
brain
sciences

Article

State-of-the-Art CNN Optimizer for Brain Tumor
Segmentation in Magnetic Resonance Images

Muhammad Yaqub 1 , Jinchao Feng 1,* , M. Sultan Zia 2, Kaleem Arshid 1, Kebin Jia 1,3,
Zaka Ur Rehman 2 and Atif Mehmood 4

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100000, China;
myaqubciitswl@gmail.com (M.Y.); a_kaleem@outlook.com (K.A.); kebinj@bjut.edu.cn (K.J.)

2 Department of Computer Science and IT, The University of Lahore, Gujrat Campus, Main GT Road,
Adjacent Chenab Bridge Gujrat, Gujranwala, Punjab 52250, Pakistan; sultan.zia@cs.uol.edu.pk (M.S.Z.);
rao.zaka@yahoo.com (Z.U.R.)

3 Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University
of Technology, Beijing 100000, China

4 School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xi’an 710071, China;
atifedu151@yahoo.com

* Correspondence: fengjc@bjut.edu.cn; Tel.: +86-17810604461

Received: 7 June 2020; Accepted: 1 July 2020; Published: 3 July 2020
����������
�������

Abstract: Brain tumors have become a leading cause of death around the globe. The main
reason for this epidemic is the difficulty conducting a timely diagnosis of the tumor. Fortunately,
magnetic resonance images (MRI) are utilized to diagnose tumors in most cases. The performance
of a Convolutional Neural Network (CNN) depends on many factors (i.e., weight initialization,
optimization, batches and epochs, learning rate, activation function, loss function, and network
topology), data quality, and specific combinations of these model attributes. When we deal with
a segmentation or classification problem, utilizing a single optimizer is considered weak testing
or validity unless the decision of the selection of an optimizer is backed up by a strong argument.
Therefore, optimizer selection processes are considered important to validate the usage of a single
optimizer in order to attain these decision problems. In this paper, we provides a comprehensive
comparative analysis of popular optimizers of CNN to benchmark the segmentation for improvement.
In detail, we perform a comparative analysis of 10 different state-of-the-art gradient descent-based
optimizers, namely Adaptive Gradient (Adagrad), Adaptive Delta (AdaDelta), Stochastic Gradient
Descent (SGD), Adaptive Momentum (Adam), Cyclic Learning Rate (CLR), Adaptive Max Pooling
(Adamax), Root Mean Square Propagation (RMS Prop), Nesterov Adaptive Momentum (Nadam),
and Nesterov accelerated gradient (NAG) for CNN. The experiments were performed on the
BraTS2015 data set. The Adam optimizer had the best accuracy of 99.2% in enhancing the CNN
ability in classification and segmentation.

Keywords: brain tumor; optimizer; deep learning; convolutional neural network; gradient descent;
segmentation; Adam

1. Introduction

A disease is defined as a disorder of function in a living being. If we drill down the definition,
it can be defined as a disorder of structure or function in the division of cells in a living organism.
If a disorder of unnatural mass is developed in the cerebrum of a brain, we call it a brain tumor.
Brain tumors are of different types and can be dangerous at times, and glioma is the most common
type of nonpermanent or treatable tumor. Glioma can be classified into two types, namely High-Grade

Brain Sci. 2020, 10, 427; doi:10.3390/brainsci10070427 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
https://orcid.org/0000-0003-4382-5240
https://orcid.org/0000-0001-5603-8874
https://orcid.org/0000-0002-8905-8510
http://dx.doi.org/10.3390/brainsci10070427
http://www.mdpi.com/journal/brainsci
https://www.mdpi.com/2076-3425/10/7/427?type=check_update&version=2

Brain Sci. 2020, 10, 427 2 of 20

Gliomas (HGG) and Low-Grade Gliomas (LGG). LGG is a slow-spreading tumor, while HGG is
a rapidly growing tumor, which explains why HGG is a fatal disease. People who are diagnosed
with HGG and who are aged between 20–44 years have a survival rate of 19% with treatment after
14 months of diagnosis, based on a recent survey of the central nervous system (CNS) [1] on a Canadian
population from 2009–2013. Figure 1 shows the distribution of survival rates between different types
of brain tumors.

Figure 1. The 5 tumor types with their survival rates for patients aged between 20–44.

Though there are many medical imaging modalities available to differentiate the characteristics
of brain tumors, magnetic resonance images (MRIs) are the most commonly used medical imaging
modalities due to its advantage of visual analysis and its flexibility in the domain of computer-aided
analysis of medical images. It plays a vital role at many stages of the clinical work flow for population
screening; the role of MRI modalities will ramp up in the coming future due to developments in
the domain of analysis methods along the lines of cost effectiveness and accuracy. With the help
of MRIs, tumors can be differentiated into different grades of gliomas. Among the latest high-tech
technologies, MRIs can be considered one of the most advanced techniques used to characterize brain
tumors for diagnosis and evaluation. Accurate identification of tumor distance can be considered a
critical phase of various neuroimaging studies [2]. The types of MRI modalities are clearly outlined in
Figure 2. They [3] focused their experimental analysis on the fully annotated brain tumor segmentation
(BraTS) challenge 2013 data set using the well-defined training and testing splits, thereby allowing
us to compare directly and quantitatively a wide variety of other methods. Deep learning (DL) and
Convolutional Neural Networks (CNN) stood at the center of all these developments in brain MRI
image analysis and computer interventions and proved their adoption to be a successful execution to
drive for continuous improvements.

Convolutional networks were inspired by biological processes [4,5] in that the connectivity pattern
between neurons resembled the organization of the animal visual cortex. Initially, Artifical Neural
Network (ANN) was used to study the data from digital images, but in order to do so, the domain
experts or the researches have to manually decide and extract features from the digital images and
to feed it to the ANN. CNN came to the rescue in eliminating the cumbersome manual work of
deciding the features. CNN is one of the most remarkable forms of ANN that is inspired by natural
visual recognition phenomenon [6]. There are innumerable applications of CNN in the field of image
classification and pattern recognition [7]. The architecture of CNN was introduced in the late 80 s [8].
After the introduction of CNN, it was improved by LeCun in the late 90s [9], but the introduction of
the ConvNet architecture [10] in the 21st century has taken CNNs to a different level, with an error
rate of 15.3% as compared to conventional computer vision (CV) techniques [11].

Brain Sci. 2020, 10, 427 3 of 20

CNN has made huge impacts in the medical imaging domain [12] and many other fields such
as computer vision, digital image processing, and artificial intelligence. Due to its multilayered
architecture, CNN is the most popular technique employed for image analysis although there are
many deep learning algorithms introduced over the past decades [13–15]. Similar to ANN, CNN also
uses an adaptive approach to learn spatial hierarchies of features through back propagation, but unlike
ANN, CNN does not have fully connected neurons for all the layers and it has only the last layer
as fully connected layer. CNN consists of multiple building blocks, such as convolution layers,
pooling layers, and fully connected layers [16]. The convolution layer is responsible for feature
extraction, which makes it special compared to ANN; this layer is typically responsible for convolution
operation and activation function.

Figure 2. The different tumor types with different shapes in four magnetic resonance images (MRI)
sequences: (a) T1 MRI sequence, (b) T2 MRI sequence with tumor type edema, (c) T1C MRI sequence
with core tumor, and (d) Search Results Web results Fluid attenuation inversion recovery (FLAIR)
sequence showing the ground truth of a tumor.

2. Literature Review

Over the last few years, there has been significant effort from fellow researchers in the
development of CNN; some articles focused on studying the characteristics of machine learning
algorithms [17], which tried to explain the multilayered network methodology along the lines of back
propagation and updating weights. In Table 1 detailed literature review presented with methodology,
result and future directions. The working mechanism of CNN and other neural networks along with
their usage in the machine learning and deep learning algorithms is also discussed briefly. Their study
opened the door towards future research directives leading to image segmentation. It has made it clear
that the acquisition of an edge is a necessary part of a good segmentation [18]. Segmentation usually
means segmenting the image into a required partition; edge detection is employed by many researchers
to find the best regions in the image. Canny and his coworkers were introduced to edge-based
segmentation, which utilized the optimal smoothing filter to maintain the edges while performing
image segmentation. In a pilot study conducted by [19], in an effort to monitor the performance

Brain Sci. 2020, 10, 427 4 of 20

of a handwriting recognition algorithm, segmentation was employed to handle the spatially sparse
components and these segmented parts were utilized as an input image in the input layer of the CNN
algorithm. Reference [20] proposed a deep siamese convolution neural network-based approach for
classification of Alzheimer’s disease stages and produced promising results in term of classification on
brain images, which is able to identify normal control and disease patients. Reference [15] introduced
a thresholding technique, which became a popular technique used for segmentation over the years.
They suggested the aforementioned limitation by designing a framework for optimizing Bayesian
design and the stability of integrated multidisciplinary systems. Their proposed framework was
built on the Gibbs estimation process and applies the gradient information policy (KG) for sequential
ordering to achieve the largest one-time increase expected in the design process [21]. In this technique,
the gray scale and white scale values are filtered or manipulated by selecting a threshold value.
Otsus method, k-means clustering, and maximum entropy method are among the most famous
threshold techniques. The threshold value acts as a mid-value, and input values above or below
the nominated threshold value are finally displayed. Thresholding methods are nowadays used in
segmenting computed tomography (CT), Magnetic Resonance (MR), and Ultrasonic and Positron
Emission Tomography (PET) images. In a recent study, a blend of RNN and CNN was introduced
with the name Convolutional Recurrent Neural Network (CRNN) [14]. The specialty of CRNN is the
recurrent layer, which adds the extracted features, and the feed forward layer, which provides the
output. An improved output is obtained due to the improved back propagation. In [22], a 3 CNN
layer-based deep learning method was proposed to classify different brain tumour types and grades.
Deep-CNN-based transfer learning and fine-tuning was used to segment brain tumors [23]. A recent
study clearly outlined the components of CNN (layers, ReLU, dropout, response, and pooling) and its
working mechanism [24]; this study is a comparison of scale-invariant feature transform (SIFT) and
sparse coding for ImageNet LSVRC (Large Scale Visual Recognition Challenge) held in 2010. A data
set of over one million images was utilized with over 1000 categories for training and 50,000 images for
testing their system, and they adopted a methodology which enhanced the error rate approximately by
2%. Furthermore, when researchers were struggling with discriminative classifiers by separating the
hyper planes, supervised learning-based Support Vector Machine (SVM) came to the rescue. A recent
study applied Least Square Support Vector Machine (LS-SVM) to separate the White Matter (WM)
and Grey Matter (GM) regions [25] and used a brain atlas for their analysis by performing manual
intervention. Later on, scientists started to introduce the multilayered combined multidimensional
methodology [26]. The winner neuron was taken as an input after maxpooling the function and took
part in further training and segmentation for deep learning. This 2D methodology somehow improved
the algorithm performance.

Table 1. Literature review.

Sr. No. Methodology Results Future Directions

1 Three layered feed forward ANNs and
two real world problems are set as a
benchmark to access the performance
of Group Search Optimizer (GSO) [27].

GSOANN has a far better
performance as
compared to regular ANN.

—–

2 A hybrid model of DSA and DL to help
improve the relationship of computer
science and bioinformatics [28].

Differential Search Algorithm
(DSA) and DL can help produce
more xylitol for sugar free gums.

Computational biologists
and computer scientist
can together produce a
hybrid model using deep
learning OA.

3 In auto-encoders like VVG-9
and CIFAR-10, they design some
experiments to study the properties
of RMSProp and Adam against
Nesterov’s Accelerated Gradient
method [29].

On very high values of β1 = 0.99
Adam outperforms lower training
and test losses, whereas with
β1 = 0.9, NAG performs better.

Advance theory in getting
more better results by
getting β1 close to 1.

Brain Sci. 2020, 10, 427 5 of 20

Table 1. Cont.

Sr. No. Methodology Results Future Directions

4 Different optimization algorithms are
studied by side CNN architecture [30].

Among 7 optimizers, on the LeNet
architecture, Adam provides the
smallest MSE whereas SGD and
Adagrad failed.

Can build analytical
protable image devices

5 Constructed a few illustrative binary
classification problems and examined
empirical generalization capability of
adptive methods agaisnt GD.

Solutions found by adaptive
methods generalize worse than
GSD.

Adaptive methods
should be reconsidered.

6 Energy Index based Optimization
Method (EIOM) that automatically
adjusts the learning rate in
backpropagation [31].

EIOM proves to be the best when
compared with state-of-the-art
optimzation methods.

—–

7 A non-asymptotic analysis of the
convergence of two algorithms: SGD
and simple averaging [32].

The analysis suggests that the
learning rate is proportional to the
inverse of the number of iterations.

Differential and non-
differential stochastic

8 Adaptive learning rate and laplacian
approach have been proposed for Deep
Learning in MLP [33].

Improved classification accuracy —–

9 Proposed a fundamental approach
for anatomical, celluler stuctures,
and tissue segmentation using CNN
through image patches measuring 13
× 13 voxels [34].

On different data sets, comparing
the six commonly used tools (i.e.,
ROBEX, HWA, BET, BEaST, BSE,
and 3dSkullStrip), they achived
the highest average specifity.

Can be performed on
most advanced tools and
used a real time data set
to get better result.

10 Used a pretrained CNN model on
augmented and orginal data for brain
tumor classification [35]

They achieved 90.67 accuracy
before and after data
augmentation on the proposed
methed and compared with most
advanced methods

Used light weight CNN
to entend their work for
fine-grained classification
differential stochastic.

11 A CapsNet for brain tumor
classification and investigation of
the overfitting problem based on
CapNet [36].

On 10 epochs, they achieved
86.56% accuracy, with the
comparative analysis with
CNN learning rate proportional
to the inverse of the number of
iterations.

In the future,
investigations on the
effects of more layers on
the classification accuracy
will be performed.

12 A review on deep learning techniques
in the field of medical images
classification [37]

They discussed in detail the deep
learning approaches and their
suitability for medical images.
The learning rate is proportional
to the inverse of the number of
iterations.

Further research is
required to apply
the techniques to the
modalities, where these
are not applied.

13 GA-SVM and PSO-SVM method used
to classify heart disease [38].

GA and particle swarm
optimization (PSO) algorithms
combined with SVM achieved a
high accuracy.

—–

14 Applied U-NET approach using
BraTS2017 data set and prediction of
patient survival [39]

89.6% Accuracy achieved with less
computational time

—–

15 Two-way path architecture based on
CNN for brain tumor segmentation on
the BraTS 2013 and 2015 data sets [3]

Input cascaded CNN got a high
accuracy with 88.2% on the
comparitive analysis with other
architechtures.

Further improved the
results with increasing
architechture layers and
data set.

3. Optimization Algorithms

Most of the neural network-based techniques including CNN utilize gradient descent to lower
the error rate for the training process and for reforming the internal parameters. Gradient descent is a

Brain Sci. 2020, 10, 427 6 of 20

first-order optimization algorithm, and its derivatives provides direction and increasing or decreasing
error function. Information guides the error function, altering it downward to the local minimum
[29]. The orthodox batch gradient descent technique computes a gradient of the whole training data,
which makes its process computationally slow. To overcome this problem, some algorithms were
developed as follows.

3.1. Adaptive Momentum (Adam)

The Adaptive Momentum (Adam) technique estimates the adaptive learning rate for all
parameters involved in the training of gradients. It is a computationally efficient and very simple
technique that includes first-order gradients with a small memory requirement for stochastic
optimization. The proposed technique is utilized in the case of machine learning issues with
high-dimensional parameter spaces and huge data sets that calculate learning rates individually
for various parameters from approximations that include first- and 2nd-order moments [14].
The mathematically notation for Adam are as follows:

xt = δ1 ∗ xt−1 − (1− δ1) ∗ gt (1)

yt = δ2 ∗ yt−1 − (1− δ2) ∗ g2
t (2)

4ωt = −η
xt√

yt + ε
∗ gt (3)

ωt+1 = ωt +4ωt (4)

• η: Initial learning rate
• gt: Gradient at time t along ω j

• xt: Exponential average of gradient along ωj

• yt: Exponential average of squares of gradient along ωj

• δ1, δ2: Hyperparameters

Adam reduces the computational cost, requires less memory for implementation, and is invariant
to diagonal rescaling of the gradients. This takes care of the issues such as but not limited to
huge data sets, hyperparameters, noisy data, inadequate gradients, and nonstationary problems
that required small tuning. Adam configuration parameters are alpha α: this is a learning rate or step
size, most presumably picking large esteem (e.g., 0.3) in light of the actuality that it achieves quick
learning instead of a smaller esteem and that the outcomes back adapting are perfect during training.

3.2. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) and variants of SGD are commonly used for deep learning.
These algorithms have well-defined steps that produce outputs by taking inputs to produce exact
results [40,41]. According to cost work and target work, the best algorithms are determined by strategic
relapse, linear regression, and neural networks. The main purpose of SGD is to limit the cost work.
If there is a huge preparing set, gradient descent is a computationally exceptionally sumptuous system
itself. SGD-based algorithms allow users to customize the measures of the algorithms for huge data
sets. We performed linear regression utilizing gradient descent, and the equation was as follows:

W = ω− η∇Qi(ω) (5)

where Qi(ω) is the estimated data, −Qi being the current data under observation. Generally, Q is an
error function; subsequently, by tracking the gradient direction in the space of values of (ω), we move in
the direction of (ω) that reduces the error. SGD computes the best (ω) by minimizing Q simultaneously.
More importantly, with either perception segmentation or linear regression, (ω) requires the weight

Brain Sci. 2020, 10, 427 7 of 20

parameters of the model and Q(ω) is a the error for the model. Regular gradient descent is composed
as follows:

W ← η∇Q(ω) (6)

where the error objective is (with its gradient)

Q(ω) = ln ∑ iQi(ω) ⇒ ∇Q(ω) = ln ∑ i∇Qi(ω) (7)

3.3. Momentum

Stochastic gradient descent is a popular optimization technique, but the run time is comparatively
high when training the model. Momentum is intended for quick learning, particularly in the face of
high curvatures, small but noisy gradients, or steady gradients. The neighborhood minima can be
obtained by the utilization of momentum by the quantity of motion of a moving body with respect
to its mass and velocity [42]. This is the add-on of the backpropagation technique that updates the
weights by decreasing the error rate from the backward direction. A change of direction in the gradient
will change the momentum accordingly. Momentum comes in handy, especially when the network
is not well defined. Various directions will cause the development of long tight valleys. In these
conditions, the inaccurate surface has a comprehensively unique ebb and flow along a gradient descent
that does not point towards the base as most point to the surface and the continuous step size of the
GD can vacillate from one side to the next. It progresses very slowly to the minima. The expansion of
momentum accelerates the intermingling at least by damping these motions. The weight w, momentum
m, and given time (t) become:

4ωi,j = µδiyi + m4ωi,j(t− 1) (8)

This equation shows that the overall parameters are essentially dictated by experimentations where
0 < m < 1. Weight refresh presents as one, and momentum adds the fraction m that increases step size
towards the minimum when the gradient technique suggests a similar solution. The overall learning
rate can be reduced when utilizing a great deal of momentum (m near 1) by surging past the base with
excellent stages, and it is joined by an excessive learning rate with momentum. Momentum provides
an updated rule which is inspired by the physical perspective of optimization. Imagine a ball in the
mountainous area trying to reach the deepest valley, it passes through slight hills when the slope is
very high and the ball gains a lot of momentum. The speed of the ball depends on the momentum of
the ball, and momentum provides a boost to speed up learning that changes very little to SGD and
velocity to make the updates that store velocity for the parameters. The adapted function for SGD uses
the momentum updated rule. However, while momentum is very high, the goal is very close which
does not know how to slow down the speed. At the beginning, the oscillate minima do not reach the
goal. GD has extra cure surfaces in one direction but not in the other direction. It also reduces the
oscillation. For updating the weights, it takes the gradient of the current and previous time steps which
move faster towards convergence. Convergence is faster when we apply the momentum optimizer to
surfaces with curves.

vt = γvt−1 + η∇J(θ; x, y) (9)

θ = θ − vt (10)

3.4. Adaptive Gradient (Adagrad)

Adagrad adjusts the learning rate according to the parameters, performing bigger updates for
inconsistent parameters and smaller updates for successive parameters [43]. The update for each
parameter θi in each iteration t is as follows:

θt,i = θt−1,i −
η√

Gt−1,ii + ε
· gt−1,i (11)

Brain Sci. 2020, 10, 427 8 of 20

where gt−1,i is the gradient to the parameter of the target function θi at iteration t − 1 and ε is a
smoothing term which dodges division by zero:

gt−1,i = ∇θ J(θi) (12)

where gt−1,iiεRd× is a diagonal matrix and element i is the sum of the squares of the gradients to θi to
iteration t− 1. By means of an element-wise matrix– vector multiplication �between Gt−1 and gt−1,
the vectorization of

θt = θt−1 −
η√

Gt−1,ii + ε
· gt−1,i (13)

Adagrad takes out the requirement to manually tune the learning rate; however, its gathering
of the squared gradients in the denominator causes the learning rate to shrivel and to moderate
intermingling speed.

3.5. Adaptive Delta (AdaDelta)

AdaDelta is an extension of Adagrad which clears the rotting learning rate issue but, unlike Ada
Grad, does not collect past squared gradient. It restricts the window of gathered previous gradient [44].
The AdaDelta technique strongly adjusts weights after using the first-order time only and takes
minimum computational costs compared to previous techniques. In this technique, there is no
manual tuning or learning. Moreover, it is robust to raucous gradient information, data modalities,
hyperparameters, and model design decisions. It improves the steepest descent direction stated by a
negative gradient.

∇xt = −ηgt (14)

where gt is the gradient at the ith iteration δ f (xt
δ f (xt

) and η is a learning rate which controls how vast the
stage is toward the negative gradient. Picking a learning rate and exhibiting another unique learning
rate evaluated per measurement by utilizing the first order, it utilizes a modest quantity of calculation
per iteration in gradient descent, which is a downside to AdaDelta. Some of their discovered hyper
parameters are not up to the best degree to adjust outcomes. Inspired from Adagrad, the two primary
disadvantages are

• the incessant rot of learning rates for the training time and
• the requirement for automatically chosen comprehensive learning rates.

Notwithstanding across the board assortment of input data types, nonlinearity, total hidden units,
number of distributed imitations, and the hyperparameters that do not need to be balanced are some
concrete reasons exhibiting that AdaDelta has strong learning that can be useful in grouped assortment
of conditions and that there is no requirements for the physical setting of a learning rate.

3.6. Adaptive Max Pooling (Adamax)

Adamax is inspired from Adam; the changes are made on how the infinity norm (ut) is used.
It was demonstrated that the vt value in Adam with 1 will merge to a progressively stable value [45].

ut = β∞
2 · vt−1 + (β∞

2) · |gt|∞ = max(β2 · vt−1, |gt|) (15)

3.7. Nesterov Adaptive Momentum (Nadam)

Reference [5] presented a variant of the momentum algorithm inspired by Nesterovs accelerated
gradient method [46].

v ← αv− ε∇θ [
1
m

m

∑
i=1

L(f (x(i); θ + αv), y(i))] (16)

θ ← θ + v (17)

Brain Sci. 2020, 10, 427 9 of 20

where the parameters α and ε play similar roles as in the standard momentum method. The difference
between Nesterov momentum and standard momentum is evaluation of the gradient. With Nesterov
momentum, the gradient is evaluated after the existing velocity is applied. Thus, one can interpret
Nesterov momentum as an attempt to add a correction factor to the standard method of momentum.

3.8. Root Mean Square Propagation (RMSProp)

Root Mean Square Propagation (RMSProp) was invented by Geoffrey Hinton. It is similar to the
gradient descent algorithm with momentum. RMSProp tries to resolve Adagrad’s radically diminishing
learning rates by using a moving average of the squared gradient, which utilizes the magnitude of
recent gradient descents for normalization of the gradient. Therefore, with the increase of the learning
rate, the algorithm used would move in a horizontal direction with larger steps converging faster.

E[g2]t = 0.9E[g2]t+1 + 0.1g2
t (18)

θt+1 = θt −
η√

(1− γ)g2
t−1 + γgt + ε

· gt (19)

γ is the decay term that takes a value from 0 to 1. gt is the moving average of squared gradients.

3.9. Cyclic Learning Rate (CLR)

Learning rate is a hyperparameter that controls how much you are adjusting the weights of our
network with respect to the loss gradient. It is because you are on your way to optimizing a neural
network that you have just created with gradient descent. Now, essentially the goal of gradient descent
is to find the minima of the loss function that your neural network is trying to optimize.

• CLR provides a technique for setting the global learning rates for training neural systems
that take out the the need to perform tons of investigations to locate the best values with no
extra computations.

• CLR provides an excellent learning rate range (LR range) for an experiment by introducing the
concept of LR range test.

3.10. Nesterov Accelerated Gradient (NAG)

Nesterov acceleration optimization is similar to a ball rolling down the peak but knowing exactly
when to slow down before the gradient of the hill increases again. We can calculate the gradient not
with respect to the present step but with respect to the future step. We estimate the gradient of the
gain, and based on the importance, we will update the weights accordingly. When going down the
peak where we can look ahead in the future, we can optimize the descent faster, which is the reason it
works slightly better than standard momentum.

θ = θ − vt (20)

vt = γvt−1 + η∇J(θ − γvt−1) (21)

Selection of a good starting learning rate is just the first step. Further, we need to gradually
decrease the learning rate while training for a robust model. The learning rate becomes constant
during the course of training, which might become too large to converge and causes the loss function
to change around the local minimum. This approach is used for a higher learning rate to rapidly reach
the regions of (local) minima, while in the initial training stage, a smaller learning rate is set, as training
progresses, exploring deeper and more thoroughly in the region to evaluate the minimum.

Brain Sci. 2020, 10, 427 10 of 20

4. Data Set and Methodology

The proposed technique has been trained and validated on the BraTS2015 databases [47].
In BraTS2015, there are four MRI sequences available for every patient: FLAIR, T1-weighted (T1),
T2-weighted (T2), and T1-weighted (T1c). The training set involves 220 High-Grade Gliomas (HGG)
and 54 Low-Grade Gliomas (LGG) in the BraTS2015 challenge data set. We extracted around 268,000
and 360,000 patches to train our proposed CNNs for LGG and HGG, respectively. The proposed CNNs
were developed using Tensorflow backend.

The proposed ConvNet CNN architecture was utilized in the investigation. In order to get enough
information on the optimizer’s performance and accuracy, the proposed convNet architecture was
trained and validated with different optimizers explained in the above section. We divided the data
set in Table 2 for training 80% and validation 20%. The ConvNet architecture was validated using
10 optimizers based on gradient descent (as shown in the above section), 2 options of the data batch
size (128), 3 options of the epoch (0, 50, . . . 250, 300), and 4 options of the learning rate (1e−1, 1e−2

. . . 1e−10). We used the patches of the different patients in the training and validation processes.
Details of the architecture are given in Table 3. The proposed ConvNet architecture consists of 8
convolution layers, 3 max-pooling layers, and 3 fully connected layers. Some activation functions
used in the ConvNet architecture include Rectified Linear Unit (ReLU) and Soft Max. The pooling
layer is responsible for dimensionality reduction over time; it reduces the spatial size in every step to
decrease the number of selected parameters for the subsequent step by operating on each feature map
independently. The output from the final pooling or convolution layer follows a one-dimensional (1D)
array; from here, the architecture is completely the same as ANN, in which, all the values in the 1D
array are fully connected to every output by a temporary weight given to each of them. Each fully
connected layer is followed by a nonlinear function; the fully connected layers typically have the same
number of output nodes as the number of classes. Design details can be found in Table 3, and the
ConvNet architectural is shown in Figure 3.

Figure 3. Proposed architecture.

Table 2. Data set used for proposed technique: Four MRI modalities are used for both tumor types
High-Grade Glioma (HGG) and Low-Grade Glioma (LGG). The modalities are T1-weighted (T1),
2-weighted (T2), T1-weighted (T1c), and FLAIR. The initial two parameters represent the tumor type
and number of patients, and the next parameter represents the number of patches extracted for training
and validation.

Tumor Type No. Patients No. Patches Extracted

Training Testing

HGG 220 360,000 90,000

LGG 54 268,000 67,000

Brain Sci. 2020, 10, 427 11 of 20

Table 3. Detail of the proposed patch-wise model architecture of Convolutional Neural Network
(CNN): In inputs, the first dimension refers to the number of channels and the next two are the size of
patch and feature maps, respectively.

Block No.of
Filter

Name (Size) Stride Kernel Size

Input Input Image -

Convolution block 1 64 Con-1ayer 1 (4 × 33 × 33)

1 × 1

3 × 3

- Relu-1ayer -

64 Con-1ayer 2 (33 × 33 × 64) 3 × 3

- Relu-1ayer -

64 Con-1ayer 3 (33 × 33 × 64) 3 × 3

- Relu-1ayer -

Pooling block 1 - Max-Pooling layer 4 (33 × 33 × 64) 2 × 2 3 × 3

Convolution block 2 128 Con-1ayer 5 (4 × 33 × 33)

1 × 1

3 × 3

- Relu-1ayer -

128 Con-1ayer 6 (33 × 33 × 64) 3 × 3

- Relu-1ayer -

128 Con-1ayer 7 (33 × 33 × 128) 3 × 3

Relu-1ayer -

Pooling block 2 - MAX-Pooling layer8 (33 × 33 × 128) 2 × 2 3 × 3

Convolution block 3 128 Con-1ayer 9 (33 × 33 × 128)

1 × 1

3 × 3

- Relu-1ayer -

128 Con-1ayer 10 (33 × 33 × 128) 3 × 3

- Relu-1ayer -

Pooling block 3 - MAX-Pooling layer 11 (33 × 33 × 128) 2 × 2 3 × 3

Fully Connected
block

- FC-1ayer 12 32768

-

-

- FC-1ayer 13 256 -

- FC-1ayer 14 256 -

- Softmax-1ayer -

5. Experimental Results and Discussion

We used Tensorflow library for the implementation of our model on Z840 workstation Intel Xeon
(R) CPU E5-2630v3 @2.40GHz*32 with 64 GB memory. To validate the effectiveness, the proposed
CNN-based approach with extra convolutional layers was used to classify brain tumor disease. We used
the Monte Carlo method to check the significance of the classification and segmentation results under
optimal parameters. We performed the analysis on the different number of epochs, and we noticed
that the average performance results were achieved on 300 epochs. Table 4 shows the hyperparameters
of our proposed technique.

Brain Sci. 2020, 10, 427 12 of 20

Table 4. Hyperparameters for our proposed technique.

Stage Hyperparameter Value

Bias 0.1

Weights Xavier

ReLU α 0.333

Dropout HGG 0.1

LGG 0.5

Training

Epochs-HGG 50–300

Epochs-LGG 50–300

Intial ε 0.03

Final ε 0.0003

Batch Size 128

Post processing Tvol-HGG 10,000

Tvol-HGG 3000

Tables 5–10 show a summary of the experiment results. The experimental results uses ten gradient
descent optimizers with different number of epochs and various learning rates. Tables 5–8 give the
results at epochs 50, 100, 200, and 300. Tables 9 and 10 provide the results with learning rate 1e−1,
1e−2, . . . 1e−10.

Table 5. The training accuracy of ten optimizers on a proposed patch-wise model architecture of CNN.

Epoch →
50 100 150 200 250 300Optimizers ↓

Adam 0.97 0.98 0.98 0.98 0.99 0.99
Adagrad 0.95 0.96 0.96 0.96 0.96 0.96
AdaDelta 0.95 0.96 0.96 0.96 0.96 0.96
SGD 0.95 0.967 0.968 0.97 0.97 0.97
NAG 0.94 0.94 0.94 0.94 0.95 0.95
Rmsprop 0.95 0.95 0.95 0.95 0.95 0.95
Momentum 0.96 0.96 0.97 0.97 0.974 0.97
Adamax 0.95 0.95 0.95 0.96 0.96 0.96
CLR 0.96 0.96 0.96 0.96 0.96 0.96
Nadam 0.96 0.96 0.96 0.96 0.97 0.97

Table 6. Validation accuracy of ten optimizers on a proposed patch-wise model architecture of CNN.

Epoch →
50 100 150 200 250 300Optimizers ↓

Adam 0.97 0.97 0.97 0.98 0.98 0.99
Adagrad 0.96 0.96 0.96 0.96 0.96 0.96
AdaDelta 0.95 0.96 0.96 0.96 0.96 0.96
SGD 0.96 0.96 0.96 0.97 0.97 0.97
NAG 0.94 0.94 0.94 0.94 0.95 0.95
Rmsprop 0.95 0.95 0.95 0.95 0.95 0.95
Momentum 0.96 0.96 0.97 0.97 0.97 0.97
Adamax 0.95 0.95 0.95 0.96 0.96 0.96
CLR 0.96 0.96 0.96 0.96 0.96 0.96
Nadam 0.96 0.96 0.96 0.96 0.97 0.97

Brain Sci. 2020, 10, 427 13 of 20

Table 7. Validation loss of ten optimizers on a proposed patch-wise model architecture of CNN.

Epoch →
50 100 150 300 250 300Optimizers ↓

Adam 0.05 0.05 0.04 0.04 0.04 0.04
Adagrad 0.07 0.06 0.06 0.06 0.06 0.06
AdaDelta 0.07 0.06 0.06 0.06 0.06 0.05
SGD 0.06 0.06 0.06 0.06 0.06 0.06
NAG 0.09 0.08 0.08 0.08 0.08 0.07
Rmsprop 0.07 0.07 0.07 0.07 0.07 0.07
Momentum 0.05 0.05 0.05 0.05 0.05 0.04
Adamax 0.07 0.07 0.07 0.07 0.07 0.07
CLR 0.06 0.05 0.04 0.04 0.04 0.04
Nadam 0.05 0.05 0.05 0.05 0.05 0.05

Table 8. Training loss of ten optimizers on a proposed patch-wise model architecture of CNN.

Epoch →
50 100 150 300 250 300Optimizers ↓

Adam 0.08 0.06 0.06 0.05 0.05 0.04
Adagrad 0.12 0.11 0.11 0.09 0.09 0.08
AdaDelta 0.13 0.09 0.09 0.09 0.09 0.09
SGD 0.15 0.13 0.13 0.12 0.12 0.12
NAG 0.16 0.16 0.15 0.15 0.14 0.14
Rmsprop 0.17 0.16 0.16 0.15 0.15 0.15
Momentum 0.12 0.11 0.10 0.09 0.09 0.09
Adamax 0.11 0.11 0.09 0.09 0.09 0.09
CLR 0.15 0.13 0.12 0.12 0.11 0.11
Nadam 0.10 0.09 0.08 0.08 0.08 0.08

Table 9. Accuracy rate of ten optimizers with various learning rates on a proposed patch-wise model
architecture of CNN.

Learning Rate →
1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7 1e−8 1e−9 1e−10

Optimizers ↓
Adam 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Adagrad 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.96
AdaDelta 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
SGD 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96
NAG 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Rmsprop 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Momentum 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.97
Adamax 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
CLR 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.96 0.96
Nadam 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.969 0.97 0.96

Brain Sci. 2020, 10, 427 14 of 20

Table 10. Error rate of ten optimizers with various learning rates on a proposed patch-wise model
architecture of CNN.

Learning Rate →
1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7 1e−8 1e−9 1e−10

Optimizers ↓
Adam 0.05 0.03 0.04 0.06 0.07 0.1 0.1 0.07 0.1 0.1
Adagrad 1.04 0.86 0.56 0.37 0.54 0.77 0.81 0.54 0.77 0.81
AdaDelta 1.86 1.81 1.83 2.01 2.08 2.17 2.2 2.08 2.17 2.2
SGD 0.53 0.49 0.47 0.63 0.67 0.81 0.97 0.67 0.81 0.97
NAG 2.3 2.25 2.19 2.39 2.43 2.67 2.79 2.43 2.67 2.79
Rmsprop 2.12 2.13 2.1 2.17 2.29 2.15 2.49 2.29 2.15 2.49
Momentum 0.25 0.26 0.28 0.43 0.49 0.51 0.57 0.49 0.51 0.57
Adamax 1.69 1.52 1.26 1.49 1.6 1.92 2.09 1.6 1.92 2.09
CLR 1.88 1.88 1.79 1.97 2.05 2.15 2.45 2.05 2.15 2.45
Nadam 1.79 1.76 1.65 1.69 1.81 2.07 2.31 1.81 2.07 2.31

The flowchart of the proposed method is defined in Figure 4. There is likewise no sign of
overfitting, implying that the architecture performs well. The smallest error rate was obtained by
the Adam optimizer using our proposed CNN architecture. Adam is the most successful optimizer
in our all experiments. Other optimizers also performed well, and the performances of SGD and
momentum are close to that of Adam. Figure 5 shows the performances of ten optimizers using CNN
architecture with various epochs and learning rates. From Figure 5a, we can observe that Adam,
AdaDelta, and SGD provide the highest validation rates at 300 epochs. Figure 5b shows that Adam
has the highest training accuracy whereas NAG has the lowest training accuracy. Other than Adam,
momentum and SGD likewise have the potential to accomplish high training accuracy. Figure 5c
shows that Adam provides the smallest validation loss whereas RMSProp, NAG, and Adamax have
the biggest validation losses. From Figure 5d, we can see that RMSProp, NAG, and CLR provide the
highest trainng losses whereas Adam has the smallest training loss. Henceforth, it could be construed
that each optimizer shows diverse execution crosswise over various epochs using CNN architecture.
A comparison of our proposed method has been presented in Table 11. Reference [29] experimented
on different auto-encoders to demonstrate that NAG has better abilities in terms of reducing the
gradient norms, and it also produces iterates which exhibit an increasing trend for the minimum
eigenvalue of the Hessian of the loss function at the iterates. Four classes of the CIFAR-10 data set are
chosen for the experiments.The proposed EIOM is compared with other optimizers, namely AdaGrad,
AdaDelta, RMSProp, Adam, and CLR that produced 97% accuracy [31]. Extensive experiments on
four widely used benchmark databases were conducted to verify the effectiveness of the proposed
deep convolutional neural network (DCNN) and obtained 97.9% accuracy.

Figure 4. Proposed model flow chart.

Brain Sci. 2020, 10, 427 15 of 20

From Figure 6a,b, the segmentations results for the HGG and LGG cases are compared with
the delineated ground truth: (a) segmented tumor of a HGG case overlaid on the FLAIR image;
(b) segmented tumor of a LGG case overlaid on the Flair image. From Figure 7a,b, further examination
of the potential optimizers for CNN architecture is delineated. Some of learning rates were added to
portray its conduct against the likelihood of overtraining. As much as 1e−1, 1e−2 . . . 1e−10 learning
rate was experimented to train our proposed CNN with all optimizers. It was demonstrated that
all optimizers did not require much learning rate to arrive at the minimum error rate and that all
optimizers could converge well overall. In any case, Adam is the most steady one among the ten
optimizers. Then again, NAG, RMSProp, and CLR were not successful to do as such. The error rate of
SGD and momentum tended to diminish when the learning rate was smaller than 1e−5. Compared to
Nadam, Adagrade and AdaDelta have worse performance. Therefore, Adam is the best choice for brain
tumor segmentation using our proposed CNN architecture. From the above discussion, it is uncovered
that our proposed CNN architecture with various optimization algorithms gives impressive results
for brain tumour segmentation using MRIs. From the pack of our experiment data, it is conceivable
to explain the behaviour of each optimizer against CNN architecture. Finally, it can be seen that our
proposed model achieves state-of-the-art results when comparing it with existing models. We also
provide an in-depth analysis of our proposed method and produce 99.20% accuracy.

50 100 150 200 250 300

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Epochs

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Validation Accuracy

(a)

50 100 150 200 250 300

0.95

0.96

0.97

0.98

0.99

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Ac
cu

ra
cy

Epochs

Training Accuracy

(b)

50 100 150 200 250 300

0.04

0.05

0.06

0.07

0.08

0.09

Lo
ss

Epochs

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Validation Loss

(c)

50 100 150 200 250 300

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Lo
ss

Epochs

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Training Loss

(d)

Figure 5. Validation accuracy and loss comparison of all optimizers using our proposed architecture:
(a) validation accuracy, (b) training accuracy, (c) validation loss, and (d) training loss.

Brain Sci. 2020, 10, 427 16 of 20

(a) (b)

Figure 6. Automatic segmentation results of HGG (a) and LGG (b) cases. Red: edema, blue:
non-enhancing tumor. From left to right: (i) original image, (ii) ground truth, and (iii) demonstration
of automatic segmentation results from the proposed method. (a) The segmentation results of HGG
cases compared to their ground truth and (b) the segmentation results of LGG cases compared to their
ground truth.

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Learning Rate

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Accuracy Rate

(a)

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 Adam
 Adagrad
 AdaDelta
 SGD
 NAG
 Rmsprop
 Momentum
 Adamax
 CLR
 Nadam

Er
ro

r R
at

e

Learning Rate

Error Rate

(b)

Figure 7. Accuracy rate and error rate comparison of all optimizers using our proposed architecture:
(a) accuracy rate and (b) error rate.

Table 11. Comparison of accuracy values with state-of-the-art techniques.

Paper Method Data Set Accuracy

[43] CIFAR ConvNet Mnist Dataset 90.00%
[48] DCNN(AlexNet) ILSVRC2012 97.90%
[29] VGG-9 CIFAR-10 99.00%
[31] 2D-CNN CIFAR-10 97.00%

Proposed Method ConvNet based BraTS2015 99.20%

6. Conclusions

This paper is a comparative analysis of different optimization algorithms used in our proposed
CNN architecture to measure the performance for brain tumor segmentation. The comparison is made
on publicly available an MRI brain image data set, i.e., BraTS2015. Both quantitative and graphical
results show that all optimizers perform consistently but that Adam performs much better. Among
the 10 optimizers for our architecture, Adam has the smallest error rate and the highest accuracy rate

Brain Sci. 2020, 10, 427 17 of 20

when it reaches the minimum on a particular epoch. The NAG and RMSProp optimizers failed badly.
Due to limited resources to run several architectures, AdaDelta and Adamax should be used to provide
minimal risk. The performances of the momentum and SGD optimizers were inferior to that of Adam.
The adapted pipeline of the CNN optimizer comparison concludes that the performance of Adam is
comparable with the latest research. Future work will compare this state-of-the-art optimizer with
multiple CNN architectures used for brain tumor segmentation.

Author Contributions: M.Y.: conceptualization, methodology, writing—orignal draft. J.F.: writing—review
and editing, writing—original draft preparation, and supervision. K.A.: visualization, project administration,
and formal analysis. M.S.Z.: software and validation. Z.U.R.: conceptualization and investigation. K.J.: formal
analysis. A.M.: resources and data curation. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been sponsored by the National Science Foundation of China under grant No. 81871394,
by the Beijing Municipal Education Committee Science Foundation under grant No. KM201810005030, and by
Beijing Laboratory of Advanced Information Networks under grant No. PXM2019_014204_500029.

Acknowledgments: Bundle of thanks for the database organizers of BraTS2015 for the evaluation of automated
methods of brain tumour on MRI scans.

Conflicts of Interest: We (the authors) certify that we have no affiliations with or involvement in any organization
or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus;
membership, employment, consultancies, stock ownership, or other equity interests; and expert testimony or
patent-licensing arrangements) or nonfinancial interest (such as personal or professional relationships, affiliations,
knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Abbreviations

The following abbreviations are used in this manuscript:

DLA Deep learning algorithms
CNN Convolutional Neural Network
MRI Magnetic Resonance Images
Adagrad Adaptive Gradient
AdaDelta Adaptive Delta
SGD Stochastic Gradient14Descent
Adam Adaptive Momentum
CLR Cyclic Learning Rate
Adamax Adaptive Max Pooling15
RMS Prop Root Mean Square Propagation
NADAM Nesterov Adaptive Momentum
NAG Nesterov accelerated gradient
HGG High-Grade Gliomas
LGG Low-Grade Gliomas
CNS Central nervous system
ANN Artificial Neural Network
GT Ground Truth
CV Computer Vision
PSO Particle Swarm Optimization
FLAIR Fluid Attenuation Inversion Recovery
SIFT Scale-Invariant Feature Transform
DCNN Deep Convolutional Neural Network

References

1. Walker, E.V.; Davis, F.G. Malignant primary brain and other central nervous system tumors diagnosed in
Canada from 2009 to 2013. Neuro Oncol. 2019, 21, 360–369. [CrossRef] [PubMed]

2. Mzoughi, H.; Njeh, I.; Wali, A.; Slima, M.B.; BenHamida, A.; Mhiri, C.; Mahfoudhe, K.B. Deep Multi-Scale 3D
Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. J. Digit. Imaging 2020.
[CrossRef] [PubMed]

http://dx.doi.org/10.1093/neuonc/noy195
http://www.ncbi.nlm.nih.gov/pubmed/30649461
http://dx.doi.org/10.1007/s10278-020-00347-9
http://www.ncbi.nlm.nih.gov/pubmed/32440926

Brain Sci. 2020, 10, 427 18 of 20

3. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H.
Brain tumor segmentation with deep neural networks. Med Image Anal. 2017, 35, 18–31. [CrossRef] [PubMed]

4. Fukushima, K. Neocognitron. Scholarpedia 2007, 2, 1717. [CrossRef]
5. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep

learning. Int. Conf. Mach. Learn. 2013, 1139–1147.
6. Fletcher, E.; Knaack, A. Applications of deep learning to brain segmentation and labeling of mri brain

structures. Handb. Pattern Recognit. Comput. Vis. 2020, 251.
7. Ahmad, A.; Hassan, M.; Abdullah, M.; Rahman, H.; Hussin, F.; Abdullah, H.; Saidur, R. A review on

applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain.
Energy Rev. 2014, 33, 102–109. [CrossRef]

8. Fukushima, K. Neocognitron: A hierarchical neural network capable of visual pattern recognition.
Neural Netw. 1988, 1, 119–130. [CrossRef]

9. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

10. Lee, S.G.; Sung, Y.; Kim, Y.G.; Cha, E.Y. Variations of AlexNet and GoogLeNet to Improve Korean Character
Recognition Performance. J. Inf. Process. Syst. 2018, 14.

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

12. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: an overview and
application in radiology. Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

13. Yang, T.; Wu, Y.; Zhao, J.; Guan, L. Semantic segmentation via highly fused convolutional network with
multiple soft cost functions. Cogn. Syst. Res. 2019, 53, 20–30. [CrossRef]

14. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
15. Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070.
16. Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based segmentation of medical imaging data. arXiv 2017,

arXiv:1701.03056.
17. Hosseini, H.; Xiao, B.; Jaiswal, M.; Poovendran, R. On the limitation of convolutional neural networks in

recognizing negative images. In Proceedings of the 2017 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 352–358.

18. Bao, P.; Zhang, L.; Wu, X. Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern
Anal. Mach. Intell. 2005, 27, 1485–1490. [CrossRef] [PubMed]

19. Bouvrie, J. Notes on Convolutional Neural Networks. 2006. Unpublished.
20. Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A Deep Siamese Convolution Neural Network for

Multi-Class Classification of Alzheimer Disease. Brain Sci. 2020, 10, 84. [CrossRef]
21. Ghoreishi, S.F.; Imani, M. Bayesian optimization for efficient design of uncertain coupled multidisciplinary

systems. In Proceedings of the 2020 American Control Conference (ACC 2020), Denver, CO, USA, 1–3 July
2020; IEEE: Piscataway, NJ, USA, 2020.

22. Sultan, H.H.; Salem, N.M.; Al-Atabany, W. Multi-classification of Brain Tumor Images using Deep Neural
Network. IEEE Access 2019, 7, 69215–69225. [CrossRef]

23. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Content-Based Brain Tumor Retrieval for
MR Images Using Transfer Learning. IEEE Access 2019, 7, 17809–17822. [CrossRef]

24. Becherer, N.; Pecarina, J.; Nykl, S.; Hopkinson, K. Improving optimization of convolutional neural networks
through parameter fine-tuning. Neural Comput. Appl. 2019, 31, 3469–3479. [CrossRef]

25. Barkana, B.D.; Saricicek, I.; Yildirim, B. Performance analysis of descriptive statistical features in retinal
vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl. Based Syst. 2017, 118, 165–176.
[CrossRef]

26. Emery, N.J.; Seed, A.M.; Von Bayern, A.M.; Clayton, N.S. Cognitive adaptations of social bonding in birds.
Philos. Trans. R. Soc. Biol. Sci. 2007, 362, 489–505. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.media.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27310171
http://dx.doi.org/10.4249/scholarpedia.1717
http://dx.doi.org/10.1016/j.rser.2014.01.069
http://dx.doi.org/10.1016/0893-6080(88)90014-7
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://dx.doi.org/10.1016/j.cogsys.2018.04.004
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TPAMI.2005.173
http://www.ncbi.nlm.nih.gov/pubmed/16173190
http://dx.doi.org/10.3390/brainsci10020084
http://dx.doi.org/10.1109/ACCESS.2019.2919122
http://dx.doi.org/10.1109/ACCESS.2019.2892455
http://dx.doi.org/10.1007/s00521-017-3285-0
http://dx.doi.org/10.1016/j.knosys.2016.11.022
http://dx.doi.org/10.1098/rstb.2006.1991
http://www.ncbi.nlm.nih.gov/pubmed/17255008

Brain Sci. 2020, 10, 427 19 of 20

27. He, S.; Wu, Q.; Saunders, J. A group search optimizer for neural network training. In International Conference
on Computational Science and Its Applications; Springer: Berlin, Germany, 2006; pp. 934–943.

28. Yousoff, S.N.M.; Baharin, A.; Abdullah, A. A review on optimization algorithm for deep learning method
in bioinformatics field. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering
and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 707–711.

29. De, S.; Mukherjee, A.; Ullah, E. Convergence guarantees for RMSProp and ADAM in non-convex
optimization and an empirical comparison to Nesterov acceleration. arXiv 2018, arXiv:1807.06766.

30. Prilianti, K.; Brotosudarmo, T.; Anam, S.; Suryanto, A. Performance comparison of the convolutional neural
network optimizer for photosynthetic pigments prediction on plant digital image. AIP Conf. Proc. 2019,
2084, 020020.

31. Zhao, H.; Liu, F.; Zhang, H.; Liang, Z. Research on a learning rate with energy index in deep learning.
Neural Netw. 2019, 110, 225–231. [CrossRef]

32. Moulines, E.; Bach, F.R. Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain,
12–14 December 2011; pp. 451–459.

33. Chandra, B.; Sharma, R.K. Deep learning with adaptive learning rate using laplacian score. Expert Syst. Appl.
2016, 63, 1–7. [CrossRef]

34. Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017,
19, 221–248. [CrossRef]

35. Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification
using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [CrossRef]

36. Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain tumor type classification via capsule networks.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,
7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3129–3133.

37. Qayyum, A.; Anwar, S.M.; Majid, M.; Awais, M.; Alnowami, M. Medical image analysis using convolutional
neural networks: A review. arXiv 2017, arXiv:1709.02250.

38. Iftikhar, S.; Fatima, K.; Rehman, A.; Almazyad, A.S.; Saba, T. An evolution based hybrid approach for heart
diseases classification and associated risk factors identification. Biomed. Res. 2017, 28, 3451–3455.

39. Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. Brain tumor segmentation and
radiomics survival prediction: contribution to the BRATS 2017 challenge. In International MICCAI Brainlesion
Workshop; Springer: Berlin, Germany, 2017; pp. 287–297.

40. Wu, H.; Yang, S.; Huang, Z.; He, J.; Wang, X. Type 2 diabetes mellitus prediction model based on data
mining. Inform. Med. Unlocked 2018, 10, 100–107. [CrossRef]

41. Doike, T.; Hayashi, K.; Arata, S.; Mohammad, K.N.; Kobayashi, A.; Niitsu, K. A Blood Glucose Level
Prediction System Using Machine Learning Based on Recurrent Neural Network for Hypoglycemia
Prevention. In Proceedings of the 2018 16th IEEE International New Circuits and Systems Conference
(NEWCAS), Montreal, QC, Canada, 24–27 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 291–295.

42. Pereira, D.A.; Ourique de Morais, W.; Pignaton de Freitas, E. NoSQL real-time database performance
comparison. Int. J. Parallel Emergent Distrib. Syst. 2018, 33, 144–156. [CrossRef]

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Alfian, G.; Syafrudin, M.; Ijaz, M.; Syaekhoni, M.; Fitriyani, N.; Rhee, J. A Personalized Healthcare Monitoring

System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing. Sensors 2018,
18, 2183. [CrossRef]

45. Huh, J.H. Big Data Analysis for Personalized Health Activities: Machine Learning Processing for Automatic
Keyword Extraction Approach. Symmetry 2018, 10, 93. [CrossRef]

46. Kögel, M.; Findeisen, R. A fast gradient method for embedded linear predictive control. IFAC Proc. Vol.
2011, 44, 1362–1367. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2018.12.009
http://dx.doi.org/10.1016/j.eswa.2016.05.022
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1016/j.jocs.2018.12.003
http://dx.doi.org/10.1016/j.imu.2017.12.006
http://dx.doi.org/10.1080/17445760.2017.1307367
http://dx.doi.org/10.3390/s18072183
http://dx.doi.org/10.3390/sym10040093
http://dx.doi.org/10.3182/20110828-6-IT-1002.03322

Brain Sci. 2020, 10, 427 20 of 20

47. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.;
Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med.
Imaging 2014, 34, 1993–2024. [CrossRef]

48. Bai, C.; Huang, L.; Pan, X.; Zheng, J.; Chen, S. Optimization of deep convolutional neural network for large
scale image retrieval. Neurocomputing 2018, 303, 60–67. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMI.2014.2377694
http://dx.doi.org/10.1016/j.neucom.2018.04.034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Optimization Algorithms
	Adaptive Momentum (Adam)
	Stochastic Gradient Descent (SGD)
	Momentum
	Adaptive Gradient (Adagrad)
	Adaptive Delta (AdaDelta)
	Adaptive Max Pooling (Adamax)
	Nesterov Adaptive Momentum (Nadam)
	Root Mean Square Propagation (RMSProp)
	Cyclic Learning Rate (CLR)
	Nesterov Accelerated Gradient (NAG)

	Data Set and Methodology
	Experimental Results and Discussion
	Conclusions
	References

