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1. Introduction
COVID-19 (novel COronaVIrus Disease 2019) is caused 
by a novel pathogen that is pursued closely by all over the 
world after the worldwide pandemic was declared by WHO 
on March 11th. It has become one of the most important 
health problems by causing nearly 5M confirmed cases and 
over 300K deaths from 213 countries/regions in a couple 
of months (WHO, 2020a)1. More than 17,000 papers by the 
query “COVID-19” indexed in PubMed/NCBI and nearly 
200 of them, as of 29th May 2020, about genome of severe 
acute respiratory syndrome-COronaVirus-2 (SARS-
CoV-2) which is the agent responsible for the disease. 
1.1. Taxonomy of SARS-CoV-2
SARS-CoV-2, is an enveloped, +ssRNA virus belonging 
to the Coronaviridae family that are classified into 4 
major genera: Alphacoronavirus, Betacoronavirus, 
Gammacoronavirus, and Deltacoronavirus by 
phylogenetic studies and classified in the Betacoronavirus 
genus, Sarbecovirus and grouped as SARS-Like CoVs 
(Gorblenya et al., 2020). CoVs can infect many of animal 
1WHO (2020a). Coronavirus disease (COVID-2019) situation re-
ports. [online]. Website: https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/situation-reports accessed 17 May 2020].

species from different genus including mammals, avians 
and reptiles (Gorblenya et al., 2006; Wu et al., 2020; 
Gorblenya et al., 2020). Until December 2019, there were 
6 coronavirus species known as human pathogen. Four 
of them (229E, OC43, NL63, and HKU1) have caused 
common cold and others 2 worldwide outbreaks (SARS 
2003; MERS 2012) over the last 20 years (Su et al., 2016; 
Zhu et al., 2020). Recently, a 7th coronavirus species has 
been discovered in December 2019 and first named as 
2019 novel Coronavirus (2019 nCoV) and then as SARS-
CoV-2 (Gorblenya et al., 2020).
1.2. The outbreaks of CoVs
An outbreak of severe acute respiratory syndrome (SARS) 
was reported in November 2002. Despite patients carried 
symptoms of a viral infection, no pathogen causing 
pneumonia was identified, and in a few months, it was 
revealed that a novel CoV had caused this syndrome (Peiris 
et al., 2003). The filiation studies about SARS showed that 
the early cases were mostly seen among restaurant workers 
in Guandong Province, China and this information led 
researchers to suspect that transmission source of the 
virus might be an animal like bat or civet, that frequently 
consumed in that province (Zhong et al., 2003; Guan et 
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al., 2003; Su et al., 2016). This was the first-known CoV 
outbreak that caused 8096 cases and 774 deaths in 37 
countries or areas until July 2003 (WHO, 2004)2.

In the summer of 2012, 9 years after SARS outbreak 
was controlled, a novel coronavirus disease called Middle 
East Respiratory Syndrome (MERS) was reported in Saudi 
Arabia (WHO, 2019)3. A 60-year-old man with severe fever 
and cough, was diagnosed as pneumoniae and, as in SARS, 
no pathogen causing pneumonia was detected, however, 
fragments that amplified from some of PCR assays for the 
detection of coronaviruses were sequenced and analysis of 
the results indicated a novel coronavirus named MERS-
CoV relative with HKU4 and HKU5 (Zaki et al., 2012; de 
Groott al., 2013; Yin and Wunderink, 2013). Despite the 
transmission from animal to human has not been clearly 
verified, the dromedary camels have been proposed as the 
main reservoir host for the virus (Azhar et al., 2014; WHO, 
2019). This epidemic was mostly effective in Saudi Arabia 
and in the gulf countries, caused nearly 2500 confirmed 
cases with 35% death rate (WHO, 2019).  

Transmission mechanism of both SARS-CoV and 
MERS-CoV from animal to human was reported to be 
the direct contact with host animals or consumption 
of raw milk, meat or urine (Yin and Wunderink, 2013; 
WHO, 2019). The studies listed the 3 major causes of 
SARS epidemic termination: the public health strategies, 
scientific development in biology and medicine, and 
hygiene practices (Chew, 2007).  
1.3. Evolution of SARS-CoV-2
It was already known that the Spike (S) glycoprotein 
plays a determining role in CoV infections (Sanchez et 
al., 1999) and is effective in viral entry and pathogenesis 
(Gallagher and Buchmeiert, 2001). During the ongoing 
SARS outbreak, it has been discovered that the novel virus 
has developed a new viral entry mechanism by binding 
S protein to angiotensin-converting enzyme 2 (ACE2) 
receptors (Li et al., 2003), as the identification mark of 
SARS-CoV adaptation which has been caused by the 
mutations on S protein residues between 318–510 that 
named as receptor binding protein (RBD) (Wong et al., 
2004; Li et al., 2005). After the SARS outbreak, animals 
such as bats, civets, and pangolins, have been seen as the 
main reservoir hosts of the SARS-related CoVs that has 
similar entry mechanism and scientists have focused on 
2WHO (2004). Summary of probable SARS cases with onset of illness 
from 1 November 2002 to 31 July 2003. [online]. Website: https://
www.who.int/csr/sars/country/table2004_04_21/en/ [accessed 17 
May 2020].
3WHO (2019). Middle East respiratory syndrome coronavirus 
(MERS-CoV). [online]. Website: https://www.who.int/en/news-
room/fact-sheets/detail/middle-east-respiratory-syndrome-corona-
virus-(mers-cov) [accessed 17 May 2020].

studying viruses hosted by these animals (Ge et al., 2013; 
Li, 2016; Cui et al., 2019; Liu et al., 2019). Despite RBD 
of MERS-CoV-2 binds to dipeptidyl peptidase 4 (Raj et 
al.,2013), it has been revealed that RBD of SARS-CoV-2 
binds ACE2, like in SARS-CoV (Tai et al., 2020). Although 
it has been lasted about 1 year to resolve this mechanism 
for the SARS-CoV (Li et al., 2003), this timing was much 
shorter, as nearly 3 months, with the research ability that 
have been gained with the developing DNA sequencing 
technologies and over years of experience in this area (Tai 
et al., 2020; Ou et al., 2020). 
1.4. Genomic studies on CoVs
There are more than 7,000 complete genome entry 
uploaded to Nucleotide/NCBI databases from 
Coronaviridae family between 2002–2020, more than half 
of them is being SARS-CoV-2 (www.ncbi.nlm.nih.gov/
nuccore/, accessed 29th May 2020) and it is increasing 
in parallel to the development of sequencing technology. 
The coronavirus genome structure has been characterised 
by various studies (Kocherhans et al., 2001; Brian and 
Baric, 2005; Gorblenya et al., 2006; Yang and Leibowitz, 
2015; Madhugiri et al., 2016) with the genome size 
around 30kb. CoVs are referred to have the largest known 
genome size among RNA viruses (Brian and Baric, 2005). 
All CoV genomes contain a large gene region (named 
ORF) encoding nonstructural proteins (Nsp) which are 
responsible for mostly replication and the genes encoding 
spike (S) glycoprotein, envelope (E) protein, membrane 
(M) glycoprotein and nucleocapsid (N) protein have also 
been found in common (Brian and Baric, 2005; Gorblenya 
et al., 2006). 

The genome sequence of SARS-CoV-2 was first 
characterised by Wu et al. in December 2019 (Wu et al, 
2020) and appointed as reference genome of SARS-CoV-2 
(NC_045512.2; 1-29870); consist of 11 gene regions; 
ORF1ab (266-21555), S (21563-25384), ORF3a (25393-
26220), E (26245-26472), M (26523-27191), ORF6 (27202-
27387), ORF7a (27394-27759), ORF7b (27756-27887), 
ORF8 (27894-28259), N (8274-29533), ORF10 (29558-
29674) by NCBI (Genbank, 2020). 

Although this reference genome sequence is commonly 
used in most studies, it is extremely important to monitor 
the variations in the virus genome to understand the 
evolution and spread of the virus and also to use this 
information in the development possible treatments 
and vaccines accordingly. For this purpose, GISAID 
(GISAID, 2020; Elbe and Buckland-Merrett, 2017; Shu, 
and McCauley, 2017) which collects and shares genome 
sequences and related clinical/epidemiological data 
for monitoring annual influenza strains, established a 
new database called EpiCoV and the first SARS-CoV-2 
genome was shared on 10th January 2020. More than 
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30,000 genome sequences of SARS-CoV-2 were uploaded 
to EpiCoV databases between 10th January and 20th May 
2020 (EpiCoV, 2020)4. 

In this study; we have used these data to analyse the 
mutations on SARS-CoV-2 genome using a software based 
on multiple sequence alignment (Strategy Based Local 
Alignment Tool: ODOTool) that have been originally 
developed for bacterial SNP determination in our studies. 
Now, we targeted to analyse the mutations that have 
emerged in at least 10% of SARS-CoV-2 genomes in all 
30366 sequences submitted in GISAID by May 20th, 2020 
using the ODOTool in terms of date and location they 
occurred, the relationship with each other and their effect 
on the primary protein structure.

2. Materials and methods 
2.1. Data optimization and development of strategy 
based local alignment tool: ODOTool
Despite the Strategy Based Local Alignment Tool 
(ODOTool) used in this study was originally developed by 
our group for bacterial single nucleotide polymorphism 
(SNP) determination, it was reasonable to test the abilities 
of the tool using a different dataset with the emergence 
of SARS-CoV-2 causing COVID-19 pandemic and this is 
applied in the present study to analyse variations in viral 
genome. 

The first genome sequence of SARS-CoV-2 has been 
identified and submitted with the accession number of 
MN908947.1 to Genbank by Wu et al. in December 2020 
(Wu et al., 2020), then curated by NCBI staff, reviewed 
by RefSeq (O’Leary et al., 2015), and appointed as the 
reference genome of SARS-CoV-2 (NC_045512.2) 
(Genbank, 2020). Genomic sequences (30366) of SARS-
CoV-2 isolates submitted on GISAID/ EpiCoV database 
by 21st May 2020, have been downloaded in FASTA file 
format, into our local database for alignment and analysis.

Workflow of ODOTool is given in Figure 1. The main 
purpose of developing the ODOTool was analysing bacterial 
gene sequences for single nucleotide polymorphism (SNP) 
determination. It was designed to download bulk data 
of gene sequences from open access databases such as 
Genbank/NCBI and EMBL-EBI, to prepare data first for 
prealignment and then for alignment and analysis of the 
aligned sequences. Prealignment and generating universal 
consensus sequences module (shown in grey in Figure 1) 
is an additional step for analysis of the sequences among 
different genus, hence it is not used in the present study.

The ODOTool has been coded with Python 
programming language by Biophyton library (Cock et al., 
4EpiCoV (2020). Pandemic coronavirus causing COVID-19 [online]. 
Website: https://www.epicov.org/ [accessed 17 May 2020].

2009). After the genome sequence downloading process, 
all data were stored in our local database with annotations 
such as isolate name, location, collection, and submission 
dates etc. The data downloaded from different databases 
were not in a standard format. Therefore, an additional 
data conversion step was applied to remove any undesired 
features or information like FASTA comments, line feeds, 
blank spaces and all sequences set to upper cases etc. to 
standardise all data prior to further analyses. Modified 
Needleman-Wunsch algorithm, modified BLOSUM 62 
scoring matrix and adjusted gap penalties (match = 4, 
mismatch = –1, reference genome open gap score = –1000, 
reference genome extend gap score = –1000, isolate genome 
open gap score = –20, isolate genome extend gap score 
= –4) were used for alignment step. Aligned nucleotide 
sequences were then converted to protein sequences to 
determine missense mutations using standard codon 
table (Peabody, 1989). Aligned nucleotide and protein 
sequences of all downloaded isolate genomes were stored 
in local database for computational, visual, and statistical 
analysis.

The alignments performed by ODOTool were validated 
with multiple alignment program MAFFT v7 (Kuraku et 
al., 2013; Katoh et al., 2017) to evaluate the accuracy and 
performance of ODOTool. Data size suggested for accuracy 
by MAFFT v7 is 200 genome sequences . Therefore, 200 
SARS-CoV-2 genomes were randomly selected and the 
same sequences were analysed by using both MAFFT v7 
and ODOTool. The genomic positions and frequencies 
of variations were compared for validation. The genomic 
positions of variations were determined by homology and 
frequencies were calculated by Jalview v2.10.5 consensus 
calculation algorithm (Waterhause et al., 2009).
2.2. Mutation analysis
Alignment results obtained using the software developed 
in this study were verified with the Nextstrain platform 
(Hadfield, 2018; Nextstrain, 20205) that has been created 
to monitor virus evolution in real time. In this study, 
occupancy of sequences in alignment were considered in 
calculation of variation frequencies. Variations occurring 
over 10% frequency in clinical isolate genomes that have 
been downloaded into our database were evaluated and 
discussed specific to the genes. It must be noted that 
availability of these variations is also previously reported 
in other studies (Nextstrain, 2020; Pachetti et al., 2020; 
Wang et al., 2020; Phan et al., 2020) with different aspects. 
Despite the variations occurring over 10% frequency 
were discussed in the present study, it was noticed that 
SARS-CoV-2 isolate genomes were harbouring some of 
5NextStrain (2020). Nextstrain: analysis and visualization of patho-
gen sequence data [online] Website: https://nextstrain.org/ [ ac-
cessed 17 May 2020].
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the variations over 20% frequency and causing missense 
mutations and so focused on these mutations in more 
detail and some charts were produced to show increasing 
EpiCoV entries, rate changes of the most frequent changes 
and rates of the most frequent mutations by continents.

The isolates with mistyped location and date 
annotations, nearly 2–3% of all downloaded entries, were 
ignored, while charts were created. Venn diagram presents 
simultaneously carried mutations and has been generated 
by Jvenn web tool (Bardou et al., 2014).

3. Results and discussion
3.1. Data optimization and development of Strategy 
Based Local Alignment tool: ODOTool
The alignments of randomly selected 200 SARS-CoV-2 
isolate genome sequences were evaluated for validation 
according to genomic positions and frequencies of 
variations. It is well known that different datasets 
produce different results. As seen on Table 1, frequency 
calculation result by using both tools on the same dataset 
are consistent, showing validity of the results obtained 
by using the ODOTool. Further technical properties of 
ODOTool is excluded as these details are out of this Special 
Issue’s scopes. 

In this study, 30366 SARS-CoV-2 isolate genome 
sequences were downloaded, standardised, aligned and 
in silico protein translation was performed. All processed 
data stored in a database for analysis. 

3.2. Mutation analysis
When the variations on SARS-CoV-2 genome is 
evaluated in general, several uneven used synonymous 
codons encode most of amino acids and this situation 
was defined as codon usage bias (CUB) that could have 
specific causes and consequences in different organisms 
(Belalov and Lukashev, 2013). CUB was explained by 2 
primary circumstances; translational selection that means 
choosing the most suitable codon for translation and 
mutational pressure being gained by distinct probability of 
different substitution types like GC content, deoxycytidine 
methylation (C-phosphate-G), or subsequent deamination 
(C-T substitution) (Bulmer, 1987; Sharp et al., 1993; 
Belalov and Lukashev, 2013). 

Cytosine deamination has been identified as an 
important source of synonymous mutations (Duncan and 
Miller, 1980) managing the GC contents of RNA viruses 
(Pyrc et al., 2004). Because of cytosine deamination has 
been observed in all coronavirus genomes and proposed 
as a significant biochemical effect on coronavirus 
evolution (Woo et al., 2007), it is a predictable result that 
C-to T exchange has the most prominent numbers in all 
nucleotide change directions in SARS-CoV-2 genome.

In this study, 11 variations, with the incidence of 
over 10% have been detected in 30366 clinical SARS-
CoV-2 isolate genomes (Table 2). It has been observed 
that 8 of these 11 variations; C1059T, G11083T, C14408T, 
A23403G, G25563T, G28881A, G28882A, and G28883C 

Figure 1. Workflow of ODOTool. 
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cause amino acid substitutions. Three variations that do not 
cause amino acid exchange were named as synonymous 
mutations in the literature (Kimura, 1977).

When the 30366 SARS-CoV-2 genome sequences were 
aligned, the first encountered variation was observed to 
be C241T in the 5’ untranslated region (5’ UTR) being 
occurred nearly in 70% of SARS-CoV-2 isolates. Studies 
conducted on some viral genomes reported that the 
variations on UTRs may affect the activity, replication, 
and packaging of genomes, immune modulation and 
expression of genes (Silveria et al., 1995; De Lorenzo et al., 
2016; Ng et al., 2017). This variation should be evaluated 

towards findings of these research studies with further 
in vitro studies as its frequency rate is 70.99% in whole 
genomes from all over the world. 

Rest of the 10 variations on nonstructural, structural, 
and accessory proteins are discussed below. 
3.2.1. Variations on nonstructural proteins 
ORF1ab region of SARS-CoV-2 genome is an important 
polyprotein gene common in all CoVs and encodes 16 
Nsps that include enzymes vital for the lifecycle of the 
virus, such as RNA depended polymerase, helicase and 
3C-like proteinase (Brian and Baric, 2005; Gorblenya et 
al., 2006). Because of the critical role of these proteins on 
virulence and life cycle of the virus, some of these proteins 
have been proposed as potential target for antiviral 
therapy (Kwong et al., 2005; Briguglio et al., 2011; Zhou, 
2020). Four variations over 10% were available on ORF1ab 
region. The first variation C3037T causes a synonymous 
mutation and seen in frequency of 29.3% in gene region 
encoding Nsp3 that is an important unit of the replication/
transcription complex in CoVs (Lei et al., 2018). The other 
3 variations, C1059T, G11083T, and C14408T causing 
amino acid substitutions are in gene regions of Nsp2, Nsp6, 
and Nsp12, respectively, in ORF1ab; with the incidence of 
over 10%. 

C1059T variation has been caused T266I amino acid 
exchange on Nsp2. But it is difficult to evaluate the effect 
of this exchange on the protein function, as the function 
of Nsp2 has not been resolved yet (Graham et al., 2005; 
Gadlage et al., 2008; Chen et al., 2020).

G11083T variation (reported previously by van Dorp 
et al., 2020) causing L36F exchange was present on Nsp6 
gene region that is known with its role in inducing vesicles 

Table 1. Comparison of variation frequency calculations 
by ODOTool and MAFFT. 

Reference 
genome 
position

Nucleotide 
exchange

Frequency 
(calculated by 
ODOTool)

Frequency 
(calculated by
MAFFT)

241 C→T 77.0% 77.0%
1059 C→T 5.5% 5.5%
3037 C→T 82.5% 82.5%
11083 G→T 10.5% 10.5%
14408 C→T 82.5% 82.5%
14805 C→T 7.5% 7.5%
23403 A→G 82.0% 82.5%
25563 G→T 7.0% 7.0%
28881 G→A 58.0% 58.0%
28882 G→A 58.5% 58.5%
28883 G→C 58.5% 58.5%

Table 2. Summary of variations evaluated in this article. Variations over 20% frequency are 
shown in bold * synonymous mutations. 

Genome position Nucleotide exchange Frequency Region Amino acid exchange

241 C→T 70.99% 5’ UTR -*
1059 C→T 18.10% Nsp2/ORF1ab T266I
3037 C→T 29.27% Nsp3/ORF1ab -*
11083 G→T 12.23% Nsp6/ORF1ab L36F
14408 C→T 70.42% Nsp12/ORF1ab P323L
14805 C→T 10.01% Nsp12/ORF1ab -*
23403 A→G 70.47% S Protein D614G
25563 G→T 22.49% ORF3a Q57H
28881 G→A 26.30% N Protein

R204K
28882 G→A 26.13% N Protein
28883 G→C 26.11% N Protein G205R
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located around the microtubule regulation centre and 
ensuring membrane proliferation (Angelini et al., 2013). 
This variation was suggested as a homoplastic mutation 
(van Dorp et al., 2020) and suggested to be evaluated with 
these characteristics in further studies.

C14408T (first reported by Pachetti et al., 2020) and 
C14805T found to be present on Nsp12 gene region with 
a frequency of 70.42% and 10.01% of isolates, respectively. 
Nsp12 is a vital protein for replication and pathogenesis and 
potential target for antiviral candidates in CoVs (Perlman 
and Netland, 2009; Wu et al., 2020; Yin and Wunderink, 
2018). C14408T variation observed to be responsible 
from P323L exchange causing a missense mutation. The 
isolate genome sequence harbouring C14408T variation 
was first submitted to the GISAID from Lombardy, Italy, 
on February 20th, 2020 (EPI_ISL_412973), 20 days after 
the first COVID-19 case confirmed in Italy. Although 
C14805T (submitted on February 9th, 2020 England; EPI_
ISL_412116) variation is rarer, it was emerged earlier than 
C14408T variation. Despite C14408T variation occurred 
later than C14805T, the incidence of this variation has 
increased sharply and reach over 70%, recently (Figure 2). 
This observation may be evaluated as a remarkable data 
about the effect of C14408T variation on the spread of the 
virus. 
3.2.2 Variations on accessory and structural proteins
The increasing number of isolate genome entries in 
EpiCoV and rate changes of the most frequent variations 

by isolate collection dates are also given in Figure 2 for 
G25563T variation on accessory protein and A23403G 
variation on S protein and 3 consecutive variations 
(G28881A, G28882A, and G28883C) named as GGG to 
AAC on N protein. 

G25563T variation is on the gene region of Orf3a 
which is a unique membrane protein with its 3-membrane 
structure, the largest protein in the SARS related 
CoVs accessory protein family and is essential for the 
pathogenesis of the disease (Lu et al., 2010; Issa et al., 
2020). G25560T variation also causes amino acid exchange 
of glutamine to histidine in residue 57 (Q57H).

There are also 4 structural proteins named as Spike 
(S), Envelope (E), Membrane (M), and Nucleocapsid (N) 
proteins and all has been encoded in all CoV genomes, 
including the SARS-CoV-2 (Brian and Baric, 2005; 
Gorblenya et al., 2020). In the current study, 4 variations 
were determined to cause amino acid substitutions in 
regions encoding S and N proteins with an incidence of 
over 10%.

A23403G variation is one of the most important 
variations that have been reported previously (Phan et 
al., 2020) caused D614G substitution on S protein. As in 
the C14408T of Nsp12 variation, A23403G variation of 
S protein is also available in 70.46% frequency in SARS-
CoV-2 genomes isolated all over the world (Figure 2). 
S protein has important role in viral entry into the host 
cells (Gallagher and Buchmeiert, 2001). Viral entry 

Figure 2. The increasing EpiCoV entries and rate changes of the most frequent variations by isolate collection dates. 
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and pathogenesis have been reported to be managed by 
a couple of mutations in its RBD of S protein in SARS-
CoV (Wong et al., 2004; Li et al., 2005) aligned on residues 
between 331 and 524 for SARS-CoV-2 (Tai et al., 2020; Ou 
et al., 2020). RBD is located on the outer membrane of the 
virus and these properties of RBD make the S protein a 
suitable target for new treatment approaches (Tai et al., 
2020) and the most of the ongoing protein subunit vaccine 
studies against SARS-CoV-2 (WHO, 2020b)6. Therefore, 
any mutation on S protein of SARS-CoV-2 should be 
carefully tracked and evaluated, as this protein is the 
key target especially in the current vaccine development 
studies (Kiyotani et al., 2020).

Perhaps one of the most interesting SARS-CoV-2 
variations occurred between genomic positions of 
28881–28883. The GGG sequence of reference SARS-
CoV-2 genome at these positions are converted to AAC 
in nearly 26% of rest of the isolate genomes. These 3 
variations (G28881A, G28882A and G28883C) were seen 
simultaneously in about 99% of all isolates harbouring 
the variations. G28881A and G28882A exchanges cause 
R204K and G28883C exchange causes G205R amino acid 
6WHO (2020b). Draft landscape of COVID-19 candidate vaccines 
[online]. Website: https://www.who.int/who-documents-detail/
draft-landscape-of-covid-19-candidate-vaccines accessed 17 May 
2020].

substitutions on the N protein. N protein is an essential 
structural protein, playing very different roles in the 
regulation of infected cell metabolism and packaging 
of the viral genome important for both replication and 
transcription (Kang et al., 2020). 

When the C14408T, G25563T, A23403G, and GGG to 
AAC variations with over 20% frequency were analysed, 
dramatic observations were seen in terms of appearance of 
these mutations in different continents (Figure 3). Figure 
3 clearly shows that; G25563T mutation is developed by 
the isolates in N. America especially, GGG to AAC by the 
isolates in Europe, the same mutation is rare in N. America. 
C14408T and A23403G is common all over the world but 
especially in Africa, then S. America and this is followed 
by Europe (Figure 3). All these data could be used to trace 
diversity of virus in all over the world in combination with 
filiation studies. 

Our mutation analysis revealed that most of the isolates 
carry C14408T and A23403 variations simultaneously 
(Figure 4) in all continents (Figure 3). Nearly all isolates 
which carry G25563T, also carry C14408T and A23403G 
variations although their location distributions are not 
similar. Nearly no isolates carried GGG to AAC variations 
and G25563T variation simultaneously (Figure 4). The 
relation between these variations shown in Figure 4 may 
indicate that these mutations are coevoluating. Therefore, 

Figure 3. Rates of the most frequent variations by continents. 
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these results should be followed and evaluated by affiliation 
studies.

In conclusion; since the COVID-19 pandemic 
emerged globally, all the world has been searching ways to 
control the spread of the disease. As the virus’s adaptation 
strategies come from its nature, scientists put a massive 
effort on finding and development of suitable strategies for 
both effective prevention and treatment and on monitoring 
its virulence. Despite all these efforts, the virus continues 
to survive and spread, and this necessitates tracking any 
variations that occur on its genome to conduct further 
studies to find a way to control the disease. SARS-CoV-2 
isolate genomes (30366) were aligned using the Strategy 
Based Local Alignment Tool (ODOTool) developed by our 
group and 11 variations in SARS-CoV-2 genome observed 
in over 10% of whole isolates from all over the world were 
discussed according to the date and location they occurred, 
the relationship with each other and their effect on the 
primary protein structure in the present study. Data were 
obtained as a result of evaluation of massive amount of 
genomic sequences in this study and expected to enlighten 
studies towards overcoming the SARS-CoV-2 infections.
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