose oxidase method comparing with
laboratory glucose hexokinase reference (40) However, uric
acid did not significantly interfere with sensor performance of
a microdialysis-based CGM system (41). There are no dedicated
studies evaluating the effect of pH on CGM sensor performance
in ESKD. In critically ill patients, extreme pH <6.95 may affect
the performance of point-of-care glucometers but not within pH
Frontiers in Endocrinology | www.frontiersin.org 4
range 6.97-7.84 (42). One study evaluated the effect of pH on the
accuracy of CGM in a group pediatric intensive care patients and
did not observe any significant effect (43). It is unknown whether
fluid status might affect CGM performance in CKD patients due
to lack of dedicated studies, however, a small study comparing
hospitalized diabetes patients with and without congestive heart
failure shown no differences in sensor accuracy (44).

Amongst exogenous substances, ascorbic acid, paracetamol,
xylose, and ethanol have the potential to interfere with glucose
oxidase sensors (45, 46) Other metabolites of icodextrin, such as
maltose, also interfere with glucose dehydrogenase-based
detectors using pyrroloquinoline quinone (GDH-PQQ) due to
lack of selectivity on glucose (47). Use of GDH-PQQ glucometers
can result in falsely elevated glucose readings in patients with PD
using icodextrin dialysate. On the other hand, glucose-oxidase
based capillary blood glucometers are mostly unaffected by
icodextrin (35). Most commercially available CGM system use
glucose-oxidase sensors although interference of CGM sensors
by icodextrin had not been explored.

Performance of commercially available enzyme-based CGM
systems have been validated in small numbers of patients on
dialysis. For example, Yajima et al. evaluated accuracy of two
CGM systems, the Freestyle Libre Pro and Medtronic iPro2™
FIGURE 1 | Potential enzymatic and electrochemical interference by substances commonly encountered in patients with chronic kidney disease using continuous
glucose monitoring (CGM) systems. In the presence of oxygen (O2), energy in glucose (G) is gradually released in the form of electrons in a series of electrochemical
chains catalyzed by Glucose oxidase (GO), an enzyme with Flavin Adenine Dinucleotide (FAD) as cofactor. Released electron is captured by the electrode membrane
to generate electric current between platinum electrode and silver electrode. Platinum and silver are chosen for their excellent biocompatibility, electro-conductivity
and non-toxicity. Blue arrows indicate normal substrate for electrochemical chain. Red arrows indicate potential interference of CGM sensors by for example
galactose, maltose from peritoneal dialysis fluids. Enzymatic interference includes competitive inhibition on active site of GOx by inhibitors. Electrochemical
interference includes interaction between the electrode and interfering chemicals that pass through the semi-permeable membrane. GOx, glucose oxidase; FAD,
Flavin Adenine Dinucleotide; H2O2, hydrogen peroxide; Pt, platinum; Ag, Silver. Adapted from Boehm et al. (35).
April 2022 | Volume 13 | Article 869899
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with Enlite™ sensor versus capillary blood glucose in patients
undergoing HD. For Freestyle Libre, 49% of readings fell within
the Parkes Error Grid zone A and 51% in zone B. The Medtronic
Ipro2™ sensor exhibited smaller deviations with 93% of readings
within zone A and 6.3% in zone B which are regarded as
clinically acceptable. Mean absolute relative difference (MARD)
was 19.5% ± 13.2% for Freestyle Libre versus 8.1% ± 7.6% for
Medtronic iPro2 (48). In a three-week study comparing the
accuracy Freestyle Libre versus capillary blood glucose in 12
patients on haemodialysis, the MARD was found to be higher
than people without ESKD (49). Only one study had evaluated
the accuracy of Medtronic iPro2™ with Enlite™ sensor in 40
patients on PD. When compared with capillary blood glucose,
MARD was 14%-19% (50). The accuracy of Dexcom sensors in
haemodialysis is being investigated in ongoing trials
(NCT04217161). Larger evaluation studies of sensor glucose
against values measured by standard laboratory analyzers are
needed in patients on different dialysis regimens.
USE OF CGM METRICS IN GLYCEMIC
ASSESSMENT IN CKD

Several studies analyzed the correlation between HbA1c,
fructosamine, GA and average sensor glucose across different
CKD stages (Table 2). In general, correlation between HbA1c and
mean sensor glucose values tend to fall in CKD stage G4-5, in
part confounded by differences in use of iron and ESA and blood
haemoglobin. Lo and colleagues reported good correlation of
mean CGM-glucose with HbA1c (r= 0.79) in patients with eGFR
30-59 ml/min/1.73m2 but fell (r=0.34) in participants (n=43)
with eGFR below 30 ml/min/1.73m2 (51). In another study
involving 25 patients with diabetes, the authors reported weak
correlation (r=0.38) between mean CGM-glucose and HbA1c in
patients with eGFR <30ml/min/1.73m2 (52).

Nathan et al. first estimated HbA1c by linearly regressing
mean sensor glucose with HbA1c in intensively-treated patients
with T1D in the Diabetes Control and Complication Trial
(DCCT) (53). Bergenstal et al. later proposed the use of
glucose management index (GMI) to reflect the relationship
between CGM glucose and HbA1c (54). However, these
equations were derived predominantly from T1D and T2D
patients with normal renal function and the reliability of the
current GMI equation is unknown in patients with CKD (55). In
one cohort, Zelnick and colleagues reported similar correlations
Frontiers in Endocrinology | www.frontiersin.org 5
between GMI and HbA1c of 0.78 in patients with eGFR >30 ml/
min/1.73m2 (n=80) and 0.76 in those with <30 ml/min/1.73m2

(n=24) (56). Nevertheless, the 2020 KDIGO guideline suggested
GMI might be an alternative index for guiding treatment in
patients with CKD G4-5 or dialysis where HbA1c had been
shown to be less reliable (12). (Table 1).

Of equal if not greater importance is the use of time-in-ranges
which describes the proportion of time the patient spent in
hyperglycemia or hypoglycaemia range. In 2019, at the
Advanced Technology and Treatment for Diabetes (ATTD)
Conference, there was consensus on using a series of CGM-
derived metrics as clinical targets for glycemic management. The
recommended target in an adult patient with T2D and without
complications was >70% Time in range (TIR, % time sensor
glucose >3.9 and <10 mmol/L), <25% time in Time above range
reflecting significant hyperglycemia (TAR, % time sensor glucose
>10 mmol/L), <5% time below target suggesting hypoglycaemia
(TBR, % time sensor glucose <3.9 mmol/L) with a Coefficient of
Variation < 36% (%CV = SD (standard deviation) of sensor
glucose/mean sensor glucose) (57). However, the validity of TIR
targets and the prognostic values of CGM-derived metrics on
complications and death need to be confirmed in clinical trials
involving patients with advanced CKD and dialysis (12).
GLYCEMIC PROFILES OF PATIENTS ON
DIALYSIS

CGM systems provide comprehensive 24-hour profiles for
assessment of relationships between glycemic variation, timing
of dialysis regimens and insulin administration. In addition to
the aforementioned CGM metrics, most CGM systems now
provide standardized ambulatory glucose profiles (AGPs)
which provide a graphical representation of 24-hour sensor
glucose trends. Table 3 summarizes evaluation studies of CGM
in patients on HD or PD.
GLYCEMIC PROFILES DURING
HEMODIALYSIS (HD)

In patients on HD, the composition of the dialysate and dialysis
membrane both contribute to glycemic variability during HD
and in the post-HD period. Differences in glucose profiles have
TABLE 1 | KDIGO 2020 recommendations on assessment of glycaemia in patients in chronic kidney disease (CKD) stages 1-4 (12).

Population HbA1c Glucose management
indicator

Measure Frequency Reliability

CKD G1-G3b Yes • Twice per year
• Up to 4 times per year if not achieving target or change in

therapy

High Occasionally useful

CKD G4-G5
Including treatment by dialysis or kidney
transplant

Yes • Twice per year
• Up to 4 times per year if not achieving target or change in

therapy

Low Likely useful
April 2022 | Vo
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also been reported between HD and non-HD days. The
phenomenon of “glycemic disarray” in HD has been described,
referring to the fall in glucose during HD followed by rebound
hyperglycemia in the post-HD period (Figure 2). HD-induced
hypoglycaemia is frequently observed. In early studies,
Frontiers in Endocrinology | www.frontiersin.org 6
Takahashi et al. demonstrated reduction in plasma glucose
concentration from pre-dialyser site to post-dialyser site in
patients under a dialysate of 5.55 mmol/L glucose. This
reduction in serum glucose within the dialyzer might be
induced by dialysate-stress triggered diffusion of plasma
FIGURE 2 | Glycemic disarray showing marked variability in patients during haemodialysis (HD) and post-HD period. 24-hour CGM glucose profile in a 58-year-old
man with type 2 diabetes on HD using glucose- free dialysate. He was treated with insulin glargine 24 units in the morning and alogliptin 6.25mg daily with HbA1c of
8.2%. The HD period is indicated by red arrow, showing an acute drop in sensor glucose, followed by post HD-associated hyperglycemia (orange arrow) up to 20
mmol/l at midnight. Green lines indicates target range (3.9 mmol/L to 10 mmol/L).
TABLE 2 | Summary of studies assessing correlation between continuous glucose monitoring (CGM) metrics and glycemic markers in patients with chronic kidney
disease (CKD).

Study Year n Subjects on
ESA

Mean blood haemoglobin
(g/dL)

CGM metric Laboratory
marker

Reported correlation

Frederick et al.
(52)

2012 50 Yes no CKD: 14.3± 1.1
G4 & G5: 11.5 ± 1.5

Mean sensor glucose HbA1c No CKD: n= 25, r= 0.66
G4 & G5: n= 25, r= 0.38

Lo et al. (58) 2014 147 Yes no CKD: NA
G3b: 12.3 ± 1.1
G4: 11.4 ± 1.6
G5: 11.7 ± 1.0

Arithmetic mean CGM-SMBG
glucose

HbA1c No CKD: n= 104, r=0.74
G3b: n= 14, r= 0.79
G4 & G5: n= 29, r= 0.34

Lubaina et al.
(59)

2019 80 (with 49
G4-G5)

Yes NA Mean sensor glucose HbA1c G3b: n= 31, r= 0.85
G4 & G5: n= 49, r= 0.81

Mean sensor glucose Fructosamine G3b: n= 31, r= 0.69
G4 & G5: n= 49, r= 0.51

Zelnick et al.
(56)

2020 104 (with 22
G4-G5)

No no CKD: 13.1 ± 2.0
CKD: 12.2 ± 1.6

GMI HbA1c No CKD: n= 24, r= 0.76
CKD (G3b-G5): n= 80,
r= 0.78

GMI Fructosamine No CKD: n= 24, r= 0.72
CKD (G3b-G5): n= 80,
r= 0.78

GMI Glycated
albumin

No CKD: n= 24, r= 0.63
CKD (G3b-G5): n= 80,
r= 0.71
April 2022 | Vo
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glucose into erythrocyte, as well as loss into the dialysate (72). In
general, patients might lose around 15-30 g of glucose during HD
session. In patients with ESKD, defective counter-regulatory
effects, reduced renal gluconeogenesis and hypoglycaemia
unawareness might result in frequent asymptomatic hypoglycaemic
events. In 17 patients with T2D on HD, the mean sensor glucose was
lower during the on-dialysis than the off-dialysis days (60). In 12
patients on dialysis, Gai et al. reported that the median CGM glucose
level was below the concentration of dialysate of 5.55 mmol/L during
most of the HD session (87% of time) (51). In 9 patients with T2D,
Jung et al. reported significant reduction in mean sensor glucose
during HD session, regardless of the glucose concentration of
dialysate solution (5.55 – 11.1 mmol/L) with most of the
hypoglycaemic events occurring on the day of HD (61). In 46
patients with ESKD with or without diabetes, Jin et al. reported a
significant reduction in mean sensor glucose during HD session
irrespective of the status of diabetes although patients with diabetes
had greater glucose loss during HD session (62).

In a recent study involving 98 Japanese patients with T2D on
HD who had 2-day CGM, sensor glucose showed a sustained
decline irrespective of dialysate glucose concentration with 50%
of patients with diabetes reaching a glucose nadir lower than the
dialysate concentration. In the whole group, 21% experienced
HD-related hypoglycaemia <3.9 mmol/L either during the HD
session or post-HD and before the next meal. There were no
difference in terms of clinical characteristics (e.g. body mass
index, duration of diabetes, insulin treatment) and traditional
glycemic markers (e.g. HbA1c and GA), between patients with
HD-related or post-HD hypoglycaemia and patients without
hypoglycaemia. Despite an average HbA1c: 6.4% ± 1.2% for
these T2D patients, asymptomatic HD-related hypoglycaemia
was frequent and the HD-related hypoglycaemia was only
captured by CGM (65).

Rebound hyperglycemia during the post-HD period may be
related to choices of dialysate and dialysis membrane, which can
influence plasma insulin concentrations during dialysis (73, 74).
Insulin is readily removed from plasma by diffusion owing to its
small molecular size and low protein-binding capacity. However,
during HD, most of the insulin is removed via adsorption with
dialysis membrane through electrostatic and hydrophobic
interactions resulting in hyperglycemia in the post-HD period.
The clearance of insulin by absorption depends on the type of
dialysis membrane, with greatest absorption in polysulfone
membrane and lowest absorption in polyester-polymer alloy
(19). The counter-regulatory hormonal responses to HD-
induced hypoglycaemia could increase insulin resistance and
trigger post-HD hyperglycemia. Kazempour-Ardebili et al.
demonstrated that nocturnal sensor glucose was significantly
higher on the HD-day than HD-free day (60). This was also
confirmed by other studies where time of HD-session was
reported in the 24-hour CGM profile (51, 61, 63). Jin et al.
confirmed post-HD hyperglycemia especially in patients with
diabetes compared with their non-diabetic counterparts (62).
Padmanabhan et al. evaluated the effects of different dialysate
and dialysis membranes on glycemic control. In a study of 38
patients with and without diabetes, HD-induced hypoglycaemia
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and post-HD hyperglycemia occurred with the use of glucose-
free dialysate but the fluctuation could be attenuated by using
glucose-containing dialysate (64). Both HD-induced
hypoglycaemia and post-HD hyperglycemia may contribute to
heightened glycemic variability, increased oxidative stress and
inflammation with worsening of clinical outcomes. By using
CGM, these silent events may be detected early to
inform treatment.
GLUCOSE PROFILES DURING
PERITONEAL DIALYSIS (PD)

One of the determining factors of glycemic profile in patients
with PD is the rate of peritoneal absorption of glucose, which is
in turn affected by glucose concentration of dialysate, dwell time,
and status of membrane transport (75). Ultrafiltration by
peritoneal membrane is created by either crystalloid osmosis
using a higher glucose concentration in the dialysate, or by
colloid osmosis using large colloid agents like icodextrin (76).
Icodextrin solution contains a mixture of glucose polymers
which are slowly absorbed via lymphatics. Together with its
osmotic effect, icodextrin leads to sustained ultrafiltration and is
widely used as an alternative osmotic agent to dextrose especially
in dialysate with long dwelling time (77). Early observational
studies using CGM showed that patients with PD spent a large
proportion of time in hyperglycemia (66). In a study of 20
patients with well-controlled T1D and T2D and mean HbA1c

of 5.9% who were dialysed on glucose-containing dialysates,
patients spent on average 33% time above 10 mmol/l and 1%
time below 3.9 mmol/l (70). Lee et al. evaluated the impact of
glucose influx from dialysate in 25 patients with diabetes on
maintenance PD. In patients using glucose-based dialysate, the
sensor glucose levels increased by 7-8 mg/dL within 1 hour of
exchange using glucose-containing dialysate. The glycemic
excursion was similar with 1.25% and 2.25% glucose solutions
with larger increments observed with 3.86% glucose solutions
(67). Figure 3 shows an example of CGM profile in a patient on
continuous ambulatory peritoneal dialysis (CAPD).

Icodextrin is associated with stable or even decreases in CGM
sensor glucose during PD dwells (67). Marshall et al.
demonstrated the effect of switching dialysate on CGM profiles
in 8 patients with PD. Switching from three 1.36% glucose
exchanges and one 3.86% glucose exchange to two bags of
1.36% glucose exchange, one bag of amino acid exchange and
one bag of icodextrin was associated with lower sensor glucose
and glycemic variability (68). In a retrospective study of 60
patients with 95% of them receiving icodextrin dialysate, the
CGM-detected time in hypoglycaemia was 5% which was often
asymptomatic (69).

The diffusing capacity of the peritoneal membrane is another
crucial factor in determining glycaemia. The exchange rate of
serum-dialysate glucose is dependent on the osmotic pressure, as
well as the transport status of peritoneal membrane. Osmotic
gradient between dialysate and peritoneum is rapidly lost in
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patients with high transporter status due to rapid absorption of
glucose from dialysate (78). As a result, these patients might have
high risk of PD-related hyperglycemia. Skubala et al.
demonstrated the effect of peritoneal transport status using
CGM in 30 patients with and without diabetes. In their study,
patients on 1.36% and 2.27% glucose dialysates had similar
HbA1c, mean 24-hour CGM-glucose, mean post-PD glucose,
and mean post-PD increment in glucose. However, mean post-
PD glucose and mean post-PD increment in glucose was
significantly different in patients with high peritoneal transport
(HPT) and high average peritoneal transport (HAPT), even in
nondiabetic individuals (71).

Another modifiable factor of CGM-glucose is the timing,
route and dose of insulin administration in patients on PD.
Subcutaneous basal bolus insulin regimen are effective regimens
in patients with T1D or T2D on PD but require frequent self-
monitoring (50). Intraperitoneal (IP) delivery of insulin can
counteract the glucose absorption from dialysate. However,
there are no standardised recommendations on initiation or
titration of IP insulin for different dialysates (79). Dose
adjustments are often based on infrequent fasting and post-
meal capillary blood glucose with CGM having the potential to
guide adjustment of insulin therapy in patients on PD.

In summary, patients with diabetes on HD or PD display
distinct glycemic profiles and patterns which can be
comprehensively assessed by CGM. Apart from patient factors
(e.g. beta-cell function, PD transporter status), there are a
Frontiers in Endocrinology | www.frontiersin.org 8
number of modifiable treatment factors, such as choices of
dialysate, dialysis regimen and doses/timing of insulin, where
data from CGM can help optimize treatment.
USE OF PERSONAL CGM PATIENTS
IN ADVANCED CKD OR MAINTENANCE
DIALYSIS
Personal use of real-time (rt) or flash CGM devices may reduce
hypoglycaemia and improve glycemic control in patients with
diabetes without CKD. The benefits of CGM use in patients with
T1D on improving glycemic control are now well-established. In
the Randomized Controlled Trial Examining the Benefit of CGM
Use for Adults with T1D on Insulin Injections (DIAMOND) trial
(80), there was a significant HbA1c difference of -0.6% in favour
of rt-CGM versus standard SMBG after 24 weeks of intervention
in T1D patients on multiple daily injection (MDI). In another
randomized study involving 161 patients with T1D treated with
MDI, a similar significant difference of -0.43% in HbA1c in favor
of rt-CGM versus standard SMBG was reported after 26-weeks of
intervention and during 17-weeks of post-intervention washout
period (80, 81). In an open-labelled randomized trial in adults
with well-controlled T1D on MDI (REPLACE-BG trial), use of
flash CGM without confirmatory SMBG was safe and reduced
hypoglycaemia (82) with improved treatment satisfaction (83).
FIGURE 3 | An illustrative 24-hour ambulatory glucose profile in a patient with type 2 diabetes on continuous ambulatory peritoneal dialysis (CAPD). He is on three 1.5%
dextrose exchanges daily and basal-bolus insulin regimen. Laboratory measures of glycemic control were HbA1c 7.5% and Fructosamine 224 µmol/L. Based on CGM
metrics, glucose management indicator (GMI) was 6.9%, coefficient variation (CV) 36.9%. Blue arrow on bottom indicates times of insulin injection and meal intake.
Vertical blue arrow on top indicate PD exchange timing, and horizontal blue arrow on top indicate PD exchange period. Green lines indicates target CGM glucose range
(3.9 mmol/L to 10 mmol/L).
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Several pilot and small-scale studies supported the potential
beneficial effects of professional CGM in patients on HD or PD,
whilst data on continuous personal use was limited. Most studies
explored the use of blinded CGM for treatment titration. In a
pilot-study, Képénékian al. used blinded CGM in 28 T2D
patients on HD with suboptimal glycemic control for 54 hours
at baseline and during a 3-month follow-up period. After 3
months of intervention, the CGM-adapted insulin regimen was
associated with greater reduction in HbA1c without increasing
symptomatic hypoglycaemia (84). The DIALYDIAB pilot study
involved 15 patients with T1D or T2D and compared the effect of
blinded-CGM SMBG using a two-period design. Use of blinded
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CGM triggered more frequent treatment adjustments compared
with SMBG alone. This resulted in better glucose profile with
significantly lower HbA1c and time above range without
increasing hypoglycaemic episodes (85). There are also few
studies in patients with PD where CGM was used to assess
effects of structured education (50) or compare different glucose
lowering drug regimens (86). These studies demonstrated the
potential of CGM in promoting patient self-management and
informing providers in treatment adjustment to improve
glycemic control.

CGM systems have the potential to be combined with
automated insulin delivery in closed-loop systems, also referred
TABLE 3 | Key Continuous Glucose Monitoring (CGM) studies in patients on hemodialysis or peritoneal dialysis.

Study Year CGM device; study
duration

Mode
of

dialysis

Participants Key findings

Kazempour-
Ardebili et al.
(60)

2009 Unknown (48 hours) HD 19 T2D • Mean sensor glucose was lower during HD days than HD-free days
• Mean sensor glucose and sensor glucose AUC on post-HD days were significantly

higher than HD days
• Nocturnal sensor mean glucose and sensor glucose AUC showed same pattern

Gai et al. (51) 2014 Medtronic Ipro2 (6
Days, Blinded)

HD 12 DM • Median CGM reading was lower than dialysate glucose concentration for 87% of time
• Post-HD hyperglycemia observed in 75% of subjects

Jung et al. (61) 2010 Medtronic Gold (3
days, Blinded)

HD 9 T2D • Significantly lower mean sensor glucose during HD sessions regardless of glucose
concentration of dialysate solution

• Hypoglycaemic events were concentrated on the day of HD session
Jin et al. (62) 2014 Medtronic Minimed (3

days, Blinded)
HD 36 T2D, 10

non-DM
• Significantly lower mean sensor glucose during HD sessions compared with peri-HD

sessions in patients with or without diabetes
• Diabetes patients suffered greater loss in glucose during HD session, and greater post-

HD hyperglycemia than their non-diabetes counterparts
Mirani et al.
(63)

2010 GlucoDay (2 days,
Blinded)

HD 12T2D • Hypoglycaemia observed in post-HD period
• Rebounded hyperglycemia observed after post-HD hypoglycaemia
• Significant higher glycemic variability in SD for HD day when compared with non-HD

day
Padmanabhan
et al. (64)

2018 Freestyle LibrePro (14
days, Blinded)

HD 16 DM + 16
non-DM

• Significantly fewer hypoglycaemic episodes during days of dialysis with glucose-rich
dialysate than glucose-free dialysate

• Significantly lower % TBR and lower % TAR during days of dialysis with glucose-rich
dialysate than glucose-free dialysate

• Significantly less loss in effluent glucose irrespective to diabetic state during days using
glucose-rich dialysate than glucose-free dialysate

Hayashi et al.
(65)

2021 Medtronic Gold (2
days, blinded) &
Medtronic Ipro 2 (2
days, blinded)

HD 98 T2D • Reduced sensor glucose irrespective of the dialysate glucose concentration (100, 125,
150 mg/dl) 50% of patients reached a nadir lower than dialysate glucose
concentration, 21% of patients developed asymptomatic hypoglycaemic events during
HD and post-HD session

• Glycemic variability and % TBR increase in patients who experienced hypoglycaemic
events than their counterparts without events

Schwing et al.
(66)

2004 Medtronic Minimed (3
Days, Blinded)

PD 7 DM • Increase in sensor glucose after dialysate exchange in two representative patients

Lee et al. (67) 2013 Medtronic Minimed (3
days, Blinded)

PD 25 DM • Increase in sensor glucose within 60 minutes of refilling glucose-rich dialysate
• Reduced sensor glucose in icodextrin dialysate after refilling

Marshall et al.
(68)

2003 Medtronic Minimed (3
days, Blinded)

PD 8 DM • Mean sensor glucose and glycemic variability in % CV significantly lower when
switching from glucose-rich dialysate to glucose-free dialysate

Qayyum et al.
(69)

2016 Dexcom G4 (7 days,
real time CGM)

PD 60 T1/T2D • Sensor-detected hypoglycaemia in subgroup of patients with A1c >9%

Okada et al.
(70)

2015 Medtronic Gold (3
days, Blinded)

PD 20 DM • Frequent sensor-detected hyperglycemia observed despite well controlled A1c

Skubala et al.
(71)

2010 Medtronic Minimed (3
days, Blinded)

PD 16 T1/T2D 14
non-DM 13
healthy
control

• Significant difference in mean sensor glucose and mean changes in sensor glucose
after dialysate exchange in subgroup of patients with HPT versus H-APT

• Peritoneal transport status influenced mean 24-hour sensor glucose in non-diabetic
patients on PD as well as mean sensor glucose and mean changes in sensor glucose
after dialysate exchange in diabetic patients on PD
AUC, area under the curve; HD, hemodialysis; PD, peritoneal dialysis; HPT, high peritoneal transport; HAPT, high average peritoneal transport; T1D, Type 1 diabetes; T2D, Type 2
diabetes; DM, diabetes mellitus; TBR, time below range; TAR, time above range.
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to as an ‘artificial pancreas”. A recent randomized trial evaluated
a fully automated closed-loop system against standard insulin
therapy in 26 patients with T2D on HD using a cross-over design
(87). In this study, TIR was significantly higher (57.1% versus
42.5%) and time above and below range were lower (TAR: 42.6%
versus 56.6%, TBR: 0.12% versus 0.17%) in the closed-loop phase.
The mean sensor glucose was also significantly lower in the
closed-loop versus control phase (10.1 mmol/L versus 11.6
mmol/L). Of note, the time spent in extreme hyperglycemia
(defined as >20 mmol/L) was significantly lower during the
closed-loop phase than the control phase (1.8% versus 6.7%).
However, the system was given only for short-term use operated
by healthcare professionals in a clinic setting rather than
home use.

The ease of operation of personal CGM systems in patients
with ESKD with multiple comorbidities need to be considered.
Many patients with ESKD may have visual impairment due to
retinopathy or cataracts, skin problems and cognitive issues that
limit their ability to operate these devices. However, personal
CGM with real-time alerts might benefit patients with ESKD on
complex insulin regimens or vulnerability to hypoglycemia.
Future research is required to investigate the utility and cost-
effectiveness of personal CGM in patients with advanced CKD
and dialysis.

There are some limitations in the use of CGM for patients
under dialysis. Apart from potential sensor interference from
endogenous and exogenous substances (46), accuracy of CGM is
lower in the hypoglycemic range and under rapid changes in
blood glucose values (88–90). False hypoglycaemic alerts may
occur more frequently under these conditions, which may lead to
unnecessary treatment. A confirmatory SMBG value is advisable
for treatment decisions at these extreme glucose values.
Additionally, repeated false positive alerts could lead to alarm
fatigue and increase patient anxiety.
CONCLUSIONS

Optimal glycemic control will delay progression of CKD and
improve clinical outcomes. HbA1c and alternative glycemic
markers have limitations particularly in patients with advanced
CKD. With the advent of CGM, it is now possible to monitor the
glycemic status with better precision in patients with CKD.
Professional CGM can inform health care professionals on
Frontiers in Endocrinology | www.frontiersin.org 10
glucose profiles not provided by HbA1c in patients with CKD
to optimize treatment regimens. Real-time or flash CGM provide
instant or timely feedback to users on impact of meals and
treatment on glucose excursion. The inclusion of real-time alerts
in CGM, displayed in smart devices, can provide early warnings
against hyperglycemia and hypoglycaemia. This information
may improve the safety of prescription of GLDs and insulin in
these high-risk patients. Finally, the integration of these CGM
system with fully automated closed loop insulin delivery systems
offer the potential of more precise control.

The use of CGM in patients with ESKD has revealed distinct
glycemic patterns during maintenance dialysis. Glycemic pattern
in patients under HD are impacted by the glucose concentrations
in dialysate and choices of dialysis membrane. Glucose-free
dialysate is generally preferred due to lower cost and chance of
bacterial infection. However, glucose-containing dialysate may
reduce HD-related hypoglycaemia and post-HD hyperglycemia,
especially in patients with diabetes. Health care professionals
should consider providing glucose-containing dialysate,
replenishing post-HD glucose loss by snacks, or adjusting
insulin regimen to avoid HD-related glycemic excursion.
Similar to HD, glycemic patterns in PD patients are impacted
by diasylate glucose concentration and peritoneal membrane
transport state. Health care professionals should consider glucose
influx from glucose-rich dialysate and adjust insulin treatment
to maintain a stable blood glucose. Although switch to glucose-
free dialysates may theoretically reduce glucose influx,
randomized trials suggested this might be associated with
adverse outcomes (91). Pending further evidence, a careful
adjustment of insulin and dialysate regimens in patients under
PD may strike the balance between optimizing glycemic control
and ultrafiltration. Future studies using CGM should be
conducted to investigate whether the use of personal CGM
with glycemic alerts will reduce hypoglycaemia and
complications and improve long-term outcomes in patients
with advanced CKD and dialysis.
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